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Introduction

All groups considered are finite. In 1939 H. Wie-
landt [1] showed that the set of all subnormal sub-
groups of a group G forms a sublattice of the lattice
of all subgroups of G. Now there are various gener-
alizations of the concept of subnormal subgroups. In
1969 T. Hawkes [2] introduced the definition of -
subnormal subgroup in the class of soluble groups.
In 1978 L.A. Shemetkov [3] extended the concept of
§ -subnormal subgroups to arbitrary finite groups.
He set up the problem at number 12 [3, p. 93]: in
which cases the set of all § -subnormal subgroups of
G forms a lattice?

Let X be a class of groups. The formation §
is called a lattice formation in X if the set of all
§ -subnormal subgroups forms a sublattice of the

lattice of all subgroups in every X -group.

Noted above the Shemetkov problem can be
formulated as follows:

Problem 1. Let X be a hereditary saturated
formation. Describe all saturated lattice formations
in X.

In the work [4] authors established hereditary
saturated lattice formations in class of all soluble
groups.

This result was extended for normally-here-
ditary saturated lattice formations in the work [5]. In
[5] also described hereditary saturated lattice forma-
tions in class of all groups.

In [6] authors investigated non-saturated he-
reditary lattice formations in class of all soluble
groups.
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In [7], [8] the Problem 1 was solved in the
class M* for k >3 and in class NA respectively.

In [9] AF. Vasil ev and S.F. Kamornikov de-
veloped a general functor method of studing sub-
group lattices similar to the lattice of subnormal sub-
groups. They introduced the concept of NTL -func-
tor (natural transitive lattice subgroup functor) and
described all NTL -functors in the class of all solu-
ble groups. They showed that the NTL -functor in
the soluble universe is exactly the functor of all
§ -subnormal subgroups for some hereditary satu-
rated lattice formation §.

In [10] S.F. Kamornikov constructed a contin-
uum of many NTL -functors that do not correspond
to any hereditary lattice formations in the class of all
finite groups.

The above-noted results lead to the following
problem:

Problem 2. Let X be a hereditary saturated for-
mation. To describe all lattice subgroup functors in X.

In [7] the Problem 2 was solved in the class
N* for k>3.

In this paper Problem 1 and Problem 2 has
been solved in the class X = 91> of all metanilpotent
groups.

1 Preliminary results
All definitions, notations and results corre-
spond to [11], [12]. We denote by: S(G) the set of

all subgroups of group G; [K]H the semidirect
product of normal subgroup K and subgroup H;
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Z, the group of prime order p; 91 the class of all

nilpotent groups; & the class of all soluble groups;
M_ the class of all nilpotent w-groups; N* the

T

class of all metanilpotent groups; 91" the class of all
soluble groups nilpotent length of which does not
exceed a given positive integer n; P the set of all

prime numbers.

The class of groups is called a formation if it is
closed under factorgroups and subdirect products.
The formation is called hereditary if it is closed un-
der subgroups. The formation is called normally
hereditary if it is closed under normal subgroups.
The formation is called saturated if §=(G| if
N<aG,Nc®D(G), then G/Ne). Let h be a
function which associates with each prime p a class
h(p) of finite groups. Recall [12] % a local func-
tion if A(p) is a formation for all prime number p.
Let & be a local function, and let X be a local for-
mation. The #/ is called: integrated if h(p) = X for
all peP; fullif A(p) =N h(p) forall peP. The
uniquely determined full and integrated formation
function defining a local formation § was called
[12] the canonical local definition of .

Formation § is called Shemetkov formation in
class X if every minimal non-§ -group of X is
Schmidt group or group of prime order.

Definition 1.1 [13, p. 13]. Let X be a class of
groups. And let © be a function mapping each
group G e X into a some non-empty system 0(G)
of its subgroups. The map O is called a subgroup
X -functor (a subgroup functor in X)) if the follow-
ing condition is satisfied: (6(G))" =0(G*) for any
isomorphism ¢ of every group G € X.

Definition 1.2. Let X be a class of groups. A
subgroup functor 0 in X is called:

1) lowerlattice (briefly, L, -functor), if from
GeX, Ae€6(G) and BeO(G) always implies
AN B € 06(G),

2) upperlattice (briefly, L -functor), if from
GeX, Ae€6(G) and BeO(G) always implies
(A, B> € 0(G);

3) semilattice (briefly, L, -functor), if © is L, -func-
torin X and from GeX, A€06(G), Beb(G) and
AB = BA always implies AB € 6(G);

4) lattice (briefly, L -functor), if 0 is the L,
and L -functor in X at the same time.

Definition 1.3 [13, p. 14]. Let X be a homo-
morph. A subgroup X -functor © is called functor of
Skiba in X, if the following conditions for any
group Ge X and N <G are satisfied:
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1) H €0(G) then HN/ N € 6(G/ N);

2) H/ N €6(G/N) then H € 6(G).

Let H be a subgroup of G. Then
HnNO(G)={HNL|Le6(G)}.

Definition 1.4 [13, p. 15). Let X be a class of
groups. A subgroup X -functor 0 is called:

1) hereditary, if HNO(G)cO(H) for any
X -subgroup H of G e X;

2) transitive, if from S € O(H) and H € 0(G)NX,
it follows that S € 0(G) for any group G € X.

In this paper all considered subgroup functors
we assume as hereditary transitive subgroup functors
of Skiba in class of groups X. The example of such
subgroup functors is 0 =sn;, where § is a heredi-
tary formation and 0(G) =sn;(G) is the set of all
§ -subnormal subgroups for any group G.

Lemma 1.1. Let X be a hereditary saturated

formation and © be a subgroup functor in X. Let
Z,eX and 1€0(Z,). Then O(P)=S(P) for any

p-group P.

The proof is similar to lemma 3.2.1 [13].

Let X be a class of groups and 6 be a sub-
group X -functor. We denote by A, (0) the class

(GeX|1€6(G) and P e 6(G) for any Sylow sub-

group P from G).
Lemma 1.2. Let X be a hereditary formation
and © be a subgroup L,-functor in X. Then

A+ (0) is a hereditary formation.
Proof. Let GeA,(0) and N <G. Since
1€6(G), it follows that N/N e0(G/N). Let

H/N be a Sylow subgroup of G/N. There is a
Sylow subgroup P of group G such that
HN/N=PN/N. From P €6(G) and 1) definition
1.3 we obtain PN/ N =H /N €06(G/ N). Therefore
G/ N eA,(9).

Let N,N,<G and N, NN,=1. Assume
G/N,eA,(0), i=12. If P is Sylow subgroup of
G, then PN,/N,€0(G/N,;), i=12. From 2)
definition 1.3 we have PN, € 8(G), i=1,2. Since
0 is L, -functor,

PN, N PN, =P(N,"N,)=Peb(G).
From N,/N,€0(G/N,;) we conclude N, €0(G),
i=1,2. Then NN N, =1€6(G). Hence A,(B) is
a formation.

Let H be a subgroup of G. Suppose that P is
arbitrary Sylow subgroup of H. Then P < S where

S is some Sylow subgroup of G. Since S € 6(G)
and by hereditary of functor 0, we have
P=SNH e€0(H). From 1€ 6(G) we conclude that

49



A.F. Vasil’ev, I.LN. Khalimonchik

INH =1€0(H). Therefore A,(0) is a hereditary
formation.

Definition 1.5. Let X be a class of groups. The
set m(0) of all primes p for which 1€6(Z))
where Z, € X is called a characteristic of subgroup
X -functor 6.

Lemma 1.3. Let X be a hereditary saturated
formation and m is characteristic of subgroup
L, -functor in X. Then N, < A, (0).

Proof. Let pen. Bylemma 1.1, 6(P) = S(P)
for any p-subgroup P. Hence P e A,(0). Since
A, (0) is formation, we have 9 < A, (0).

Let 6 be a subgroup functor in class of groups
X. We will denote the class (G € X|0(G) =S(G))
by S, (0).

Lemma 1.4. Let X be a hereditary formation
of soluble groups and let © be a subgroup L,-func-
torin X. Then A,(0)=S,(0).

Proof. It is clear that S§,(0)c A,(0). Let
G € A,(0). Then P €6(G) for any Sylow subgroup
P of G. From 1€ 6(G) and by the properties of the
functor 6 we conclude 1=1"P € 6(P). By lemma
1.1 8(P)=S(P) for any Sylow subgroup P of G.
From the transitivity of 6 we obtain S(P) < 6(G)

for any Sylow subgroup P of G. Let H be any
subgroup. Since H is soluble, according to Hall’s
theorem (see [12]) there is Sylow basis F,---, P, in

H. Since H=FP---P, and 0 is L -functor we
have H € 6(G). Therefore G € S, (9).

Lemma 1.5 [13, p. 148]. Let 0 be a subgroup
L -functor. Then and only then G e S5(0) when
1€ 0(G) and P e0O(G) for any Sylow subgroup P
of G.

Lemma 1.6 [13, p. 148]. Let 0 be a subgroup
L -functor. Let G =[P]< A,B> where P is p-sub-

group, < A,B > is g-group, p,q is primes, p #q.
If PAe€ Ss(0) and PB e S5(0), then G € S5(0).

Definition 1.6. Formation § is called Fitting
formation in class of group X if the following con-
ditions are satisfied:

1) § is normally hereditary formation;

2)if G=4B where Ge X, 4<G, B<«G,
Ae§, Be§ then Ge§.

Lemma 1.7. Let X be a hereditary formation
of soluble groups and © be a subgroup L,-functor
in X. Then A, (0) is a Fitting formation in X.

Proof. By lemma 1.2 A,(0) is a hereditary
formation. Let G € X be a group of minimal order
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such that G=MN, where M,N<G and
M,N e A,(0), but GeA,(0).

Since A, (0) is a formation, it follows that G
has the wunique minimal normal subgroup
D=G" Let P be an arbitrary Sylow subgroup
of G. By theorem 6.4 [12],

P=PAMN =(PAM)PAN),
where PNM and PN N are Sylow subgroups of
M and N respectively. Since M € A, (0), we have

PAMeb(M). From G/DeA,(0)=S,(0) we
conclude that M /De6(G/D).  Therefore
M € 6(G). By the transitivity of 6, PN M € 6(G).
Similarly, PN €6(G). Since 0 is L -functor in
X, it follows that P e 0(G). Hence Ge A, (0). A
contradiction. Therefore A, (0) is Fitting formation
in X.

Lemma 1.8. Let X =N’ and 0 be a subgroup
Ly-functor in X. If ReA,(0) be a p-closed
{p,q} -group of Schmidt and ®(R) =1, then A,(0)

contains all extensions of p-groups by cyclic g-groups.
Proof. By [3], there is the unique (up to iso-
morphism) p-closed {p,q}-group of Schmid

R=[N]Z, where N is the unique minimal normal
subgroup of R, ®(R)=1. Assume that R € A, (D).
Let us first prove that A, (0) contains all extensions
of p-groups by a group of prime order gq.

Let G=PZ, where P is p-group and P <G.
We use induction on | G| to prove G € A, (0).

Let Z,<G. Then G=PxZ,. From
R € A, () and from hereditary class A, (0) it follows
that {p,q} < (A, (0)). By lemma 1.3, 91_ < A, (0)
where m=m(A,(8)). Hence G e A,(0). Therefore
we assume that Z is not normal in G. Let K is
minimal normal subgroup of group G. Suppose that
K#P. It is clear that K< P and KZ #G. By
induction G/ K € A, (0). Therefore

KZ,/K €0(G/K)

and KZ €6(G). As |KZ, |<G| we have KZ €A (0).
Hence Z, €6(G). From G/PeA,(0) we obtain
that P/PeA,(0). So Pe6(G). Thus any Sylow
subgroup from G contains in 6(G). From P € 6(G)
and Z €06(G) it follows that 1=PNZ €06(G).
Therefore G € A, (0).

Suppose that K =P. Then G is a Schmid
group and ®(G)=1. Therefore G e A,(0). We

proved that any extension p-group by the group of
prime order g belongs to A, (6).
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Let now G = PZq,, , where P is a p-group and
qu is a cyclic g-group of order ¢". We prove that

G €A, (0) by induction on n. By the above, for
n=1 the statement is true. Let n>1. Consider the
group E = Pwr(Z qwqu,,,1 ). By theorem 18.9A [12],

G is isomorphic to a subgroup from E. Note that
Z qwqu,,,1 = [B]Zq",,, where B is the base of wreath

Z,wrZ .. Denote by P’ the Sylow p-subgroup of
E. Then E :P*([B]anl). Since
E/P =[B)Z, €A(0),

it follows that P"an1 /P e A(0). Hence

P*Zq,H € 0(E). By induction P*Zq,,,l € A,(0). Then
Zq,i,1 eO(P*Zq,,,.) and P’ eB(P*Zq,,,. ). From the
transitivity of 0 we conclude that Zq,,,1 € 0(F) and
P’ €0(E).

Similarly P*B/ P" €0(E/ P"). Hence P'Be0(E).
Since B=Z, x---xZ,, by induction (case n=1), by
lemmas 1.6 and 1.4, it follows that P"B e A, (0).
Then Be6(P'B). By the transitivity of 6,

Be0O(G). Since 0 is L,-functor, we obtain
<B,Zq,1,1 >= [B]Zq,,,l €0(F). By lemmas 1.5 and

1.4, E e A,(B). Since A,(0) is a hereditary class,
it follows that G € A, (0).

Lemma 1.9 [14]. Let § be a hereditary local
formation, h be the canonical local function of §.
Let X be a hereditary local formation, x be the
canonical hereditary local function of X and
ScX. Then and only then formation § is a
Shemetkov formation in X when it’s canonical he-
reditary local x-function f

1) f(p)= Gn(f(p)) Nx(p) forany p e (%)
2) [(p)= forany pe ().

Lemma 1.10. Let X =0, If 0 is a subgroup
L, -functor in X, then A, () is a saturated formation.

Proof. Denote § =A,(0). Let group G be a
counterexample of minimal order. Then ®(G) =1
and G/ D(G)e§, but G¢§.

Let N be a minimal normal subgroup of G.
Then O(G)N/ N c ®(G/N). Since

G/N/O(G)N/N=G/D(G)N and G/D(G)eF
it follows that G/ N/ ®(G)N / N € §. By the choice

of G weget G/N e§.
If K is a minimal normal subgroup of G and
K #N, then G/K €. Since § is a formation, we
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have G/K NN =G e§. The contradiction. There-
fore G has the unique minimal normal subgroup
N, where N c ®(G) and N is a p-group for some

prime p. It is easy to show that the Fitting subgroup
F(G) is a p-group.

Let G, be a Sylow g-subgroup, where g # p.
From G € 0N*, we conclude that G,F(G) < G.

Consider the subgroup G, F(G). Since § is a
hereditary ~ formation, G, F(G)/N €. Since
N < ®(G), we conclude G, F(G)/D(G) €.

If G,F(G)eMN, then

G, € Cy piey (F(G) € C4(F(G)) = F(G).
The contradiction. Therefore G F(G) is a non-
nilpotent p-closed group. Note that G, F(G)/ N is a
non-nilpotent p-closed {p,q}-group. Formation §
is hereditary. There is p-closed {p,q}-group of
Schmidt R, ®(R)=1 and Re§. By lemmas 1.8
and 1.7 G F(G) e §. Since this result holds for any
Sylow subgroup of G, it follows that G is a product
of their normal ‘§ -subgroups. Since § is a Fitting
formation in 91°, we obtain G € §. The contradic-
tion. Therefore § is a saturated formation.

2 Main results
Theorem 2.1. Let O be a subgroup L-functor

in X =M. Then:
1) the class §=A,(0) is a hereditary satu-

rated Shemetkov formation in N’ and has the ca-
nonical local function f: f(p)=N,N_ . forany

pen(§); f(p)=D forany pen'(%);
2) 6(G) = sn,_,)(G) for any group G € X.
Theorem 2.2. Let § be a saturated formation,
§ = N°. Then statements are equivalent:
1) § is a lattice formation in N7;
2) § is a Shemetkov formation in N7;
3) § has the canonical local function f:
S (P) =N, N, s,y forany pen(§); f(p)=9D for
any p e w'(§).
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