УДК 621.396.67

Согласование входного импеданса полосковых вибраторов кольцевой антенной решетки над цилиндрическим экраном с подводящими линиями питания

И.А. ФАНЯЕВ¹, В.П. КУДИН²

Произведено согласование входного импеданса полосковых вибраторов вертикальной и горизонтальной поляризации в составе фазированной антенной решетки над цилиндрическим экраном с подводящими линиями питания с волновым сопротивлением 50 Ом. Задача решена путем использования идеального одноступенчатого трансформатора и отрезка линии передачи. Численные исследования показали, что для подобных сканирующих антенных систем за счет применения согласующего устройства можно достичь уровня КСВ, не превышающего величины 1,52. Ключевые слова: фазированная антенная решетка, входной импеданс, коэффициент стоячей волны, согласующее устройство, полосковый вибратор.

The input impedance of the strip radiators of vertical and horizontal polarization as a part of a phased antenna array near a cylindrical screen with power supply lines with a wave impedance of 50 Ohms was matched. The problem is solved by using an ideal single-stage transformer and a segment of the transmission line. Numerical studies have shown that for such scanning antenna systems through the use of a matching device, it is possible to achieve a low level of SWR that does not exceed the value of 1,52. **Keywords:** phased antenna array, input impedance, standing wave ratio, matching device, strip radiator.

Введение. Цилиндрические антенные решетки (АР) исследуются на протяжении многих лет, однако до сих пор имеются некоторые неразрешенные вопросы, требующие внимания или уточнения. Неспадающий интерес именно к цилиндрическим антенным решеткам объясняется тем, что они в силу своей осесимметричности обладают рядом свойств, отсутствующих у линейных и плоских антенн [1]. Такие АР позволяют реализовать широкоугольное сканирование луча без изменения коэффициента усиления и формы диаграммы направленности, расширить рабочую полосу частот и другое [2].

Однако для цилиндрических антенных решеток вопрос о широкополосном согласовании излучателей с линиями питания остается не до конца разрешенным. Это связано с тем, что неравномерность значений входного импеданса излучателей присутствует изначально из-за специфики фокусирования луча. А сканирование лучом может осуществляться за счет поворота возбуждающего сектора. Поскольку входные импедансы излучателей в секторе возбуждения оказываются различными и отличаются (иногда значительно) от волнового сопротивления подводящих линий передачи [3], то нахождение такого режима линий, при котором передача мощности в нагрузки осуществлялась бы с наиболее высокими электрическими показателями, является актуальной задачей. В плане практической реализации это означает, что на вход каждого излучателя должно быть добавлено трансформирующее устройство и осуществлено одновременное согласование для всех излучателей в решетке. Подобные вопросы поднимались в работе [1], однако они носили оценочный характер. Расчет входного сопротивления одного излучателя вертикальной поляризации в антенной решетке, расположенной над проводящей цилиндрической поверхностью, показан в работе [4], но численных значений входных сопротивлений на всех входах АР при фокусировке луча не проводилось.

Постановка задачи. В данной работе реализуется согласование входного импеданса полоскового вибратора фазированной антенной решетки над проводящим цилиндрическим экраном с волновым сопротивлением подводящих линий передачи за счет использования четырехполюсника и отрезка линии передачи с волновым сопротивлением Z₂ длиной l₂.

Для расчетов была взята кольцевая AP с параметрами: N = 32 - число излучателей в коль $це; <math>\alpha = 120^{\circ}$ – сектор возбуждения; $\Delta = 0,25\lambda$ – расстояние между излучателем и цилиндром; $U_{inc} = 1$ B – напряжение от генератора; параметры излучателя: $w = 0,05\lambda$, $L = 0,5\lambda$, $h = 0,01\lambda$. Луч фокусировался в направлении $\theta_0 = \pi/2$, $\varphi_0 = 0$. Более подробное описание фазированной антенной решетки представлено в [5]. Все расчеты производились в программе Mathcad. Входной импеданс вибратора. Как было показано в [5]–[6], для фазированных антенных решеток над проводящей цилиндрической поверхностью из полосковых излучателей вертикальной (V-типа) и горизонтальной (H-типа) поляризации, входное сопротивление виб-

ратора $Z_{g}(q, k_{z0})$ зависит от q номера режима (номера моды) и $k_{z0} = \frac{\Psi}{d_{z}}$ начального волно-

вого вектора (Ψ – разность фаз между соседними излучателями по оси z).

Входное сопротивление электрического вибратора V-типа равно

$$Z_{g}(q,k_{z0})=rac{V_{g}}{\langle I_{g} \rangle},$$

где $\langle I_g \rangle$ – средний ток в зазоре.

$$Z_{g}^{V}\left(q,k_{z0}\right) = \frac{Nk\pi^{2}L^{2}}{4d_{z}\left(A_{p,u}^{-1}B_{p}\right)B_{u}}W$$
 [5].

Входное сопротивление электрического вибратора Н-типа выражается как

$$Z_{g}^{H}(q,k_{z0}) = \frac{kb\pi^{3}L^{2}}{2d_{\phi}d_{z}(A_{p,u}^{-1}B_{p})B_{u}}W \quad [6].$$
⁽²⁾

(1)

Эквивалентная схема питания вибратора в составе антенной решетки. При детальном рассмотрении выражений (1) и (2) возникает вопрос, каким образом согласовать входной импеданс вибраторов с линиями питания. Ведь выходит так, что входной импеданс зависит от номера моды и начального волнового вектора. Также на входной импеданс вибраторов повлияет режим фокусирования луча (фазирование AP).

Для согласования электрических вибраторов с линиями питания на вход каждого излучателя добавим четырехполюсник и отрезок линии передачи (одинаковые для всех каналов). Отрезок линии передачи может понадобиться, чтобы отвести вибратор на требуемое расстояние от проводящего экрана. Четырехполюсник служит трансформирующим и (или) согласующим устройством, так как входной импеданс полосковых излучателей V- и H-типа значительно отличаются от стандартного волнового сопротивления 50 Ом. Объединяя все в единую конструкцию, получаем следующую схему (рисунок 1).

Рисунок 1 – Эквивалентная схема питания электрического вибратора в составе антенной решетки

Рассчитаем напряжение на входе вибратора для данной схемы. Обозначим: V^{\pm} – амплитуда падающей (отраженной) волны, Γ – коэффициент отражения.

Запишем систему уравнений:

$$\begin{cases} V_1^- = S_{11}V_1^+ + S_{12}V_2^+ \\ V_2^- = S_{21}V_1^+ + S_{22}V_2^+ \end{cases}$$

$$\Gamma_1 = \frac{V_1^-}{V_1^+}, \ \Gamma_2 = \frac{V_2^+}{V_2^-}, \ \begin{cases} V_1^- = S_{11}V_1^+ + S_{12}V_2^-\Gamma_2 \\ V_2^- = S_{21}V_1^+ + S_{22}V_2^-\Gamma_2 \end{cases} \Longrightarrow \begin{cases} \Gamma_1V_1^+ = S_{11}V_1^+ + S_{12}V_2^-\Gamma_2 \\ V_2^- = S_{21}V_1^+ + S_{22}V_2^-\Gamma_2 \end{cases} \Rightarrow \begin{cases} V_2^- = S_{21}V_1^+ + S_{22}V_2^-\Gamma_2 \\ V_2^- = S_{21}V_1^+ + S_{22}V_2^-\Gamma_2 \end{cases},$$

$$V_2^- - S_{12}V_2^-\Gamma_2 = S_{21}V_1^+, V_2^- = \frac{S_{21}}{1 - S_{22}\Gamma_2}V_1^+, \ V_2(0) = V_2^- + V_2^+ = \frac{S_{21}(1 + \Gamma_2)}{1 - S_{22}\Gamma_2}V_1^+.$$

Учитывая, что коэффициент отражения в сечении $2-2^{\prime}$ (Γ_2) связан с коэффициентом отражения в $A-A^{\prime}$ соотношением

$$\Gamma_2 = \Gamma_g e^{-i2\beta_2 l_2},\tag{3}$$

где β_2 – постоянная распространения, l_2 – длина линии передачи, причем отсчет длины ведется от сечения 2–2[/], а

$$\Gamma_g = \frac{Z_g - Z_2}{Z_g + Z_2},\tag{4}$$

-- (0)

получим

$$V_{2}(l_{2}) = V_{g} = V_{2}^{+}(0)e^{-i\beta_{2}l_{2}}(1+\Gamma_{g}), \quad V_{2}(0) = V_{2}^{+}(1+\Gamma_{2}), \quad V_{2}^{+} = \frac{V_{2}(0)}{1+\Gamma_{2}}.$$

$$V_{1} = V_{1}^{+} + V_{1}^{-}, \quad V_{1}^{-} = 0, \quad V_{1}^{+} = V_{inc}.$$

$$V_{g}(q, k_{z0}) = \frac{S_{21}(1+\Gamma_{g})}{1-S_{22}\Gamma_{2}}e^{-i\beta_{2}l_{2}}V_{inc}.$$
(5)

Здесь *V_{inc}* – напряжение на генераторе. Теперь остается только определить S-параметры четырехполюсника.

В самом простом случае в качестве согласующего устройства будем использовать идеальный трансформатор (рисунок 2).

Рисунок 2 – Электрическая схема согласующего четырехполюсника

Для элементов эквивалентной схемы имеем

$$Z_{g} = R_{g} + iX_{g}, \quad Z_{22'} = R_{22'} + iX_{22'}, \quad Z_{22'} = Z_{2} \frac{Z_{g} + iZ_{2}tg(\beta_{2}l_{2})}{Z_{2} + iZ_{g}tg(\beta_{2}l_{2})}, \quad n_{0} = \sqrt{\frac{R_{22'}}{Z_{1}}}$$

Коэффициенты отражения и передачи на входах будут определяться следующими формулами

$$S_{22} = \frac{V_2^-}{V_2^+}\Big|_{V_1^+=0} = \frac{Z_{22'}^* - Z_2}{Z_{22'}^* + Z_2},$$
(6)

$$S_{21} = \frac{V_2^-}{V_1^+} \bigg|_{V_2^+ = 0} = \frac{Z_2}{Z_1} \frac{2\sqrt{R_{22'}Z_1}}{Z_{22'}^* + Z_2}.$$
(7)

Учитывая тот факт, что $Z_2 = \text{Re}(Z_g)$, а $Z_1 = Z_{\alpha\alpha}$, подставляя (6), (7) в формулу (5), можем теперь определить напряжение на входе вибратора V- и H-типа с учетом согласующего устройства.

Численные результаты. Согласование оценивалось по уровню КСВ на каждом входе вибратора. В ходе исследований было установлено, что для полосковых вибраторов V-типа наиболее низкий уровень КСВ получается при длине отрезка линии передачи равным $l_2 = 0,5\lambda$, а для полосковых вибраторов H-типа оптимальным значением является отрезок длиной $l_2 = 0,46\lambda$.

На рисунке 3 приведены зависимости КСВ от номера возбужденного излучателя n. Кривая КСВ_V (рисунок 3, a) иллюстрирует КСВ на входах вибраторов V-типа без согласующего устройства, а КСВ_Vs – с четырехполюсником в виде идеального трансформатора и отрезком линии передачи длиной l_2 . Аналогично, на рисунке 3, δ показаны две кривые КСВ_Н и КСВ_Hs, характеризующие уровень КСВ на входах вибраторов H-типа без и с согласующим устройством соответственно.

Рисунок 3 – Зависимость КСВ от *n* номера излучателя для вибраторов V- и Н-типа

Зависимость уровня КСВ от нормированной частоты *f* для двух типов согласованных вибраторов приведена на рисунке 4.

Рисунок 4 – Зависимость КСВ от частоты для двух типов согласованных вибраторов

Таким образом, с помощью согласующих устройств удалось снизить КСВ излучателей фазированной АР до приемлемых значений: уровень КСВ не превышает величин 1,44 и 1,55 для вибраторов вертикальной и горизонтальной поляризации соответственно.

Как видно из рисунка 4, применение простого согласующего устройства позволило получить рабочую полосу $f_{\text{max}}/f_{\text{min}} < 1,35$ по уровню КСВ = 2. Узкополосность согласования объясняется тем, что при решении задачи были взяты узкополосные элементы: отрезок линии передачи равный (близкий) к половине длины волны и идеальный одноступенчатый трансформатор.

Заключение. В данной работе проведено согласование полосковых вибраторов вертикальной и горизонтальной поляризации в составе фазированной АР над цилиндрическим экраном волнового сопротивления с подводящими линиями передачи за счет использования четырехполюсника и отрезка линии передачи. В качестве четырехполюсника использовался идеальный одноступенчатый трансформатор.

Численные исследования показали, что использование простого согласующего устройства позволяет получить рабочую полосу $f_{\text{max}}/f_{\text{min}} < 1,35$ по уровню КСВ = 2.

Литература

1. Воскресенский, Д.И. Выпуклые сканирующие антенны / Д.И. Воскресенский, Л.И. Пономарев, В.С. Филипов. – М. : Сов. радио, 1978. – 304 с.

2. Шелег, Б. Кольцевая решетка с матричной схемой возбуждения для непрерывного сканирования / Б. Шелег // ТИИЭР. – 1968. – Т. 56 (11). – С. 287–298.

3. Фаняев, И.А. Входные характеристики фазированных антенных решеток над проводящей цилиндрической поверхностью / И.А. Фаняев // Известия Гомельского гос. ун-та им. Ф. Скорины. – 2018. – № 6 (111). – С. 191–198.

4. Herper, J.C. Element pattern of an axial dipole in a cylindrical phased array. Part I: Theory / J.C. Herper, A. Hessel, B. Tomasic // Transactions on Antennas and Propagation. – 1985. – Vol. 33, № 3. – P. 259–272.

5. Фаняев, И.А. Фазированная антенная решетка кругового обзора над проводящей цилиндрической поверхностью из излучателей вертикальной поляризации / И.А. Фаняев, В.П. Кудин // Известия Гомельского гос. ун-та им. Ф. Скорины. – 2014. – № 6 (87). – С. 191–198.

6. Фаняев, И.А. Фазированная антенная решетка кругового обзора над проводящей цилиндрической поверхностью из излучателей горизонтальной поляризации. Часть 1: Методика электродинамического моделирования / И.А. Фаняев, В.П. Кудин // Антенны. – 2016. – № 2. – С. 3–10.

¹Гомельский государственный университет им. Ф. Скорины

²Гомельский государственный технический университет им. П.О. Сухого

103MIORÍ

Поступила в редакцию 17.04.2020