= МАТЕМАТИКА

УДК 512.542

ОБ УПОРЯДОЧЕННЫХ ГРУППОИДАХ АБЕЛЯ-ГРАССМАНА

Вагар Хан^{1,2}, Фейсал Ясафзай¹, Асад Хан¹

¹Университет науки и технологии Китая, Хефей, Китай ²Институт информационных технологий COMSATS, Абботабад, Пакистан

ON ORDERED ABEL-GRASSMANN'S GROUPOIDS

Waqar Khan^{1,2}, Faisal Yousafzai¹, Asad Khan¹

¹University of Science and Technology of China, Hefei, China ²COMSATS Institute of Information Technology, Abbottabad, Pakistan

Введено понятие (m, n)-идеалов упорядоченных \mathcal{AG} -группоидов и получены характеризации (0, 2)-идеалов и (1, 2)-идеалов упорядоченного \mathcal{AG} -группоида в терминах левых идеалов. Показано, что упорядоченный \mathcal{AG} -группоид S является 0 - (0, 2)-бипростым в том и только в том случае, когда S является правым 0-простым. Результаты данной работы позволяют расширить концепцию \mathcal{AG} -группоида без введенного порядка. Получены характеризации внутреннерегулярного упорядоченного \mathcal{AG} -группоида в терминах левых и правых идеалов.

Ключевые слова: упорядоченные АС -группоиды, обратимое слева тождество, левая единица, (m,n)-идеал.

The concept of (m,n)-ideals in ordered \mathcal{AG} -groupoids is introduced and the (0,2)-ideals and (1,2)-ideals of an ordered \mathcal{AG} -groupoid in terms of left ideals are characterised. It is shown that an ordered \mathcal{AG} -groupoid S is 0-(0,2)-bisimple if and only if S is right 0-simple. The results of this paper extend the concept of an \mathcal{AG} -groupoid without order. Finally, we characterize an intra-regular ordered \mathcal{AG} -groupoid in terms of left and right ideals.

Keywords: ordered AG -groupoids, left invertive law, left identity, (m,n)-ideals.

Mathematics Subject Classification (2010): 20D10, 20D20

Introduction

The concept of a left almost semigroup (*LA*-semigroup) [3] was first introduced by M.A. Kazim and M. Naseeruddin in 1972. In [1], the same structure is called a left invertive groupoid. P.V. Protić and N. Stevanović called it an Abel-Grassmann's groupoid (\mathcal{AG} -groupoid) [10].

An \mathcal{AG} -groupoid is a groupoid *S* satisfying the left invertive law (ab)c = (cb)a for all $a,b,c \in S$. This left invertive law has been obtained by introducing braces on the left of ternary commutative law abc = cba. An \mathcal{AG} -groupoid satisfies the medial law (ab)(cd) = (ac)(bd) for all $a,b,c,d \in S$. Since \mathcal{AG} -groupoids satisfy medial law, they belong to the class of entropic groupoids which are also called abelian quasigroups [12]. If an \mathcal{AG} -groupoid *S* contains a left identity, then it satisfies the paramedial law (ab)(cd) = (dc)(ba) and the identity a(bc) = b(ac) for all $a,b,c,d \in S$ [5].

An \mathcal{AG} -groupoid is a useful algebraic structure, midway between a groupoid and a commutative semigroup. An \mathcal{AG} -groupoid is non-associative and non-commutative in general, however, there is a close relationship with semigroup as well as with

© Waqar Khan, Faisal Yousafzai, Asad Khan, 2015 40 commutative structures. It has been investigated in [5] that if an \mathcal{AG} -groupoid contains a right identity, then it becomes a commutative semigroup. The connection of a commutative inverse semigroup with an \mathcal{AG} -groupoid has been given by Yousafzai et al. in [14] as, a commutative inverse semigroup (S, ...) becomes an \mathcal{AG} -groupoid (S, *) under $a*b=ba^{-1}r^{-1}$ for all $a,b,r \in S$. The \mathcal{AG} -groupoid S with left identity becomes a semigroup under the binary operation " \circ_e " defined as, $x \circ_e y = (xe)y$ for all $x, y \in S$ [15]. The \mathcal{AG} -groupoid is the generalization of a semigroup theory [5] and has vast applications in collaboration with semigroups like other branches of mathematics. Many interesting results on \mathcal{AG} -groupoids have been investigated in [7], [8], [9].

If S is an \mathcal{AG} -groupoid with product $:: S \times S \rightarrow S$, then $ab \cdot c$ and (ab)c both denote the product $(a \cdot b) \cdot c$.

Definition 0.1 [16]. An \mathcal{AG} -groupoid (S, \cdot) together with a partial order \leq on S that is compatible with an \mathcal{AG} -groupoid operation, meaning that for $x, y, z \in S$,

 $x \le y \Longrightarrow zx \le zy$ and $xz \le yz$,

is called an ordered \mathcal{AG} -groupoid.

Let (S, \cdot, \leq) be an ordered \mathcal{AG} -groupoid. If Aand B are nonempty subsets of S, we let $AB = \{xy \in S \mid x \in A, y \in B\},\$

and $(A] = \{x \in S \mid x \le a \text{ for some } a \in A\}.$

Definition 0.2 [16]. Let (S, \cdot, \leq) be an ordered \mathcal{AG} -groupoid. A nonempty subset A of S is called a left (resp. right) ideal of S if the followings hold:

(*i*) $SA \subseteq A$ (resp. $AS \subseteq A$);

(ii) for
$$x \in A$$
 and $y \in S$, $y \le x$ implies $y \in A$.

Equivalently $(SA] \subseteq A$ (resp. $(AS] \subseteq A$).

If A is both a left and a right ideal of S, then A is called a two-sided ideal or an ideal of S.

A nonempty subset A of an ordered \mathcal{AG} -groupoid (S, \cdot, \leq) is called \mathcal{AG} -subgroupoid of S if $xy \in A$ for all $x, y \in A$.

It is clear to see that every left and right ideals of an ordered \mathcal{AG} -groupoid is an \mathcal{AG} -subgroupoid.

Let (S, \cdot, \leq) be an ordered \mathcal{AG} -groupoid and let A and B be nonempty subsets of S, then the following was proved in [13]:

(i) $A \subseteq (A];$

(*ii*) If
$$A \subseteq B$$
, then $(A] \subseteq (B]$;

$$(iii) \ (A](B] \subseteq (AB];$$

(iv) (A] = ((A]];

(vi)
$$\left(\left(A \right] \left(B \right] \right] = \left(AB \right].$$

Also for every left (resp. right) ideal T of S, (T] = T.

The concept of (m,n)-ideals in ordered semigroups were given by J. Sanborisoot and T. Changphas in [11]. It's natural to ask whether the concept of (m,n)-ideals in ordered \mathcal{AG} -groupoids is valid or not? The aim of this paper is to deal with (m,n)-ideals in ordered \mathcal{AG} -groupoids. We introduce the concept of (m,n)-ideals in ordered \mathcal{AG} -groupoids as follows:

Definition 0.3. Let (S, \cdot, \leq) be an ordered \mathcal{AG} -groupoid and let m, n be non-negative integers. An \mathcal{AG} -subgroupoid A of S is called an (m,n)-ideal of S if the followings hold:

(*i*) $A^m S \cdot A^n \subseteq A$;

(ii) for
$$x \in A$$
 and $y \in S$, $y \le x$ implies $y \in A$.

Here, A^0 is defined as $A^0 S \cdot A^n = SA^n$ and $A^m S \cdot A^0 = A^m S$.

Equivalently an \mathcal{AG} -subgroupoid A of S is called an (m,n)-ideal of S if

$$(A^m S \cdot A^n] \subseteq A.$$

If m = n = 1, then an (m, n)-ideal *A* of an ordered \mathcal{AG} -groupoid (S, \cdot, \leq) is called a bi-ideal of *S*.

1 0-minimal (0,2)-bi-ideals in ordered \mathcal{AG} -groupoid

In this section, we study and generalize the work of W. Jantanan and T. Changphas [2] by converting it from an associative ordered structure in to a non-associative ordered structure. We use the concept of (m,n)-ideals and investigate (0,2)-ideals, (1,2)-ideals and 0-minimal (0,2)-ideals in ordered \mathcal{AG} -groupoids. All the results of this section can be obtain for an \mathcal{AG} -groupoid without order.

Definition 1.1. If there is an element 0 of an ordered \mathcal{AG} -groupoid (S,\cdot,\leq) such that $x \cdot 0 = 0 \cdot x = x$ for all $x \in S$, we call 0 a zero element of S.

Example 1.1. Let $S = \{a, b, c, d, e\}$ with a left identity d. Then the following multiplication table and order shows that (S, \cdot, \leq) is a unitary ordered \mathcal{AG} -groupoid with a zero element a.

$$\begin{array}{c} \cdot & a \ b \ c \ d \ e \\ \hline a \ a \ a \ a \ a \ a \\ b \ a \ e \ c \ c \\ c \ a \ e \ b \ e \\ d \ a \ b \ c \ d \ e \\ e \ a \ e \ e \ e \\ \end{array}$$

 $\leq := \{(a,a), (a,b), (c,c), (a,c), (d,d), (a,e), (e,e), (b,b)\}.$

If S is a unitary ordered \mathcal{AG} -groupoid, then it is easy to see that $(S^2] = S$, $(SA^2] = (A^2S]$ and $A \subseteq (SA] \quad \forall A \subseteq S$. Note that every right ideal of a unitary ordered \mathcal{AG} -groupoid S is a left ideal of S but the converse is not true in general. Example 1.1 shows that there exists a subset $\{a, b, e\}$ of S which is a left ideal of S but not a right ideal of S. It is easy to see that (SA] and $(SA^2]$ are the left and right ideals of a unitary ordered \mathcal{AG} -groupoid S. Thus $(SA^2]$ is an ideal of a unitary ordered \mathcal{AG} -groupoid S.

We characterize of (0,2)-ideals of an ordered \mathcal{AG} -groupoid in terms of left ideals as follows:

Lemma 1.1. *Let* (S, \cdot, \leq) *be a unitary ordered* \mathcal{AG} -groupoid. Then A is a (0,2)-ideal of S if and only if A is an ideal of some left ideal of S.

Proof. Let A be a (0,2)-ideal of S, then

 $((SA] \cdot A] = (SA \cdot A] = (AA \cdot S] = (SA^2] \subseteq A,$ and

 $(A \cdot (SA]] = (A \cdot SA] = (S \cdot AA] = (SA^2] \subseteq A.$

Hence A is an ideal of a left ideal (SA] of S. Conversely, assume that A is a left ideal of some left ideal L of S, then

 $(SA^2] = (AA \cdot S] = (SA \cdot A] \subseteq$

 $\subseteq (SL \cdot A] \subseteq ((SL] \cdot A] \subseteq (LA] \subseteq A,$

and clearly A is an \mathcal{AG} -subgroupoid of S, therefore A is a (0,2)-ideal of S. **Corollary 1.1.** Let (S, \cdot, \leq) be a unitary ordered \mathcal{AG} -groupoid. Then A is a (0,2)-ideal of Sif and only if A is a left ideal of some left ideal of S.

Now we characterize the (0,2)-bi-ideals of an ordered \mathcal{AG} -groupoid in terms of right ideals as follows:

Lemma 1.2. *Let* (S, \cdot, \leq) *be a unitary ordered* \mathcal{AG} -groupoid. Then A is a (0,2)-bi-ideal of S if and only if A is an ideal of some right ideal of S.

Proof. Let A be a (0,2)-bi-ideal of S, then

$$((SA2] \cdot A] = (SA2 \cdot A] = (A2S \cdot A] =$$
$$= (AS \cdot A2] \subseteq (SA2] \subseteq A,$$

and

$$(A \cdot (SA^{2}]] = (A \cdot SA^{2}] =$$

$$= (A \cdot (S^{2}]A^{2}] \subseteq ((A] \cdot (S^{2}](A^{2}]] \subseteq ((A \cdot S^{2}A^{2}]] =$$

$$= (A \cdot S^{2}A^{2}] = (SS \cdot AA^{2}] =$$

$$= (A^{2}A \cdot SS] = (SA \cdot A^{2}] \subseteq (SA^{2}] \subseteq A.$$

Hence A is an ideal of some right ideal $(SA^2]$ of S.

Conversely, assume that A is an ideal of some right ideal R of S, then

$$(SA^{2}] = (A \cdot SA] \subseteq ((A] \cdot (S^{2}](A]] \subseteq$$
$$\subseteq ((A \cdot S^{2}A]] = (A \cdot S^{2}A] =$$
$$= (A \cdot (AS)S] \subseteq (A \cdot (RS)R] \subseteq (A \cdot ((RS])R]$$
$$\subseteq (A \cdot (RS)] \subseteq (AR] \subseteq A,$$

and $(AS \cdot A] \subseteq ((RS] \cdot A] \subseteq (RA] \subseteq A$, which shows that A is a (0,2) -ideal of S.

The following result gives some characterizations of (1,2)-ideals of an ordered \mathcal{AG} -groupoid.

Theorem 1.1. Let (S, \cdot, \leq) be a unitary ordered \mathcal{AG} -groupoid. Then the following statements are equivalent.

(i) A is a (1,2)-ideal of S;

- (ii) A is a left ideal of some bi-ideal of S;
- (iii) A is a bi-ideal of some ideal of S;
- (iv) A is a (0,2)-ideal of some right ideal of S;

(v) A is a left ideal of some
$$(0,2)$$
-ideal of S.

Proof. (*i*) \Rightarrow (*ii*): It is easy to see that $(SA^2 \cdot S)$

is a bi-ideal of S. Let A be a (1,2)-ideal of S, then

$$(((SA2 \cdot S])A] \subseteq ((SA2 \cdot SS)A] =$$

= $((SS \cdot A2S)A] \subseteq (((S2] \cdot A2S)A] =$
= $((S \cdot A2S)A] = ((A2 \cdot SS)A] \subseteq (A2S \cdot A] =$
= $(AS \cdot A2] \subset A,$

which shows that A is a left ideal of some bi-ideal $(SA^2 \cdot S]$ of S.

 $(ii) \Rightarrow (iii)$: Let *A* be a left ideal of some biideal *B* of *S* and *e* be a left identity of *S*, then

 $((A \cdot (SA^2))A] \subseteq ((A \cdot SA^2)A] = ((S \cdot AA^2)A] =$

$$= e((S \cdot AA^{2})A] \subseteq (S]((S \cdot AA^{2})A] \subseteq$$
$$\subseteq ((S(SA \cdot AA))A] =$$
$$= ((S(AA \cdot AS))A] = ((AA \cdot S(AS))A] =$$
$$= (((S(AS) \cdot A)A)A] = (((A(SS) \cdot A)A)A] \subseteq$$
$$\subseteq (((AS \cdot A)A)A] \subseteq (((BS \cdot B)A)A] \subseteq$$
$$\subseteq (BA \cdot A] \subseteq A,$$

which shows that A is a bi-ideal of an ideal $(SA^2]$ of S.

 $(iii) \Rightarrow (iv)$: Let A be a bi-ideal of some ideal I of S, then

$$((SA^{2}] \cdot A^{2}] = (SA^{2} \cdot A^{2}] = ((A^{2} \cdot AA)S] =$$
$$= ((A \cdot A^{2}A)S] \subseteq ((A \cdot ((AI)A])S] \subseteq (AA \cdot S] =$$
$$= (SA \cdot A] \subseteq ((SI] \cdot S] \subseteq I,$$

which shows that A is a (0,2)-ideal of a right ideal (SA^2) of S.

 $(iv) \Rightarrow (v)$: It is easy to see that $(SA^3]$ is a (0,2)-ideal of S. Let A be a (0,2)-ideal of a right ideal R of S, then

$$(A \cdot (SA^3)] \subseteq (A(SS \cdot A^2A)] \subseteq$$
$$\subseteq (A(AA^2 \cdot S)] \subseteq (A((SA \cdot AA)S))$$
$$= (A((AA \cdot AS)S)] = ((AA)((A \cdot AS)S))$$
$$= ((S \cdot A(AS))A^2] = ((A \cdot S(AS))A^2]$$
$$\subseteq ((RS) \cdot A^2] \subseteq (RA^2) \subseteq A,$$

which shows that A is a left ideal of a (0,2)-ideal $(SA^3]$ of S.

 $(v) \Rightarrow (i)$: Let A be a left ideal of a (0,2)-ideal O of S, then

$$(AS \cdot A^{2}] \subseteq ((AA \cdot SS)A] \subseteq (SA^{2} \cdot A] \subseteq$$
$$\subseteq ((SO^{2}] \cdot A] \subseteq (OA] \subseteq A,$$

which shows that A is a (1,2)-ideal of S.

The following characterizes (1,2)-ideals in terms of left and right ideals of an ordered \mathcal{AG} -groupoid.

Lemma 1.3. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid and A be an idempotent subset of S. Then A is a (1,2)-ideal of S if and only if there exist a left ideal L and a right ideal R of S such that $(RL] \subseteq A \subseteq R \cap L$.

Proof. Assume that A is a (1,2)-ideal of S such that A is idempotent.

Setting L=(SA] and R=(SA²], then

$$(RL] = ((SA2] \cdot (SA]] \subseteq (A2S \cdot SA] \subseteq (A2S2 \cdot SA] = = ((SA \cdot SS)A2] = = ((SS \cdot AS)A2] \subseteq ((S(AA \cdot SS))A2] = = ((S(SS \cdot AA))A2] = = ((S(A(SS \cdot AA)))A2] \subseteq ((A(S \cdot SA))A2] \subseteq (AS \cdot A2] \subseteq A.$$

It is clear that $A \subseteq R \cap L$.

Conversely, let R be a right ideal and L be a left ideal of S such that $(RL] \subseteq A \subseteq R \cap L$, then

 $(AS \cdot A^2] = (AS \cdot AA] \subseteq ((RS] \cdot (SL]] \subseteq (RL] \subseteq A.$

Definition 1.2. A (0,2)-ideal A of an ordered \mathcal{AG} -groupoid (S,\cdot,\leq) with zero is said to be 0-minimal if $A \neq \{0\}$ and $\{0\}$ is the only (0,2)-ideal of S properly contained in A.

Remark 1.1. Assume that (S,\cdot,\leq) is a unitary ordered \mathcal{AG} -groupoid with zero. Then it is easy to see that every left (right) ideal of S is a (0,2)-ideal of S. Hence if O is a 0-minimal (0,2)-ideal of Sand A is a left (right) ideal of S contained in O, then either $A = \{0\}$ or A = O.

Lemma 1.4. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid with zero. Assume that A is a 0-minimal ideal of S and O is an \mathcal{AG} -subgroupoid of A. Then O is a (0,2)-ideal of S contained in A if and only if $O^2 = \{0\}$ or O = A.

Proof. Let *O* be a (0,2)-ideal of *S* contained in a 0-minimal ideal *A* of *S*. Then $(SO^2] \subseteq O \subseteq A$. Since $(SO^2]$ is an ideal of *S*, therefore by minimality of *A*, $(SO^2] = \{0\}$ or $(SO^2] = A$. If $(SO^2] = A$, then $A = (SO^2] \subseteq O$ and therefore O = A. Let $(SO^2] = \{0\}$, then

$$(O^2S] \subseteq (O^2S^2] = (S^2O^2] \subseteq (SO^2] = \{0\} \subseteq O^2,$$

which shows that O^2 is a right ideal of *S*, and hence an ideal of *S* contained in *A*, therefore by minimality of *A*, we have $O^2 = \{0\}$ or $O^2 = A$. Now if $O^2 = A$, then O = A.

Conversely, let $O^2 = \{0\}$, then

$$(SO^2] \subseteq (O^2S] = (\{0\}S] = \{0\} = (O].$$

Now if O = A, then

 $(SO^{2}] \subseteq (SS \cdot OO] \subseteq ((SA] \cdot (SA]] \subseteq A = O,$

which shows that O is a (0,2)-ideal of S contained in A.

Corollary 1.2. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid with zero. Assume that A is a 0-minimal left ideal of S and O is an \mathcal{AG} -subgroupoid of A. Then O is a (0,2)-ideal of S contained in A if and only if $O^2 = \{0\}$ or O = A.

Lemma 1.5. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid with zero and O be a 0-minimal (0,2)-ideal of S. Then $O^2 = \{0\}$ or O is a 0-minimal right (left) ideal of S.

Proof. Let O be a 0-minimal (0,2)-ideal of S, then

$$(S(O^2)^2] \subseteq (SS \cdot O^2 O^2] \subseteq (O^2 O^2 \cdot S] = (SO^2 \cdot O^2]$$
$$\subseteq ((SO^2] \cdot O^2] \subseteq (OO^2] \subseteq O^2,$$

which shows that O^2 is a (0,2)-ideal of *S* contained in *O*, therefore by minimality of *O*, $O^2 = \{0\}$ or $O^2 = O$. Suppose that $O^2 = O$, then

 $(OS] \subseteq (OO \cdot SS] \subseteq (SO^2] \subseteq O,$

which shows that O is a right ideal of S. Let R be a right ideal of S contained in O, then

 $(R^2S] = (RR \cdot S] \subseteq ((RS] \cdot S] \subseteq R.$

Thus R is a (0,2)-ideal of S contained in O, and again by minimality of O, $R = \{0\}$ or R = O.

The following Corollary follows from Lemma 1.2 and Corollary 1.2.

Corollary 1.3. Let (S, \cdot, \leq) be a unitary ordered \mathcal{AG} -groupoid. Then O is a minimal (0,2)-ideal of S if and only if O is a minimal left ideal of S.

Theorem 1.2. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid. Then A is a minimal (2,1)-ideal of S if and only if A is a minimal bi-ideal of S.

Proof. Let A be a minimal (2,1)-ideal of S. Then

$$((((A^{2}S \cdot A])^{2}S)((A^{2}S \cdot A])] \subseteq$$

$$\subseteq (((A^{2}S \cdot A)^{2}S)(A^{2}S \cdot A)] =$$

$$= (((((A^{2}S \cdot A)(A^{2}S \cdot A))S)(A^{2}S \cdot A)] \subseteq$$

$$\subseteq ((((AS \cdot A)(AS \cdot A))S)(AS \cdot A)] =$$

$$= ((((AS \cdot AS)(AA))S)(AS \cdot A)] \subseteq$$

$$\subseteq (((A^{2}S \cdot AA)S)(AS \cdot A)] \subseteq$$

$$\subseteq (((A^{2}S \cdot AA)S)(AS \cdot A)] \subseteq$$

$$\subseteq (((A^{2}S \cdot S)(AS \cdot A)] \subseteq$$

$$\subseteq ((A^{2}S \cdot S)(AS \cdot A)] = ((AS \cdot AS)(SA)] \subseteq$$

$$\subseteq ((A^{2}S \cdot SA] = (AS \cdot SA^{2}] = ((SA^{2} \cdot S)A]$$

$$\subseteq ((A^{2}S \cdot S)A] = ((SS \cdot AA)A] = (A^{2}S \cdot A],$$

and similarly we can show that $(A^2S \cdot A]^2 \subseteq \subseteq (A^2S \cdot A]$. Thus $(A^2S \cdot A]$ is a (2,1)-ideal of S contained in A, therefore by minimality of A, $(A^2S \cdot A] = A$. Now

$$(AS \cdot A] = ((AS)(A^2S \cdot A)] =$$

= (((A^2S \cdot A)S)A] = ((SA \cdot A^2S)A] =
= ((A^2(SA \cdot S))A] \subseteq (A^2S \cdot A] = A,

It follows that *A* is a bi-ideal of *S*. Suppose that there exists a bi-ideal *B* of *S* contained in *A*, then $(B^2S \cdot B] \subseteq (BS \cdot B] \subseteq B$, so *B* is a (2,1)-ideal of *S* contained in *A*, therefore B = A.

Conversely, assume that A is a minimal biideal of S, then it is easy to see that A is a (2,1)-ideal of S. Let C be a (2,1)-ideal of S contained in A, then

Problems of Physics, Mathematics and Technics, № 2 (23), 2015

$$((((C^{2}S \cdot C))S)((C^{2}S \cdot C))) \subseteq$$

$$\subseteq (((C^{2}S \cdot C)S)(C^{2}S \cdot C)] =$$

$$= ((SC \cdot C^{2}S)(C^{2}S \cdot C)] =$$

$$= ((C(SC^{2} \cdot C))(C^{2}S \cdot C)] =$$

$$= (((C(SC^{2} \cdot S))(C^{2}S \cdot C)) =$$

$$= (((C^{2}S \cdot C)(SC^{2} \cdot SS))C) \subseteq$$

$$\subseteq (((C^{2}S \cdot C)(S \cdot C^{2}S))C) \subseteq$$

$$= (((C^{2}(C^{2}S \cdot C)(C^{2}S))C) \subseteq$$

$$= (((C^{2}(C^{2}S \cdot C)S))C) \subseteq (C^{2}S \cdot C).$$

This shows that $(C^2S \cdot C]$ is a bi-ideal of *S*, and by minimality of *A*, $(C^2S \cdot C] = A$. Thus

$$\mathbf{A} = (C^2 S \cdot C] \subseteq C,$$

and therefore A is a minimal (2,1)-ideal of S.

Theorem 1.3. Let A be 0-minimal (0,2)-biideal of a unitary ordered \mathcal{AG} -groupoid (S,\cdot,\leq) with zero. Then exactly one of the following cases occurs:

(*i*) $A = (\{0, a\}], a^2 = 0;$

(*ii*) for all $a \in A \setminus \{0\}$, $(Sa^2] = A$.

Proof. Assume that A is a 0-minimal (0,2)-biideal of S. Let $a \in A \setminus \{0\}$, then $(Sa^2] \subseteq A$. Also $(Sa^2]$ is a (0,2)-bi-ideal of S, therefore $(Sa^2] = \{0\}$ or $(Sa^2] = A$.

Let $(Sa^2] = \{0\}$. Since $a^2 \in A$, we have either $a^2 = a$ or $a^2 = 0$ or $a^2 \in A \setminus \{0, a\}$. If $a^2 = a$, then $a^3 = a^2a = a$, which is impossible because $a^3 \in (a^2S] \subseteq (Sa^2] = \{0\}$. Let $a^2 \in A \setminus \{0, a\}$, we have

 $(S \cdot (\{0, a^2\} \{0, a^2\}]] \subseteq (SS \cdot a^2 a^2] =$ = $(Sa^2 \cdot Sa^2] = \{0\} \subseteq (\{0, a^2\}],$

and

$$(((\{0,a^2\}]S)(\{0,a^2\}]] \subseteq (\{0,a^2S\}\{0,a^2\}] = = (a^2S \cdot a^2] \subseteq (Sa^2] = \{0\} \subseteq (\{0,a^2\}].$$

Therefore $(\{0, a^2\}]$ is a (0, 2)-bi-ideal of *S* contained in *A*. We observe that $(\{0, a^2\}] \neq \{0\}$ and $(\{0, a^2\}] \neq A$. This is a contradiction to the fact that *A* is a 0-minimal (0, 2)-bi-ideal of *S*. Therefore $a^2 = 0$ and $A = (\{0, a\}]$. If $(Sa^2] \neq \{0\}$, then $(Sa^2] = A$.

Corollary 1.4. Let A be 0-minimal (0,2)-biideal of a unitary ordered \mathcal{AG} -groupoid (S,\cdot,\leq) with zero such that $(A^2] \neq 0$. Then $A = (Sa^2]$ for every $a \in A \setminus \{0\}$.

Lemma 1.6. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid. Then every right ideal of S is a (0,2)-bi-ideal of S.

Proof. Assume that A is a right ideal of S, then

 $(SA^{2}] \subseteq (AA \cdot SS] \subseteq ((AS] \cdot (AS]] \subseteq$ $\subseteq (AA] \subseteq (AS] \subseteq A, (AS \cdot A] \subseteq A,$

and clearly $A^2 \subseteq A$, therefore A is a (0,2)-bi-ideal of S. The converse of Lemma 1.2 is not true in general. Example 2.1 shows that there exists a (0,2)-bi-

ideal $A = \{a, c, e\}$ of S which is not a right ideal of S. **Definition 1.3.** An ordered \mathcal{AG} -groupoid

 (S,\cdot,\leq) with zero is said to be 0 - (0,2)-bisimple if $(S^2] \neq \{0\}$ and $\{0\}$ is the only proper (0,2)-biideal of S.

Theorem 1.4. Let (S,\cdot,\leq) be a unitary ordered \mathcal{AG} -groupoid with zero. Then $(Sa^2] = S$ for all $a \in S \setminus \{0\}$ if and only if S is 0 - (0,2)-bisimple if and only if S is right 0-simple.

Proof. Assume that $(Sa^2] = S$ for every $a \in S \setminus \{0\}$. Let A be a (0, 2)-bi-ideal of S such that $A \neq \{0\}$. Let $a \in A \setminus \{0\}$, then

$$S = (Sa^2] \subseteq (SA^2] \subseteq A.$$

Therefore S = A. Since $S = (Sa^2] \subseteq (S^2]$, we have $(S^2] = S \neq \{0\}$. Thus *S* is 0 - (0, 2)-bisimple. The converse statement follows from Corollary 1.2.

Let *R* be a right ideal of 0 - (0, 2) -bisimple *S*. Then by Lemma 1.2, *R* is a (0, 2) -bi-ideal of *S* and so $R = \{0\}$ or R = S. Conversely, assume that *S* is right 0-simple. Let $a \in S \setminus \{0\}$, then $(Sa^2] = S$. Hence *S* is 0 - (0, 2) -bisimple.

Theorem 1.5. Let A be a 0 -minimal (0,2) -biideal of a unitary ordered \mathcal{AG} -groupoid (S,\cdot,\leq) with zero. Then either $(A^2] = \{0\}$ or A is right 0-simple.

Proof. Assume that A is 0 -minimal (0, 2) -biideal of S such that $(A^2] \neq \{0\}$. Then by using Corollary 1.2, $(Sa^2] = A$ for every $a \in A \setminus \{0\}$. Since $a^2 \in A \setminus \{0\}$ for every $a \in A \setminus \{0\}$, we have $a^4 = (a^2)^2 \in A \setminus \{0\}$ for every $a \in A \setminus \{0\}$. Let $a \in A \setminus \{0\}$, then

> $((Aa²]S \cdot (Aa²]] = (a²A \cdot S(Aa²)] =$ = (((S \cdot Aa²)A)a²] \sum (((S \cdot A)A)a²] \sum ((AA \cdot SS)a²] \sum ((SA²] \cdot a²] \sum (Aa²],

and

$$\begin{split} (S(Aa^2]^2] &= (S((Aa^2] \cdot (Aa^2]))] = \\ &= (S((a^2A] \cdot (a^2A)))] = (S(a^2(a^2A \cdot A)))] = \\ &= ((aa)(S(a^2A \cdot A)))] = (((a^2A \cdot A)S)a^2] \subseteq \\ &\subseteq ((AA \cdot SS)a^2] \subseteq ((SA^2] \cdot a^2] \subseteq (Aa^2], \end{split}$$

Проблемы физики, математики и техники, № 2 (23), 2015

which shows that $(Aa^2]$ is a (0,2)-bi-ideal of *S* contained in *A*. Hence $(Aa^2] = \{0\}$ or $(Aa^2] = A$. Since $a^4 \in (Aa^2]$ and $a^4 \in A \setminus \{0\}$, we get $(Aa^2] = A$. Thus by using Theorem 1.2, *A* is right 0-simple.

2 Ideals in intra-regular ordered AG-groupoid

Ideal theory plays a very important role in studying and exploring the structural properties of different algebraic structures. Here we study left (right) ideals which usually allow us to characterize an ordered \mathcal{AG} -groupoid and play the role in an ordered \mathcal{AG} -groupoid which is played by normal subgroups in ordered group theory and by ideals in ordered ring theory.

Definition 2.1. An element a of an ordered \mathcal{AG} -groupoid (S,\cdot,\leq) is called an intra-regular element of S if there exist some $x, y \in S$ such that $a \leq xa^2 \cdot y$ and S is called intra-regular if every element of S is intra-regular or equivalently, $A \subseteq (SA^2 \cdot S]$ for all $A \subseteq S$ and $a \in (Sa^2 \cdot S]$ for all $a \in S$.

Example 2.1. Let $S = \{a, b, c, d, e\}$ be an ordered \mathcal{AG} -groupoid with the following multiplication table and order below.

$$\begin{array}{c} \cdot & a \ b \ c \ d \ e \\ \hline a \ a \ a \ a \ a \ a \\ b \ a \ b \ b \ b \\ c \ a \ b \ d \ e \ c \\ d \ a \ b \ c \ d \ e \\ e \ a \ b \ e \ c \ d \end{array}$$

 $\leq := \{(a,a), (a,b), (c,c), (d,d), (e,e), (b,b)\}.$

By routine calculation, it is easy to verify that *S* is intra-regular.

Definition 2.2. An ordered AG-groupoid (S,\cdot,\leq) is called left (resp. right) simple if it has no proper left (resp. right) ideal and is called simple if it has no proper ideal.

Theorem 2.1. The following conditions are equivalent for a unitary ordered \mathcal{AG} -groupoid (S, \cdot, \leq) :

- (i) (aS] = S, for some $a \in S$;
- (*ii*) (Sa] = S, for some $a \in S$;
- (*iii*) S is simple;

(iv) (AS] = S = (SA], where A is any twosided ideal of S;

(v) S is intra-regular.

Proof. $(i) \Rightarrow (ii)$: Let *S* be a unitary ordered \mathcal{AG} -groupoid and assume that (aS] = S holds for some $a \in S$. Since (aS] and (Sa] are the left ideals of *S*, then (aS] = aS and (Sa] = Sa. Therefore

 $S = (SS] = ((aS] \cdot S] = (aS \cdot S] = (SS \cdot a] = (Sa].$

 $(ii) \Rightarrow (iii)$: Let *S* be a unitary ordered \mathcal{AG} -groupoid such that (aS] = S holds for some $a \in S$. Suppose that *S* is not left simple and let *L* be a proper left ideal of *S*, then

$$(SL] \subseteq L \subseteq S =$$

$$= (SS] \subseteq (Sa \cdot S] \subseteq ((SS \cdot ea)S] =$$

$$= ((ae \cdot SS)S] \subseteq ((ae \cdot S)(SS)] =$$

$$= ((Se \cdot a)(SS)] = ((SS)(a \cdot Se)] =$$

$$= (a(SS \cdot Se)] \subseteq (aS],$$

implies that $sl \le at$ for some $a, s, t \in S$ and $l \in L$. Since $sl \in L$, therefore $at \in L$, but $at \in (aS]$. Thus $(aS] \subseteq L$ and therefore we have $S = (aS] \subseteq L$, which implies that S = L, which contradicts the given assumption. Thus S is left simple and similarly we can show that S is right simple, which shows that S is simple.

 $(iii) \Rightarrow (iv)$: Let *S* be a simple unitary ordered \mathcal{AG} -groupoid and let *A* be any two-sided ideal of *S*, then A = S. Therefore, we have (AS] = (SS] = (SA].

 $(iv) \Rightarrow (v)$: Let *S* be a unitary ordered \mathcal{AG} -groupoid such that (AS] = S = (SA] holds for any twosided ideal *A* of *S*. Since $(a^2S]$ is two-sided ideal of *S* such that $(a^2S \cdot S] = S = (S \cdot a^2S]$. Let $a \in S$, then

$$a \in S = (a^2 S \cdot S] \subseteq ((aa \cdot SS)S] =$$
$$= ((SS \cdot aa)S] \subseteq (Sa^2 \cdot S],$$

that is $a \le (xa^2)y$ for some $x, y \in S$. Thus S is intra-regular

 $(v) \Rightarrow (i)$: Let S be a unitary intra-regular ordered \mathcal{AG} -groupoid. Let $a \in S$, then there exist $x, y \in S$ such that $a \leq (xa^2)y$. Thus

 $a \le (xa^2)y = (ex \cdot aa)y = (aa \cdot ex)y$

$$= (y \cdot ex)(aa) = a((y \cdot ex)a) \in aS$$

which shows that $S \subseteq (Sa]$ and $(Sa] \subseteq S$ is obvious. Thus (Sa] = S holds for some $a \in S$.

Corollary 2.1. The following conditions are equivalent for any unitary ordered \mathcal{AG} -groupoid (S,\cdot,\leq) :

(i) (aS] = S, for some $a \in S$;

(*ii*) (Sa] = S, for some $a \in S$;

(*iii*) *S* is right simple;

(iv) (AS] = S = (SA], where A is any right ideal of S;

(v) S is fully regular.

Corollary 2.2. If (S, \cdot, \leq) is a unitary ordered \mathcal{AG} -groupoid, then the following conditions are equivalent:

- (i) (Sa] = S, for some $a \in S$;
- (*ii*) (aS] = S, for some $a \in S$.

Corollary 2.3. If (S, \cdot, \leq) is a unitary ordered \mathcal{AG} -groupoid, then (eS] = S = (Se] holds for $e \in S$, where e is a left identity of S.

Corollary 2.4. The following conditions are equivalent for any unitary ordered AG-groupoid (S, \cdot, \leq) :

(*i*) *S* is intra-regular;

(ii) (Sa] = S = (aS] for some $a \in S$.

Definition 2.3. A left (resp. right) ideal A of an ordered \mathcal{AG} -groupoid (S,\cdot,\leq) is called semiprime if $a \in A$ implies $a^2 \in A$.

Lemma 2.1. *The following conditions are equivalent for a unitary ordered* \mathcal{AG} *-groupoid* (S, \cdot, \leq) :

(i) S is intra-regular;

(*ii*) Every right ideal of S is semiprime.

Proof. $(i) \Rightarrow (ii)$: Let *T* be a right ideal of a unitary intra-regular ordered \mathcal{AG} -groupoid *S*. For $a \in S$ there exist $x, y \in S$ such that $a \le xa^2 \cdot y$. Let $a^2 \in T$, then

$$a \le (ex \cdot a^2)y = (a^2 \cdot xe)y = (y \cdot xe)a^2 =$$

 $= a^2 (xe \cdot y) \in TS \subseteq (TS] \subseteq T,$ which implies that T is semiprime.

Now $(ii) \Rightarrow (i)$: Since $(a^2S]$ is a right ideal of a unitary ordered \mathcal{AG} -groupoid S containing a^2 so $a \in (a^2S]$. Thus

$$a \in (a^2 S] \subseteq (a^2 \cdot SS] = (S \cdot a^2 S] \subseteq (SS \cdot a^2 S] =$$
$$= (Sa^2 \cdot SS] \subseteq (Sa^2 \cdot S].$$

Hence S is intra-regular.

Corollary 2.5. *The following conditions are equivalent for any unitary ordered* AG*-groupoid* (S, \cdot, \leq) :

(i) S is intra-regular;

(*ii*) every ideal of S is semiprime.

Theorem 2.2. The following conditions are equivalent for a unitary ordered \mathcal{AG} -groupoid (S,\cdot,\leq) :

(i) S is intra-regular;

(*ii*) $L \cap R \subseteq (LR]$ for every semiprime right ideal R and every left ideal L of S;

(*iii*) $L \cap R \subseteq (LR \cdot L]$ for every semiprime right ideal R and every left ideal L of S.

Proof. $(i) \Rightarrow (iii)$: Let *S* be a unitary intraregular ordered \mathcal{AG} -groupoid and *L*, *R* be any left and right ideals of *S* respectively such that $k \in L \cap R$. Then there exist $x, y \in S$ such that $k \leq xk^2 \cdot y$. Thus

$$k \le (x \cdot kk)y = (k \cdot xk)y =$$

$$= (y \cdot xk)k \le (y(x(xk^{2} \cdot y)))k =$$

$$= (y(xk^{2} \cdot xy))k = (xk^{2} \cdot y(xy))k =$$

$$= (x(kk) \cdot y(xy))k =$$

$$= (k(xk) \cdot y(xy))k \in ((R \cdot SL)S)L \subseteq (RL \cdot S)L =$$

$$= LS \cdot RL = LR \cdot SL \subseteq LR \cdot L,$$

which implies that $L \cap R \subseteq (LR \cdot L]$. Also by Lemma 1.3, *R* is semiprime.

 $(iii) \Rightarrow (ii)$: Let *R* and *L* be the left and right ideals of *S* respectively and *R* be semiprime, then

$$L \cap R = R \cap L \subseteq (RL \cdot R] \subseteq$$
$$\subseteq (RL \cdot S] \subseteq (RL \cdot SS] = (SS \cdot LR]$$
$$= (L(SS \cdot R)] = (L(RS \cdot S)] \subseteq (L \cdot (RS]] \subseteq (LR].$$

 $(ii) \Rightarrow (i)$: Since $a \in (Sa]$, which is a left

ideal of S, and $a^2 \in (a^2S]$, which is a semiprime right ideal of S, therefore by given assumption $a \in (a^2S]$. Thus

$$a \in (Sa] \cap (a^2S] \subseteq ((Sa] \cdot (a^2S]] \subseteq (Sa \cdot a^2S] \subseteq$$
$$\subseteq (SS \cdot a^2S] = (Sa^2 \cdot SS] \subseteq (Sa^2 \cdot S].$$

Hence S is intra-regular.

Lemma 2.2. The following conditions are equivalent for a unitary ordered \mathcal{AG} -groupoid (S,\cdot,\leq) :

(*i*) *S* is intra-regular;

(*ii*) every left ideal of S is idempotent.

Proof. It is simple. We omit the proof.

Theorem 2.3. The following conditions are equivalent for a unitary ordered AG-groupoid (S, \cdot, \leq) :

(i) S is intra-regular;

(*ii*) $A = ((SA)^2]$, where A is any left ideal of S.

Proof. (*i*) \Rightarrow (*ii*): Let *A* be a left ideal of a unitary intra-regular ordered \mathcal{AG} -groupoid, then $(SA] \subseteq A$ and by Lemma 1.3, $((SA)^2] = (SA] \subseteq A$. Now $A = (AA] \subseteq (SA] = ((SA)^2]$, which implies that $A = ((SA)^2]$.

 $(ii) \Rightarrow (i)$: Let *A* be a left ideal of *S*, then $A = ((SA)^2] \subseteq (A^2]$, which implies that *A* is idempotent and by using Lemma 1.3, *S* is intra-regular.

REFERENCES

1. Holgate, P. Groupoids satisfying a simple invertive law / P. Holgate // Math. Student. – 1992. – Vol. $61. - N_{\text{P}} 1-4. - P. 101-106.$

2. *Jantanan*, *W*. On 0 -minimal (0,2) -bi-ideals in ordered semigroups / W. Jantanan, T. Changphas // Quasigroups and related Systems. – 2013. – Vol. 21. – P. 83–90. 3. *Kazim*, *M.A*. On almost semigroups / M.A. Kazim, M. Naseeruddin // Aligarh Bull. Math. – 1972. – Vol. 2. – P. 1–7.

4. *Lajos, S.* Generalized ideals in semigroups / S. Lajos // Acta Sci. Math. – 1961. – Vol. 22. – P. 217–222.

5. *Mushtaq*, *Q*. On LA-semigroups / Q. Mushtaq, S.M. Yusuf // Aligarh Bull. Math. – 1978. – Vol. 8. – P. 65–70.

6. *Mushtaq*, *Q*. On locally associative LA-semigroups / Q. Mushtaq, S.M. Yusuf // J. Nat. Sci. Math. – 1979. – Vol. 19. – P. 57–62.

7. *Mushtaq*, *Q*. On LA-semigroup defined by a commutative inverse semigroup / Q. Mushtaq, S.M. Yu-suf // Mat. Vesnik. – 1988. – Vol. 40. – P. 59–62.

8. *Mushtaq*, *Q. n* LA-semigroups with weak associative law / Q. Mushtaq, M.S. Kamran // Scientific Khyber. – 1989. – Vol. 1. – P. 69–71.

9. *Mushtaq*, *Q*. Ideals in left almost semigroups / Q. Mushtaq, M. Khan // Proceedings of 4th International Pure Mathematics Conference. – 2003. – P. 65–77.

10. *Protić*, *P.V.* AG-test and some general properties of Abel-Grassmann's groupoids / P.V. Protić, N. Stevanović // Pure Mathematics and Applications. – 1995. – Vol. 6. – P. 371–383.

11. Sanborisoot, J. On Characterizations of (m,n)-regular ordered semigroups / J. Sanborisoot, T. Changphas // Far East J. Math. Sci. – 2012. – Vol. 65. – P. 75–86.

12. *Stevanović*, *N*. Composition of Abel-Grassmann's 3-bands / N. Stevanović, P. V. Protić // Novi Sad, J. Math. – 2004. – Vol. 34. – P. 175–182.

13. *Xie*, *X.Y.* Fuzzy radicals and prime fuzzy ideals of ordered semigroups / X.Y. Xie, J. Tang // Inform. Sci. – 2008. – Vol. 178. – P. 4357–4374.

14. Yousafzai, F. Left regular \mathcal{AG} -groupoids in terms of fuzzy interior ideals / F. Yousafzai, N. Yaqoob, A. Ghareeb // Afrika Mathematika. – 2013. – Vol. 24. – P. 577–587.

15. *Yousafzai*, *F*. On fully regular \mathcal{AG} -groupoids / F. Yousafzai, A. Khan, B. Davvaz // Afrika Mathematika. – 2014. – Vol. 25. – P. 449–459.

16. *Yousafzai*, *F*. On fuzzy fully regular ordered \mathcal{AG} -groupoids / F. Yousafzai, A. Khan, V. Amjad, A. Zeb // Journal of Intelligent & Fuzzy Systems. – 2014. – Vol. 26. – P. 2973–2982.

Research of the first author is supported by the NNSF of China (#11371335).

Поступила в редакцию 31.10.14.