• ФИЗИКА

УДК 621.373.826

ИССЛЕДОВАНИЕ ПРОЦЕССА ЛАЗЕРНОГО РАСКАЛЫВАНИЯ КРЕМНИЕВЫХ ПЛАСТИН, ВЫРЕЗАННЫХ В ПЛОСКОСТИ (110)

А.Н. Сердюков, С.В. Шалупаев, Ю.В. Никитюк, А.А. Середа

Гомельский государственный университет им. Ф. Скорины, Гомель

PROCESS RESEARCH OF LASER SPLITTING SILICON WAFERS CUTOUT IN THE PLANE (110)

A.N. Serdykov, S.V. Shalupaev, Y.V. Nikitjuk, A.A. Sereda

F. Scorina Gomel State University, Gomel

Представлены результаты моделирования процесса лазерного термораскалывания монокристаллического кремния. Расчет термоупругих полей, формируемых в кремниевой пластине в результате последовательного лазерного нагрева и воздействия хладагента, осуществлялся для среза (110) в трех различных вариантах перемещений лазерного пучка, а именно в направлениях [1–10], [001], [1–11].

Ключевые слова: трещина, лазерное раскалывание, кремниевая пластина.

Results of laser thermosplitting process modelling of single-crystalline silicon are presented. Calculation of the thermoelastic fields formed in a silicon plate as a result of consecutive laser heating and coolant influence was carried out for a section (110) in three different variants of laser beam movement, namely in directions [1-10], [001], [1-11].

Keywords: crack, laser splitting, silicon wafer.

Введение

Лазерное термораскалывание является одним из высокоэффективных способов размерной обработки многих хрупких неметаллических материалов, в частности, таких, как стекло, керамика и кремний. Используемая в настоящее время технология разделения кремниевых пластин алмазным инструментом обладает существенным недостатком – наличие дефектной зоны вдоль линии обработки [1]. При этом технология лазерного термораскалывания имеет ряд преимуществ, к которым в первую очередь относится высокое качество обработки.

Исследованию особенностей применения лазерного термораскалывания для обработки стекол и керамики посвящены работы [2]-[6]. В Работах [1], [7] проведено исследование лазерного термораскалывания кристаллического кремния, однако численное моделирование термоупругих полей в этих работах было выполнено в двумерной постановке задачи и без учета анизотропии упругих свойств кристаллов. В работе [8] авторами данной статьи было выполнено численное моделирование процесса управляемого лазерного термораскалывания кристаллического кремния в трехмерной постановке и с учетом анизотропии упругих свойств материала. На основании выполненных расчетов было показано, что использование изотропной модели процесса лазерного термораскалывания монокристаллов кремния приводит к существенным погрешностям. Таким образом, при выборе технологипараметров процесса формирования ческих

лазерно-индуцированных трещин принципиально важно учитывать анизотропию упругих свойств обрабатываемого материала.

Расчет термоупругих полей в работе [8] был осуществлен для пластин, вырезанных в плоскостях (100) и (111), при этом на практике также используются монокристаллы кремния, вырезанные в плоскости (110) [9]. В связи с этим в данной работе выполнено моделирование процесса управляемого лазерного термораскалывания пластин монокристаллического кремния, вырезанного в плоскости (110).

1 Моделирование процесса лазерного термораскалывания

Моделирование процесса лазерного термораскалывания пластин кремния было осуществлено в рамках несвязанной задачи термоупругости в квазистатической постановке с использованием метода конечных элементов [10]. В качестве критерия, определяющего направление развития лазерно-индуцированной трещины, был использован критерий максимальных растягивающих напряжений [11].

Плотность, удельная теплоемкость, коэффициент теплопроводности и коэффициент линейного термического расширения кремния полагались равными ρ =2330 кг/м³, c=758 Дж/кг·К, λ =10⁹ Вт/м·К, α =2,33·10⁻⁶ K⁻¹ [9], [12].

Расчет термоупругих полей, формируемых в монокристаллической кремниевой пластине в результате последовательного лазерного нагрева

© Сердюков А.Н., Шалупаев С.В., Никитюк Ю.В., Середа А.А., 2012

HP

и воздействия хладагента, осуществлялся для трех различных вариантов: I – анализ среза (110), при перемещении лазерного пучка в направлении [1–10]; II – анализ среза (110), при перемещении лазерного пучка в направлении [001]; III – анализ среза (110), при перемещении лазерного пучка в направлении [1–11].

Закон Гука для анизотропных материалов может быть записан в матричной форме [13], [14]

$$\sigma_i = \sum_{k=1}^6 C_{ik} (\varepsilon_k - \varepsilon_k^t)$$

где напряжения

$$\sigma_1 = \sigma_{xx}, \ \sigma_2 = \sigma_{yy}, \ \sigma_3 = \sigma_{zz},$$

$$\sigma_4 = \sigma_{yz}, \ \sigma_5 = \sigma_{zx}, \ \sigma_6 = \sigma_{xy};$$

$$\varepsilon_1 = \varepsilon_{xx}, \ \varepsilon_2 = \varepsilon_{yy}, \ \varepsilon_3 = \varepsilon_{zz}$$

$$\varepsilon_4 = 2\varepsilon_{yz}, \ \varepsilon_5 = 2\varepsilon_{zx}, \ \varepsilon_6 = 2\varepsilon_{xy};$$

температурные деформации

$$\varepsilon_1^t = \alpha_x \Delta T, \quad \varepsilon_2^t = \alpha_y \Delta T, \quad \varepsilon_3^t = \alpha_z \Delta T,$$
$$\varepsilon_4^t = 0, \quad \varepsilon_5^t = 0, \quad \varepsilon_6^t = 0.$$

Для кубических кристаллов матрица { C_{ik} } в случае, когда пластина вырезана в плоскости (100), может быть записана в следующем виде [15]

$$\left\{C_{ik}\right\} = \begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0\\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0\\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0\\ 0 & 0 & 0 & C_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & C_{44} & 0\\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{pmatrix}.$$

Матрица { C_{ik} } для среза (110) может быть записана в следующем виде

2 Результаты расчетов

Для расчетов использовались следующие константы упругой жесткости: C_{11} =1,656 \cdot 10⁵ МПа, C_{12} =0,6386 \cdot 10⁵ МПа, C_{44} =0,7953 \cdot 10⁵ МПа [15].

На рисунке 2.1 приведена схема расположения зон воздействия лазерного излучения и хладагента в плоскости обработки. Позицией 1 отмечен лазерный пучок, позицией 2 – хладагент, позицией 3 – лазерно-индуцированная микротрещина, позицией 4 – кремниевая пластина. Горизонтальной стрелкой на рисунке указано направление перемещения обрабатываемого изделия относительно лазерного пучка и хладагента.

Расчеты были выполнены для дисков радиусом 15,5 мм и толщиной h=0,2 мм и h=0,4 мм. Радиус пятна лазерного излучения R=0,5 мм, мощность излучения P=60 Вт. Скорость перемещения пластины относительно лазерного пучка и хладагента выбиралась равной v=10 мм/с и v=100 мм/с. Моделирование проводилось для случаев воздействия лазерного излучения с длинами волн равными 1,06 мкм и 0,808 мкм.

Результаты проведенных расчетов приведены в таблице 2.1 и на рисунках 2.2–2.4. В таблице 2.1 содержатся расчетные значения максимальных по величине термоупругих напряжений растяжения и сжатия, формируемых в кремниевой пластине для трех исследуемых вариантов обработки. На рисунках 2.2–2.4 представлены распределения полей температурных напряжений для пластин толщиной h=0,2 мм, обрабатываемых со скоростью v=10 мм/с, при воздействии лазерного излучения с длиной волны равной 0,808 мкм.

Отметим, что вследствие отсутствия у кристаллов кремния анизотропии теплопроводности расчетные значения температур в зоне обработки и закономерности их формирования для срезов (110), (100) и (111) совпадают при выборе одинаковых параметров обработки и размеров обрабатываемых пластин [8].

Анализ данных, приведенных в таблице 2.1, показывает, что наибольших значений напряжения растяжения достигают при термораскалывании среза (110) при перемещении лазерного пучка в направлении [001] (II вариант обработки), а наименьших при перемещении лазерного пучка в направлении [1–10] (I вариант обработки). При этом разница в величинах максимальных растягивающих напряжений, формируемых при обработке в направлениях [001] и [1–10], составляет от 11% до 28%. Данная разница в величинах растягивающих напряжений должна быть учтена при выборе параметров процесса лазерного термораскалывания.

Проблемы физики, математики и техники, № 3 (12), 2012

риант	Максимальные	лазерное излучение				лазерное излучение				
	напряжения в	с длинои волны 1,06 мкм				с длинои волны 0,808 мкм				
	зоне обработки,	<i>h</i> =0,2 мм		<i>h</i> =0,4 мм		<i>Н</i> =0,2 мм		<i>h</i> =0,4 мм		
Baj	МПа	v=10	v=100	v=10	v=100	v=10	v=100	v=10	v=100	
		мм/с	мм/с	мм/с	мм/с	мм/с	мм/с	мм/с	мм/с	
Ι	растяжения	7,9	1,6	6,9	0,8	48,1	9,8	23,2	2,6	\mathbf{N}
	сжатия	-43,4	-25,4	-40,3	-21,0	-273	-164	-153	-89,3	
II	растяжения	9,3	2,0	7,8	1,1	57,3	12,1	26,1	3,6	Ť.
	сжатия	-49,1	-28,5	-42,6	-22,1	-309	-185	-163	-94,6	
III	растяжения	8,5	1,7	7,3	0,9	52,2	10,3	24,5	2,9	
	сжатия	-46,8	-27,0	-41,7	-21,5	-294	-175	-158	-92,0	

Таблица 2.1 – Расчетные значения максимальных по величине напряжений растяжения и сжатия в зоне обработки

Отдельно отметим особенности пространственной локализации термоупругих полей, формируемых при лазерном термораскалывании среза (110) в направлении [1–11] (рисунок 2.4).

Рисунок 2.1 – Схема расположения зон воздействия лазерного излучения и хладагента в плоскости обработки монокристаллической кремниевой пластины

Рисунок 2.2 – Распределение полей температурных напряжений на поверхности кремниевой пластины, при перемещении лазерного пучка в направлении [1–10], МПа

Рисунок 2.3 – Распределение полей температурных напряжений на поверхности кремниевой пластины, при перемещении лазерного пучка в направлении [001], МПа

Рисунок 2.4 – Распределение полей температурных напряжений на поверхности кремниевой пластины, при перемещении лазерного пучка в направлении [1–11], МПа

Распределение термоупругих полей, формируемых при этом режиме обработки, характеризуется небольшой асимметричностью относительно линии воздействия лазерного излучения. Указанная асимметричность полей термоупругих напряжений обусловлена асимметричностью сечения поверхности модулей Юнга относительно направления [1–11] (см. [13]) и должна быть принята во внимание при выборе параметров термораскалывания.

Заключение

Полученные результаты показывают необходимость учета анизотропии упругих свойств кремния при выборе параметров лазерного термораскалывания в различных направлениях монокристаллических пластин, вырезанных в плоскости (110).

ЛИТЕРАТУРА

1. *Наумов, А.С.* Разработка технологии разделения приборных пластин на кристаллы: автореф. дис. ... канд. техн. наук : 05.11.14 / А.С. Наумов ; МГУПИ. – М., 2009. – 19 с.

2. *Мачулка, Г.А.* Лазерная обработка стекла / Г. А. Мачулка. – М. : Сов. радио, 1979. – 136 с.

3. Способ резки неметаллических материалов: пат. 2024441 РФ, МКИ 5 С03В33/02 / В.С. Кондратенко; заявитель В.С. Кондратенко; заявл. 04.02.92; опубл. 12.15.94

4. Увеличение эффективности управляемого лазерного термораскалывания диэлектрических материалов / В.К. Сысоев [и др.] // Оптический журнал. – 2004. – Т. 71, № 2. – С. 65–69.

5. *Junke, J.* Cutting glass substrates with duallaser beams / J. Junke, W. Xinbing // Optics and Lasers in Engineering. – 2009. – Vol. 47. – P. 860– 864.

6. Двулучевое лазерное термораскалывание хрупких неметаллических материалов / С.В. Шалупаев [и др.] // Оптический журнал. – 2005. – Т. 73, № 5. – С. 62–66.

7. Гиндин, П. Д. Разработка новых технологий и оборудования на основе метода лазерного управляемого термораскалывания для обработки деталей приборостроения, микро - и оптоэлектроники: автореф. дис. докт. техн. наук : 05.11.14 / П. Д. Гиндин ; МГУПИ. – М., 2009. – 43 с.

8. Сердюков, А.Н. Особенности управляемого лазерного термораскалывания кристаллического кремния / А.Н. Сердюков, С.В. Шалупаев, Ю.В. Никитюк // Кристаллография. – 2010. Т. 55, № 6. – С. 1180–1184.

9. Технология полупроводникового кремния / Э.С. Фалкевич [и др.]. – М. : Металлургия, 1992. – 408 с.

10. Шабров, Н.Н. Метод конечных элементов в расчетах деталей тепловых двигателей / Н.Н. Шабров. – Л.: Машиностроение, 1983. – 212 с.

11. *Карзов, Г.П.* Физико – механическое моделирование процессов разрушения / Г.П. Карзов, Б.З. Марголин, В.А. Шевцова. – СПб. : Политехника, 1993. – 391 с.

12. Справочник по электротехническим материалам / Ю.В. Корицкий [и др.]. – Л. : Энергоатомиздат, 1988. – 728 с.

13. Концевой, Ю.А. Пластичность и прочность полупроводниковых материалов и структур / Ю.А. Концевой, Ю.М. Литвинов, Э.А. Фаттахов. – М. : Радио и связь, 1982. – 240 с.

14. *Lackner*, *T*. Determination of axisymmetric elastic constants in anisotropic silicon for a thyristor tablet / T. Lackner // Journal of electronic materials. – 1989. – Vol. 18. – P. 19–24.

15. Акустические кристаллы / А.А. Блистанов [и др.]; под общ. ред. М.П. Шаскольской. – М.: Наука, 1982. – 632 с.

Поступила в редакцию 05.06.12.