Алканы

Опыт 1. Получение и горение метана

В ступке растирают одну часть ацетата натрия с двумя частями натронной извести. (Натронная известь представляет собой смесь $Ca(OH)_2$ и NaOH). Смесь пересыпают в сухую пробирку с газоотводной трубкой, затем укрепляют пробирку горизонтально в штатив и нагревают смесь в пламени спиртовки.

Поджигают выделяющийся из трубки метан. Он спокойно горит голубоватым пламенем.

Изобразите установку для получения метана:

		CHINO.	b
Наблюдения:			
Напишите с. продукты реа	хемы реакций получ икции.	ения и горения	
Вывод:	UOBIN.		
Опыт 2. О	тношение метана к бр (продолжен	омной воде и пер ние опыта 1)	оманганату калия
-	рку 1 помещают 2-3 2-3 мл бромной		

реакционной смеси (натронная известь и ацетат натрия), вводят

поочередно конец газоотводной трубки в пробирки 1, 2.

Наблюдения:

Вывод:
Опыт 3. Химические свойства гексана
Гексан представляет собой бесцветную прозрачную жидкость с характерным запахом. Температура кипения $68,7^{\circ}$ С, $\rho_4^{25} = 0,6548$ г/мл. а) Отношение к кислотам и щелочам В две пробирки наливают по 15-20 капель гексана. В первую вносят $0,5$ мл конц. H_2SO_4 , во вторую — $0,5$ мл раствора NaOH. Пробирки встряхивают, отмечают отсутствие/наличие в них каких-либо внешних изменений.
Наблюдения: б) Отношение к окислителям
В пробирку наливают 15-20 капель гексана. Туда же вносят 10
капель раствора перманганата калия. Встряхивают.
Наблюдения:
в) Отношение к галогенам
В пробирку наливают 15-20 капель гексана., добавляют 5-8 капель
бромной воды.
Наблюдения:
Вывод:

Алкены

Опыт 1. Получение и свойства этилена

Готовят две пробирки с бромной водой и с раствором перманганата калия. В третью сухую пробирку помещают несколько крупинок песка, и жидкость для получения этилена (этиловый спирт и концентрированная серная кислота). Закрывают пробирку пробкой с газоотводной трубкой и осторожно нагревают смесь над пламенем спиртовки до начала равномерного выделения газа.

Концентрированная серная кислота является окислителем. При нагревании смеси спирта с концентрированной серной кислотой кроме этилена и следов диэтилового эфира $(C_2H_5)_2O$, также образуется ряд продуктов окисления органических соединений, например, CO_2 , уголь C (обычно смесь в пробирке чернеет). Серная кислота при этом восстанавливается углеродом до диоксида серы. Если реакцию вести в присутствии песка, сульфата алюминия (катализаторы, ускоряющие дегидратацию спирта), диоксид серы не образуется, следовательно, почернение смеси не происходит.

Выделяющийся газ поджигают у конца Отмечают цвет пламени	газоотводной	трубки.
Изобразите установку для получения этена:	CHOSIN.	
Запишите уравнения реакций получения этилен Опишите в виде схемы механизм реакции образ	•	
Ηανιμμης ποπυμομμο δηνομν ποδομμών προδυντ	10 <i>0</i>	
Напишите получение других побочных продукт	.0 <i>6</i>	

Как только из реакционной пробирки начинает выделяться этилен, газоотводную трубку опускают поочередно в пробирки с бромной водой и перманганатом калия. Наблюдают, как при пропускании газа через приготовленные растворы они постепенно обесцвечиваются. Объясните почему.

через приготовленные Объясните почему.	растворы	ОНИ	постепенно	обесцвечиваются
Запишите уравнения р	еакций:			
				141
				allylo.
				Uhn.
			(
Рассмотрите механизл	м реакции г	галоге	енирования:	
3	1//3			
Вывод:				
0 0 4		(
Опыт 2. Полимери: В фарфоровую ча	_		_	<u>разоор опыта)</u> ирола и добавляют
1-2 капли конц. H_2SC) ₄ . Постепе	енно	вязкость жид	кости повышается
вследствие полимеризац образуется глянцевая пл	-		-	рарфоровой чашки
Запишите уравнение ре	еакции:			
Вывод:				

Алкины

Опыт 1. Получение и свойства ацетилена

В двух пробирках готовят водные растворы брома и перманганата калия (последний слегка подкисляют серной кислотой). В третью сухую пробирку помещают кусочек карбида кальция. Осторожно приливают в эту пробирку 3 мл воды и сразу же закрывают ее пробкой с газоотводной трубкой.

Выделяющийся ацетилен пропускают поочередно через растворы брома и перманганата калия.

Наблюдения:	
Затем газоотводную трубку певыделяющийся ацетилен.	реворачивают вверх и зажигают
Наблюдения:	
	CX/,
Запишите уравнение реакции получе взаимодействия с растворами брома	
Объясните, почему горение аце	тилена сопровождается большим
копчением по сравнению с горением м	етана и этена
Вывод:	

Ароматические углеводороды

Опыт 1. Бромирование бензола и толуола

В две пробирки (с газоотводными трубками) помещают по 1 мл бензола и 1 мл толуола.

В каждую из пробирок доливают по 0,5 мл бромной воды, встряхивают в течение 1 минуты, отмечают изменения в смеси, затем нагревают на водяной бане.

Наблюдения:	
Запишите уравнение реакции:	
Вывод:	
Опыт 2.Окисление	бензола и толуола
В две пробирки с газоотводным раствора перманганата калия и 4 капли затем добавляют в одну пробирку – 2 мл количество толуола. Сильно встряхиваю пробирки на водяной бане).	разбавленной серной кислоты и п бензола, а в другую – такое же
Наблюдения:	

Запишите уравнение реакции:

Bывоо:
Опыт 3. Нитрование нафталина (теоретич.)
В пробирку с 0,5 г нафталина добавляют 2 мл концентрированной азотной кислоты. При встряхивании смесь начинает желтеть уже при комнатной температуре. Смесь нагревают на кипящей водяной бане 5 мин. и выливают в пробирку с холодной водой. α Нитронафталин выделяется в виде оранжевого масла, быстропвердеющего при встряхивании.
Наблюдения:
Запишите уравнение реакции:
Вывод:
3, 1 1

Галогенопроизводные углеводородов

Опыт 1 Качественное определение галогенов в органическом веществе – проба Бейльштейна

Медную проволоку изгибают в маленькую петлю и прокаливают ее в пламени горелки до исчезновения зеленой окраски пламени. Дают проволоке остыть, погружают ее в исследуемое вещество и снова нагревают в пламени горелки. Зеленое окрашивание пламени свидетельствует о наличии галогенов. Реакция очень чувствительна.

Однако следует иметь в виду, что и некоторые другие соли меди, например цианиды, образующиеся при прокаливании азотосодержащих органических соединений (мочевины, производных пиридина, хинолина и др.), также окрашивают пламя.

Наблюдения:
Вывод:
Опыт 2. Получение йодоформа
В пробирку налейте 1 мл этилового спирта, 2 мл воды и добавьте
несколько кристаллов растёртого в порошок йода. Прибавьте 5 капелн
концентрированного раствора гидроксида натрия. Смесь встряхните до
растворения йода и погрейте в руках до появления кристаллического
осадка йодоформа с очень стойким запахом.
Реакция образования йодоформа протекает по следующей схеме:
$I_2 + 2NaOH \rightarrow NaOI + NaI + H_2O$
$NaOI \rightarrow NaI + [O]$
$CH_3CH_2OH + [O] \rightarrow CH_3-CHO + H_2O$
CH_3 - $CHO + 3I_2 \rightarrow I_3C$ - $CHO + 3HI$
$I_3C\text{-CHO} + \text{NaOH} \rightarrow I_3CH\downarrow + \text{HCOONa}$
$3HI + 3NaOH \rightarrow 3NaI + 3H_2O$
Суммарное уравнение запишите самостоятельно:
Наблюдения:

Спирты

Опыт 1. Абсолютирование этилового спирта

В маленькую фарфоровую чашку поместите примерно 1 г. кристаллического сульфата меди (II) и прокалите его в пламени горелки до исчезновения голубой окраски.

В сухую пробирку налейте 2-3 мл этилового спирта-ректификата и внесите в него полученный безводный сульфат меди (II). Слегка нагрейте пробирку и размешайте ее содержимое. Обратите внимание на изменение цвета сульфата меди. Полученный абсолютный этиловый спирт перелейте в сухую пробирку.

Наблюдения:		1011
_	г ов воды содержится в этилово чему воду нельзя удалить перегонкой?	ом спирт е-
Вывод:		

Опыт 2. Растворимость спиртов, отношение к индикаторам, горение

Налейте в четыре пробирки по 0,5 мл этилового, пропилового, бутилового, амилового или изоамилового спиртов и отметьте их запах.

Амиловый (изоамиловый) спирт вызывает раздражение дыхательных путей и кашель. Поэтому запах спиртов следует определять осторожно!

Добавьте в каждую пробирку по 1 мл воды и содержимое их хорошо перемешайте.

iiop oiiioiiiiiiiii		
Наблюдения:		
пиолюоения:		
	 	 _

Нанесите стеклянной палочкой по 1-2 капли растворов спиртов из каждой пробирки на лакмусовую бумагу. Во все пробирки добавьте по 1 капле раствора фенолфталеина.

Наблюдения:			

В фарфоровые чашки налейте по 1 мл вышеуказанных спиртов и расположите их в порядке возрастания молекулярной массы. Подожгите спирты лучинкой и сравните характер пламени.

Наблюдения:
Рассчитайте процентное содержание углерода в этаноле пропаноле, использованных для опыта. Напишите уравнени реакций горения спиртов:
Вывод:
Опыт 3. Образование и гидролиз этилата натрия
В пробирку помещают 1 мл этилового спирта и небольшо кусочек металлического натрия.
Металлический натрий следует очистить от оксидной пленки, длопыта использовать только очень малое количество металла, тля взаимодействие может происходить очень активно. Пробирку протекающей реакцией не вынимать из штатива, не подносить лицу!
Наблюдения:
Запишите уравнение реакции:

воду и проверяют щелочную реакцию с помощью универсальной индикаторной бумаги.
Наблюдения:
Запишите уравнение реакции:
Вывод:
Опыт 4. Окисление этилового спирта хромовой смесью
В пробирке смешивают 2 мл 5%-ного раствора бихромата калия $K_2Cr_2O_7$, 1 мл разбавленной серной кислоты, 0,5 мл этилового спирта.
Наблюдения:
Изменение валентности хрома обуславливает переход оранжевой окраски раствора в зеленую, что и свидетельствует о протекании реакции окисления. Образование ацетальдегида и уксусной кислоты обнаруживается по их характерному запаху.
Запишите уравнение реакции:
Вывод:

Затем, к раствору образовавшегося этилата натрия приливают

Опыт 5. Окисление спиртов оксидом меди (II)

В пробирку налейте 2 мл этилового спирта. Нагрейте в пламени спиртовки спираль из медной проволоки до появления чёрного налёта оксида меди и опустите горячую спираль в пробирку с этиловым

спиртом. Повторите эту операцию 5-6 раз. В пробирку добавьте 3-4 капли раствора фуксинсернистой кислоты. Наблюдения:
Запишите уравнение реакции:
Вывод:
Опыт 6. Обнаружение многоатомных спиртов В пробирку наливают 1 мл раствора сульфата меди (II) и 1 мл раствора гидроксида натрия. К выпавшему осадку гидроксида меди (II) добавляют несколько капель глицерина (или этиленгликоля) и взбалтывают содержимое. Наблюдения:
Запишите необходимые уравнения реакций: Вывод:

Фенолы

Опыт 1. Растворимость фенола (резорцина) в воде

В две пробирки помещают по 1 г фенола и резорцина, затем в обе пробирки и добавляют по 2 мл воды, аккуратно встряхивают. Отмечают растворимость веществ при комнатной температуре, затем полученные
растворы или взвеси нагревают и наблюдают изменения в
растворимости. <i>Наблюдения:</i>
11иолюоения
С помощью индикаторной бумаги определяют среду водного раствора
фенола, резорцина.
\sim 0/1/1
Наблюдения:
Схематично изобразите распределение электронной плотности в молекуле фенола. Укажите характер электронных эффектов гидроксогруппы.
Запишите уравнение диссоциации фенола, резорцина. Сопоставьте кислотный характер фенолов, основываясь на справочных данных рК:
Вывод:
Опыт 2. Получение фенолята натрия К 1 мл водной эмульсии фенола прибавляют раствор гидроксида натрия до полного исчезновения эмульсии.
К полученному раствору прибавляют по каплям раствор серной
кислоты до кислой реакции. Наблюдают вновь появление эмульсии.
Поясните причину:

Напишите схо разложения:	ему реакции	получения	фенолята	натрия	и его
Вывод:					10,
<u>O</u> 1	пыт 3 . Взаим (получе:	модействие ф ние трибромо	-	<u>10M</u>	
В пробир бромную воду.	оку с водным	раствором ф	ренола доба	оп токки	каплям
Наблюдения:					
Запишите урав	нение реакциі	u:			
Запишите урс избытка бромн	-	кции, прот	екающей н	гри доба	<i>влении</i>
Вывод:					
<u>Опыт 4.</u>	Цветная реакц	ия на фенол	с хлоридом х	железа <u>(</u> III	<u>)</u>
		ными Вам а хлорного з	многоатомні железа. Отм	ыми фен ечают поя	олами), явление
Наблюдения:					

Проверьте устойчивост	ь полученных соединений в спирте, кислоте.
Наблюдения:	
Запишите уравнения р	реакций:
	CHOINHIDI
Вывод:	
Кар	бонильные соединения
Опыт 1. Взаимодейств	вие альдегидов и кетонов с бисульфитом натрия
затем приливают по разогревшуюся смесь с	помещают по 1 мл формальдегида и ацетона 2-3 мл раствора бисульфита натрия. Слегка охлаждают в воде и встряхивают пробирку или утри стеклянной палочкой.
Η αδπωλομμα·	

Запишите уравнения реакций:

Вывод:			

Опыт 2. Взаимодействие формальдегида с фуксинсернистой кислотой

В пробирку поместите 2-3 капли формалина, добавьте 2 капли раствора фуксинсернистой кислоты, встряхните, отметьте изменение окраски.

Наблюдения:_____

Фуксинсернистая кислота (синоним реактив Шиффа) — реактив для качественного определения альдегидной группы органических соединений, открытый Хуго Шиффом (H. Schiff).

$$H_2N$$
 — $H_2SO_3 \Rightarrow H_2N$ — H_2N —

Реакция очень чувствительна (например, можно определить 1 мкг формальдегида). В то же время ароматические гидроксиальдегиды, глиоксаль, α и β-ненасыщенные альдегиды не дают окрашивание.

Все продукты взаимодействия, кроме продукта взаимодействия с формальдегидом, обесцвечиваются при воздействии на них растворами сильных кислот.

Вывод: При взаимодействии альдегидов с бесцветным раствором фуксинсернистой кислоты наблюдается появление красного окрашивания. Это происходит вследствие изменения хромофорной структуры трифенилметанового красителя – фуксина.

Опыт 3. Окисление альдегидов

а) Окисление альдегидов раствором Си(ОН)2

В пробирку 10 % раство сульфата мед	рра едкого и. Смесь на	натра. По		
Наблюдения: 	•		<u> </u>	
Запишите металла, соо ОВР:				
Вывод:				

а) Окисление альдегидов реактивом Феллинга

Подготовка реактива Феллинга: смещайте в пробирке равные объемы растворов сегнетовой соли и медного купороса $CuSO_4$ для Фелинга.

Вывод: б) Окисление альдегидов аммиачным раствором серебра (реакция «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствора аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно	К подготовленному р нагрейте до кипения.	еактиву	прилейте	раствор	формальде	егида и
б) Окисление альдегидов аммиачным раствором серебре (реакция «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. Вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.	•					
б) Окисление альдегидов аммиачным раствором серебра (реакция «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.	Запишите уравнение реа	кции:				
б) Окисление альдегидов аммиачным раствором серебра (реакция «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку. Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.						
б) Окисление альдегидов аммиачным раствором серебро (реакция «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. Евымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.						
б) Окисление альдегидов аммиачным раствором серебра (реакция «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.				0.)`	
Для получения «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.	Вывод:					
Для получения «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.						
Для получения «серебряного зеркала») Для получения «серебряного зеркала» хорошо вымойте пробирку Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.	б) Отакана а	un daaude			em con ou	aanaana
Сначала осторожно прокипятите в ней (1-2 мин) около 5 мл 10% раствора щелочи, затем промойте ее дистиллированной водой. В вымытую пробирку налейте 10 капель 2 % раствора нитрата серебра и прибавляйте по каплям при встряхивании 5 % раствор аммиака до тех пор, пока образовавшийся сначала осадок полностью не растворится Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.			<u> в аммиич</u>	<u>иным рис</u>	твором	сереора
Избыток аммиака в растворе снижает чувствительность реакции! К полученному раствору прибавьте 10 капель раствора формальдегида и осторожно нагрейте пробирку в пламени спиртовки. Медленно вращайте ее.	Сначала осторожно провраствора щелочи, затем вымытую пробирку налей прибавляйте по каплям прибавляйте по каплам прибавляйте по каплам провеждения промеждения провеждения провеждения промеждения провеждения провеждения промеждения провеждения провеждения промеждения промеждени	кипятите промой iте 10 ка ри встря	в ней (1 iте ее ди апель 2 % хивании 5	-2 мин) о стиллиров раствора 1 % раство	около 5 м занной во нитрата се р аммиака	ил 10% дой. В ребра и ц до тех
Наблюдения:	Избыток аммиака в раст полученному раствору пр	воре сни рибавьте	іжает чуво 10 капель	ствительно раствора	ость реак формальд	сции! К егида и
	Наблюдения:					

18

Запишите уравнение реакции:

Вывод:	
Опыт 3. Цветная реакция на ацетон с нитропруссидом натрия	•
На предметное стекло нанесите 2-3 капли 2 % растволитропруссида натрия, 4 капли воды и 2 капли водного растводетона. При добавлении 2 капель 10% раствора едкого натра сме	ра
крашивается в красный цвет, постепенно переходящий в оранжевый.	
Наблюдения:	
140люосния	
Прилейте 2-3 капли концентрированной уксусной кислоты, окрастриобретает вишнево-красный оттенок. Наблюдения:	– ска
	_
Цветная реакция с нитропруссидом натрия (проба Легаля) служ Цополнением к иодоформной пробе на ацетон (проба Либена) и широприменяется в клинической практике для открытия ацетона в моче (прахарной болезни— диабете).	КО
Вывод:	
Опыт 4. Иодоформная проба на ацетон	
(открытие ацетона путем перевода его в йодоформ) В пробирку поместите 3 капли раствора йода в йодиде калия прибавьте по каплям раствор NaOH до исчезновения бурой окрастода. К обесцвеченному раствору добавьте 1-3 капли ацетов стряхните. Наблюдения:	ски

Вывод:
Амины, азо- и диазосоединения
Опыт 1. Образование солей анилина (основные свойства анилина)
В пробирку наливают 2 мл воды и несколько капель (или манилина. После взбалтывания получают мутную жидкость — эмульси анилина в воде. Эмульсию разливают на 2 пробирки.
а) В первую пробирку добавляют концентрированную соляну кислоту по каплям, при встряхивании. Постепенно раствор становит
прозрачным.
Объясните причину:
Напишите уравнение реакции:
В пробирку с полученной солью приливают раствор гидрокси
натрия. Наблюдают помутнение жидкости.
Объясните причину:

Напишите суммарное уравнение реакции:

20

Напишите уравнение реакции:

б) Во вторую пробирку с эмульсией анилина прибавляют по каплян
разбавленную серную кислоту. Пробирку встряхивают и охлаждают
Наблюдают выпадение белого осадка трудно растворимого в вод
гидросульфата фениламмония. При добавлении раствора гидросульфит
натрия осадок растворяется и жидкость мутнеет.
Напишите уравнения реакции:
\sim 0/1.
Вывод:
Опыт 2. Сравнение основных свойств метиламина и анилина
Одну полоску красной лакмусовой бумаги смачивают водным
раствором метиламина, другую – водным раствором анилина
Фиксируют изменение цвета лакмусовой бумаги.
Наблюдения:
Напишите уравнения диссоциации:
пинишине урионения опсеоцииции.
Chaquina annagounia dannia nV upwiguniy ayung
Сравните справочные данные рК изученных аминов.
Вывод:

Опыт 3. Бромирование анилина

В пробирку наливают 3 мл воды и 4-5 г анилина, встряхивают, добавляют по каплям бромную воду.

Наблюдения:	
Напишите схему реакции:	
	$\sim O_{M_{II}}$
V	
Укажите электронные эффекты NH ₂ -	группы
III.	
Вывод:	
2,17	

Опыт 4. Получение ацетанилида (теоретич.)

В пробирку наливают 0,5 мл анилина и 2 мл воды, встряхивают. К полученной смеси добавляют 0,5 мл уксусного ангидрида. Встряхивают, разогревшуюся пробирку охлаждают водой. Выпадает белый осадок ацетанилида.

Напишите схему реакции:

В медицине ацетанилид известен под названием антифестирименялся ранее как средство от лихорадки.	дрин. О	Η
Вывод:		
		_
	1	
Опыт 5. Окисление анилина	HD.	
В пробирку наливают 1 мл воды и 3-4 капли анилина, взба	алтываю	Γ
смесь и добавляют к ней 1-2 мл хромовой смеси.		
Наблюдения:		_
Если в дальнейшем смесь нагреть, то конечным покисления анилина является краситель сложного строения — анилин», который используют для окрашивания тканей и пкрасящего слоя копировальной бумаги.	«черны	й

$$K_2$$
Сг $_2$ О $_7$ + K_2 SО $_4$ "черный анилин"

Вывод:			

Карбоновые кислоты и их производные

Опыт 1. Кислотные свойства уксусной кислоты

а) Изменение окраски индикаторов

Наблюдения:
Напишите уравнение диссоциации уксусной кислоты:
б) Взаимодействие уксусной кислоты с металлами
В пробирку наливают 2-3 мл уксусной кислоты и помещают туда же
немного металлического магния или цинка.
Наблюдения:
Напишите уравнение реакции: в) Взаимодействие уксусной кислоты с оксидом меди (II)
К 0,2 г оксида меди (II), помещенного в пробирку, прилейте 2-3 мл
уксусной кислоты, затем осторожно нагрейте пробирку. Обратите внимание на цвет раствора.
Наблюдения:
Iuonwoenux
Напишите уравнение реакции:
г) Взаимодействие уксусной кислоты с карбонатом натрия
В пробирку налейте 1-2 мл раствора уксусной кислоты и добавьте несколько крупинок карбоната натрия. К отверстию пробирки поднесите горящую лучинку. Наблюдения:

Напишите уравнение реакции:
Вывод:
Опыт 2. Получение этилацетата (уксусноэтилового эфира)
В сухую пробирку поместите порошок безводного ацетата натри (высота столбика вещества около 2 мм) и 3 капли этанола. Добавьте капли H_2SO_4 (конц.) и осторожно нагрейте над пламенем спиртовк Через несколько секунд появляется приятный освежающий запах.
Напишите уравнение реакции:
Вывод:

Опыт 3. Выделение жирных кислот из мыла и получение кальциевых солей

Возьмите приготовленный раствор мыла в воде.

а) В пробирку с раствором мыла добавьте 2 мл разбавленной серной кислоты. Происходит обменная реакция и выделяется жирная кислота, которая в воде не растворяется. Поэтому раствор становится мутным.

Нагрейте полученную смесь, а затем охладите. При нагревании жирные кислоты всплывают наверх, а при охлаждении они затвердевают.

Напишите уравнение реакции:

хлористого кальция. Энергично взболтайте. Образуется осадок кальциевых солей высших жирных кислот. Растворимы ли эти соли в
воде?
Наблюдения:
Напишите уравнение реакции:
Вывод:
Непредельные, ароматические и дикарбоновые кислоты
Опыт 1. Получение бензоата натрия, бензойной кислоты
В пробирку помещают 1-2 мл воды и несколько кристалликов
бензойной кислоты. Наблюдают, что бензойная кислота плохо
растворяется в воде. Добавляют туда же 1-2 мл раствора едкого натра.
Кристаллы бензойной кислоты растворяются. К полученному прозрачному раствору бензоата натрия
К полученному прозрачному раствору бензоата натрия (бензойнокислого натрия) добавляют несколько капель раствора
соляной кислоты Снова выпалает осалок бензойной кислоты
соляной кислоты. Снова выпадает осадок бензойной кислоты. Напишите уравнение реакиии:
соляной кислоты. Снова выпадает осадок бензойной кислоты. Напишите уравнение реакции:

Опыт 2. Получение кислых и средних солей щавелевой кислоты
К 2 мл (2 н.) раствора щавелевой кислоты прибавьте 1 мл (2 н.)
раствора едкого калия.
Наблюдения:
При дальнейшем добавлении щёлочи осадок растворяется с образованием средней калиевой соли щавелевой кислоты.
Напишите уравнения реакций:
Вывод:
Опыт 2. Окисление щавелевой кислоты
В пробирку помещают несколько кристаллов щавелевой кислоты, добавляют $0,5$ мл разбавленного раствора серной кислоты и $0,5$ мл раствора $KMnO_4$. Осторожно нагревают смесь до начала кипения.
Наблюдения:
1140.110 0 C.11.31.
Напишите уравнение реакции:
Вывод:

Окси- и оксокислоты

Опыт 1. Качественная реакция на ά-оксикислоты

В пробирку поместите 5 капель раствора фенола и 1 каплю раствора $FeCl_3$. Появится фиолетовое окрашивание. Затем добавьте несколько капель молочной кислоты. Отметьте изменение цвета раствора.

Наблюдения:	
Вывод:	

Опыт 2. Изучение строения молекулы винной кислоты а) Доказательство наличия двух карбоксильных групп в винной кислоте

В пробирку поместите 2 капли 15% раствора винной кислоты, 2 капли 5% раствора КОН, встряхните. Постепенно начинает образовываться белый кристаллический осадок кислой калиевой соли винной кислоты. Если осадок не выпадает, то потрите внутреннюю стенку пробирки стеклянной палочкой. Добавьте в пробирку 2-3 капли 10% раствора NaOH. Кристаллический осадок постепенно растворяется, так как образуется хорошо растворимая в воде смешанная калиевонатриевая соль винной кислоты — сегнетова соль. Раствор сохраните для следующего опыта.

Наблюдения:		
~())		

Напишите схемы реакций образования гидротартрата калия и тартрата калия-натрия:

COOK
CH - OH
+ NaOH → CH - OH
СООН
Вывод:
б) Доказательство наличия гидроксильных групп в винной кислоте
В две пробирки поместите по 2 капли 2% раствора сульфата меди (II) и по 2 капли 10% раствора NaOH. В 1-ю пробирку добавьте раствор тартрата калия-натрия, полученный в предыдущем опыте. Осадок гидроксида меди (II) растворяется. Полученный раствор имеет синюю окраску. Он носит название <i>реактива Фелинга</i> и используется для обнаружения альдегидов. Жидкости в обеих пробирках нагрейте до кипения. В 1-й пробирке окраска не изменится, во 2-й — голубой осадок гидроксида меди (II) превращается в оксид меди (II) черного цвета.
Наблюдения:
Наличие, какого структурного фрагмента обуславливает взаимодействие тартрата калия-натрия с гидроксидом меди (II)? Объясните, почему при нагревании не изменяется окраска содержимого в 1-й пробирке и изменяется во 2-й?
Напишите схему реакции:
COOK CH - OH CH - OH COONa COONa

Опыт 3. Растворимость в воде карбоновых кислот и их солей

Несколько капель или кристалликов (около 0,1 г) каждой из исследуемых кислот: уксусной, стеариновой, трихлоруксусной, щавелевой, молочной, винной, лимонной взболтайте с 1-2 мл воды в отдельной пробирке. Если кислота не растворяется в воде при комнатной температуре, смесь нагрейте. Для всех параллельных опытов возьмите примерно одинаковые количества кислоты и воды. Охладите нагретые смеси и отметьте, выделяются ли снова кристаллы кислоты, растворившейся при нагревании. Полученные водные растворы кислот используйте для следующего опыта.

Наблюдения:	
Вывод (какая кислота плохо расп	пворима и почему?):
	N.

Опыт 4. Сравнение степени ионизации кислот

Испытайте действие на индикаторную бумагу водных растворов различных кислот, полученных в предыдущем опыте (растворы должны быть примерно одинаковой концентрации). Для этого проведите по сухой индикаторной бумаге «конго» черту чистой стеклянной палочкой, смоченной каждым раствором. Получаются полоски различного цвета и разной интенсивности окраски.

Напишите уравнения диссоциации исследуемых кислот:

Расположите исследуемые кислоты в ряд по возрастающей степени кислотности (сверьте ваши результаты со справочными данными рК):
Вывод:
Vraepowy
Углеводы
Опыт 1. Доказательство наличия гидроксильных групп в глюкозе
В пробирку поместите 1 мл раствора D-глюкозы, 1 мл 10 % раствора гидроксида натрия и добавьте 0,5 мл 2 % раствора сульфатмеди (II).
Наблюдения:
11uomoochum.
OK
Напишите уравнение реакции:

Вывод:	
Опыт 2. Восстановительные свойст	<u>гва глюкозы</u>
а) реакция с реактивом Фелинга	
Поместите в пробирку 0,5 мл раствора Фели	нга и добавьте 1 м.
раствора глюкозы. Держа пробирку наклонно, осто	
Наблюдения:	
Какая таутомерная форма глюкозы обладает в	осстановительным
свойствами?	
Напишите уравнение реакции:	
б) реакция серебряного зеркала	
В тщательно вымытой пробирке подготовьте оксида серебра: к 3-4 мл 1 % раствора нитрата с каплям при встряхивании 5 % раствор аммиака, вначале осадок, полностью растворится. Разделите на две части. К одной из них прилейте 1 – 1,5 мл 1 а к другой 1 – 1,5 мл 1% раствора фруктозы. Держ осторожно нагрейте.	серебра прибавьте по пока образующийся полученный раством раством раством раством раством раством раствора глюкозы
Наблюдения:	

Напишите схему реакции:
Почему раствор фруктозы также способен восстанавливать аммиачный раствор серебра? Приведите схему реакции
эпимеризации:
Вывод:
Опыт 3. Восстановительные свойства дисахаридов
Налейте в три пробирки по 1 мл растворов дисахаридов: в первую - сахарозы, во вторую – лактозы, в третью – мальтозы. Добавьте каждую из них по 2 мл реактива Фелинга и нагрейте смеси до кипения.
Наблюдения в каждой пробирке:
Какие из дисахаридов являются восстанавливающими?
Напишите уравнения реакций окисления дисахаридов:

Вывод:	

Опыт 4. Кислотный гидролиз сахарозы

Налейте в пробирку 3-4 мл раствора сахарозы и 10-15 капель 10% серной кислоты. Смесь нагрейте в пламени спиртовки и прокипятите 3-4 мин. Охладите пробирку и нейтрализуйте содержимое 10% раствором щёлочи (рН контролируйте с помощью универсальной индикаторной бумаги). Затем добавьте в пробирку 1 мл жидкости Фелинга и нагрейте смесь до кипения.

Наблюдения:		
700		

Напишите уравнения реакции (реакцию гидролиза сахарозы и последующего окисления продуктов реакции):

Поясните различия в свойствах сахарозы и «инертного» сахара:
Вывод:
Опыт 5. Кислотный гидролиз крахмала
Налейте в пробирку 1-2 мл 0,5% раствора крахмала и 10-15 капель 10% раствора серной кислоты. Нагрейте раствор в течение 5-7 мин. Затем нейтрализуйте 10% раствором щёлочи (с помощью универсальной индикаторной бумажки), прибавьте 1 мл жидкости Фелинга и нагрейте смесь до кипения. Что наблюдается? Впадает ли красный осадок оксида меди (I).
Напишите уравнение реакции гидролиза крахмала, укажите промежуточные и конечные продукты:
Вывод:
Опыт 6. Качественная реакции на крахмал
а) К 1-2 мл крахмального клейстера добавьте 1-2 капли раствора йода. Полученную тёмно-синюю жидкость нагрейте, а затем вновь охладите.
Наблюдения:
Чем обусловлено изменение окраски? Ответ поясните исходя из строения образующегося комплекса

б) В другую пробирку раствора крахмала (1-2 мл) добавьте 1 мл этилового спирта.

Наблюдения:		 	
Вывод:			

Аминокислоты и белки

Опыт 1. Биуретовая реакция (реакция Пиотровского)

В щелочной среде белки, полипептиды дают фиолетовое или красно-фиолетовое окрашивание с сульфатом меди. Реакция обусловлена присутствием в белках пептидных связей. Интенсивность окраски зависит от количества пептидных связей в молекуле и количества медной соли. Свое название реакция получила от производного мочевины – биурета, который дает эту реакцию. Биурет образуется при нагревания мочевины с отщеплением от нее аммиака:

Две молекулы диенольной формы биурета взаимодействуют с образующимся в щелочной среде гидроксидом меди (II). Продуктом реакции является комплексное соединение (окрашенная меднонатриевая соль биурета), в котором координационные связи образованы за счет электронных пар атомов азота иминных групп:

медно-натриевый комплекс

Подобным образом построены окрашенные медно-натриевые соли пептидов и белков. Биуретовую реакцию дают аспарагин (амид аспарагиновой кислоты) и аминокислоты гистидин, серии, треонин.

В одну пробирку наливают 1 мл раствора яичного или растительного белка, в другую насыпают 20-30 мг мочевины и нагревают на спиртовке до исчезновения запаха аммиака и охлаждают. В обе пробирки добавляют по 10 капель 10% раствора гидроксида

натрия и по 2 капли 1% раствора сульфата меди (II). В обеих пробирках появляется сине-фиолетовое или красно-фиолетовое окрашивание.

Наблюдения:		
Вывод:	 	

Опыт 2. Нингидриновая реакция

Белки, нагревании полипептиды аминокислоты при нингидрином сине-фиолетовое окрашивание. дают синее И обусловлена Нингидриноваяреакция наличием α-аминокислот И является одной из наиболее чувствительных для обнаружения αаминогрупп.

Сущность реакции заключается в том, что α-аминокислоты и пептиды, реагируя с нингидрином, подвергаются окислительному дезаминированию и декарбоксилированию:

Восстановленный нингидрин взаимодействует с аммиаком и второй молекулой нингидрина, в результате чего образуется сложное окрашенное соединение мурексидного строения:

В две пробирки наливают: в одну 10 капель раствора яичного или растительного белка, в другую 10 капель 0,1% раствора глицина. В каждую из них добавляют по 2-3 капли 0,1% раствора нингидрина и нагревают.

Наблюдения:				
Вывод:				

Опыт 3. Ксантопротеиновая реакция (реакция Мульдера)

При нагревании растворов большинства белков с концентрированной азотной кислотой образуется желтое окрашивание, переходящее в щелочном растворе в оранжевое.

Реакция обусловлена присутствием циклических аминокислот, которые при взаимодействии с азотной кислотой образуют нитропроизводные желтого цвета, например:

$$NH_2$$
 NH_2 NH_4 NH_4

Продукты нитрования циклических аминокислот, реагируя с едким натром или гидроксидом аммония, образуют соответствующие соли, имеющие оранжевую окраску:

В пробирку наливают 1 мл яичного или растительного белка, добавляют 3-5 капель концентрированной азотной кислоты и нагревают. После охлаждения к смеси добавляют избыток концентрированного раствора аммиака или 30% раствора гидроксида натрия.

Опыт 4. Реакция Фоля на содержащие серу аминокислоты

Нагревание белка со щелочью и плюмбитом приводит к появлению бурого или черного осадка. Реакция обусловлена наличием в белке содержащих серу аминокислот, которые под действием щелочи

разрушаются с образованием сульфида щелочного металла; последний с	C
плюмбитом дает осадок сульфида свинца:	

$$\begin{array}{c} \text{HS-CH}_2\text{-CH--COOH} \ + \ 2 \, \text{NaOH} \longrightarrow & \text{HO--CH}_2\text{-CH--COOH} \ + \ \text{Na}_2\text{S} \ + \ \text{H}_2\text{O} \\ \mid & \mid & \mid & \text{NH}_2 \\ \text{пистеин} & \text{серин} \end{array}$$

$$\begin{array}{c} \text{NH}_2 \\ \text{серин} \end{array}$$

$$\begin{array}{c} \text{NH}_2 \\ \text{Серин} \end{array}$$

$$\begin{array}{c} \text{Pb}(\text{CH}_3\text{COO})_2 + 4 \, \text{NaOH} \longrightarrow \text{Na}_2[\text{Pb}(\text{OH})_4] \\ \text{Na}_2[\text{Pb}(\text{OH})_4] + \text{Na}_2\text{S} \longrightarrow \text{PbS} \downarrow + 4 \, \text{NaOH} \end{array}$$

К 1 мл раствора белка добавляют 10 капель 30 % раствора гидроксида натрия и 1 каплю 5% раствора ацетата свинца.

	17/0,
Наблюдения:	
Вывод:	
Опыт 5. Денатурация белка	
а) Свертывание белков при нагревании	
В пробирку наливают 1 мл раствора белка и нагревал горелки до кипения. <i>Наблюдения:</i>	
Поясните причину денатурации	
б) Осаждение белков солями тяжелых металло	<u>96</u>
В две пробирки помещают по 1 мл раствора белка. В с пробирку добавляют 1 мл раствора сульфата меди (II), в друраствора ацетата свинца. Наблюдения:	
Поясните причину денатурации	
в) Осаждение белков дегидратирующими агент	
В пробирку поместите 1 мл раствора яичного белка, до	оавьте 0,3 мл
ацетона. Наблюденца:	
Наблюдения:	
110лените причину оснитуриции	

PEILO MICHAILIN O CHONNING CHO