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Описаны все насыщенные разрешимые формации ,F  у которых все минимальные не F -группы разрешимы. Всякой 
локальной формации ( )LF f=F  такой, что ( ( ))( ) f pf p π=S  для всех ( )p∈π F  и ( )f p =∅  в противном случае, был 

поставлен в соответствие ориентированный граф ( )fΓ ,F  без петель, вершинами которого являются простые числа из 
( )π ,F  и ( )i jp p,  – ребро ( )fΓ ,F  тогда и только тогда, когда ( ( )).j ip f p∈π  С помощью графов такого типа были опи-

саны все наследственные разрешимые формации с условием Шеметкова. 
 
Ключевые слова: минимальная простая группа, минимальная не F -группа, наследственная локальная формация, фор-
мация с условием Шеметкова, связанный с формацией граф. 
 
All saturated soluble formations whose all s-critical groups are soluble were described. With every local formation ( )LF f= ,F  
such that ( ( ))( ) f pf p π=S  for all ( )p∈π F  and ( )f p =∅  otherwise, was associated directed graph ( )fΓ ,F  without loops 

whose vertices are prime numbers from ( )π F  and ( )i jp p,  is an edge of ( )fΓ ,F  if and only if ( ( )).j ip f p∈π  With the help 

of such kind’s graphs all hereditary soluble formations with the Shemetkov property were described. 
 
Keywords: minimal simple group, s-critical group, hereditary local formation, formation with the Shemetkov property, graph 
associated with formation. 

 
 

Introduction 
All considered groups are finite. Recall that S  

( )πS  is the class of all soluble groups (π -groups). 
Let F  be a class of groups. A group G  is called  
s-critical for F  (or minimal non- F -group) if G  is 
not in F  but all proper subgroups of G  are in .F  
The set of all s-critical groups for F  is denoted by 

( ).FM  Recall that ( )Gπ  is the set of all prime divi-
sors of G| |  for a group G  and ( )π F  is the set of all 
prime divisors of orders of groups from F  for a 
class of groups .F   

In 1924 [1] O.Yu. Shmidt described all s-cri-
tical groups for N  where N  is the formation of all 
nilpotent groups. These groups are called Shmidt 
groups. In 1951 [2] N. Ito showed that all s-critical 
groups for the class of p-nilpotent groups are also 
Shmidt groups. L.A. Shemetkov in the Kourovka 
Notebook [3] posed the following problem: “Find all 
local hereditary formations F  of finite groups such 
that every s-critical group for F  is either a cyclic 
group of prime order or a Shmidt group”. Such for-
mations are called formations with the Shemetkov 
property or briefly S -formations.  

In the soluble universe this problem was solved 
in 1984 [4] by V.N. Semenchuk and A.F. Vasil’ev. 
In particular there was shown that F  is a saturated 

hereditary S -formation if and only if ( )LF f=F  
where f  is a full local definition of F  such that 

( ( ))( ) f pf p π=S  for all ( )p∈π F  and ( )f p = ∅  
otherwise. Note that A.N. Skiba in 1990 [5] showed 
that a hereditary soluble S -formation is saturated. 

But in the universe of all groups formations 
that are S -formations in the soluble universe may not 
be S -formations. For example let ( )LF f=F  where 

{2 3 5}( )f p , ,=S  for {2 3 5}p∈ , ,  and ( )f p = ∅  oth-
erwise. It is easy to see that the alternating group of 
degree 5 is s-critical for .F   

In the general case the problem was solved in-
dependently by A. Ballester-Bolinshes and M.D. Pe-
rez-Ramos [6] and S.F. Kamornikov [8]. According 
to the corollary 2.4.23 [7] a hereditary local forma-
tion F  is S -formation if and only if  

1) ( )LF f=F  where f  is a full local defini-
tion of F  such that ( ( ))( ) f pf p π=G  for all ( )p∈π F  
and ( )f p = ∅  otherwise and  

2) ( )FM  contains only solvable groups.  
But the second condition for an arbitrary he-

reditary local formation is hard to verify. That is 
why in [7, p. 117] the following question was posed: 
“Describe all hereditary local formation F  with 
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( ) ⊆F SM ”. Theorem A gives the answer for this 
question in case when F  is a soluble formation.  

Theorem A. Let F  be a local soluble forma-
tion. Then ( ) ⊆F SM  if and only if F  does not 
contain the following local subformations:  

1( ) ( )p LF f=M  where p  is a prime and  
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2 ( ) ( )p LF f=M  where p is an odd prime and  
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3 ( ) ( )p LF f=M  where p  is a prime such that 
2 1 0 mod 5p + ≡  and  

 

2

2
3 30

2

3

1 ,
2

(2) ( 1) \{2},
( )

( ) 1 0 mod16 2,
(3) 1 0 mod16 2,

\ ( );

p if q p

if q p
f q

S Z if p and q
if p and q
if q p p

⎧ −⎛ ⎞ =⎜ ⎟⎪ ⎝ ⎠⎪
⎪ ∈π −⎪= ⎨ , − ≡ =⎪
⎪ − ≡ =
⎪
∅ ∈ π −⎪⎩

A

A

A

QR

P

 

 

4 ( )LF f=M  where  
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5 ( ) ( )p LF f=M  where p is an odd prime and  
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 In this work a criterion of hereditary soluble 
formation to be a S -formation only in terms of its 
local definition is given.  

Let Z  denote the class of Sylow tower groups. 
T. Hawkes [9] described all groups G  such that 
G∈/ Z  and all proper subgroups and epimorphic 
images of G  belong to .Z  In his description he as-
sociated with every group G  a directed graph whose 
vertices are elements from ( )Gπ  and 1( p , 2 )p  is 
the edge for 1 2 ( )p p G, ∈π  if and only if 

1 12 ( ( ))p pp G O G′ ,∈ π / .  An analogous idea is used for 

description of all solvable S -formations.  

Let ( )LF f=F  be a local hereditary formation 
where f  is a full local definition of F  such that 

( ( ))( ) f pf p π=S  for all ( )p∈π F  and ( )f p = ∅  
otherwise. Let associate with F  directed graph 

( )fΓ ,F  without loops whose vertices are prime 
numbers from ( )π F  and ( )i jp p,  is an edge of 

( )fΓ ,F  for i jp p≠ if and only if ( ( )).j ip f p∈π  
For example ( )fΓ ,N  is the set of isolated vertices 
where ( ) pf p = .S  All considered graphs are as-
sumed to be subgraphs of the full directed graph 
without loops on .P   

Let p  be a prime and 1( )pΓ  be a graph whose 
set of vertices is 2(2(2 1))pπ −  and edges are (2 )q,  
for (2 1)pq∈π −  and ( 2)q,  for 2(2 1)pp∈π − .   

Let p  be a an odd prime and 2 ( )pΓ  be a graph 
whose set of vertices is 2(3(3 1))pπ −  and edges are 

(3 )q,  for 3 1
2( )pp −∈π ,  ( 2)q,  for 2(3 1) \{2}pp∈π −  

and (2 3), .   
Let p  be a a prime such that 2 1 0 mod 5p + ≡  

and 3 ( )pΓ  be a graph whose set of vertices is 
2( ( 1))p pπ −  and edges are ( )p q,  for 1

2( )pq −∈π ,  

( 2)q,  for 2( 1) \{2}q p∈π −  and (2 3), .   
Let 4Γ  be a graph whose set of vertices is 

{2 3 13}, ,  and edges are (13 3), ,  (3,2) and (2,3).  
Let p  be an odd prime and 5 ( )pΓ  be a graph 

whose set of vertices is 2(2(2 1)(2 1))p pπ + −  and 
edges are (2 )q,  for (2 1)pq∈π −  and ( 2)q,  for 

2((2 1)(2 1))p pp∈π + − .   
Theorem B. Let F  be a hereditary soluble for-

mation. Then the following statements are equivalent:  
(1) F  is formation with the Shemetkov property; 

 (2) ( )LF f=F  where f is a full local definition 
of F  such that ( ( ))( ) f pf p π=S  for all ( )p∈π F  and 

( )f p = ∅  otherwise and ( )fΓ ,F  does not contain 
graphs from 1 2 3 4 5{Г ( ) ( ) ( ) ( )}q q q q, Γ , Γ , Γ , Γ  as 
subgraphs.  
 

1 Preliminaries 
Standard notation and terminology are used. If 

necessary it can be found in [7], [10]. For π = ∅  we 
assume that π = ∅.S   

Recall that for a class of group X   
( )G H and epimorphism from H onto G= | ∃ ∈QX X  
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Class 0= RF F  and = QF F  is called forma-
tion. Function f :  { }formations→P  is called for-
mation function. Formation F  is called saturated if 
from ( )G G/ Φ ∈F  it follows that G∈ .F  According 
to the well known Gashutz – Lubeseder – Schmid 
Theorem saturated formations are exactly local for-
mations, i. e. formations ( )LF f=F  defined by a 
formation function f :   

( ) (LF f G= |  if H K/  is a chief factor of G  
and ( )p H K∈π /  then ( ) ( ))GG C H K f p/ / ∈ .  

Let f  and g  be local definitions of formation 
.F  Then h  is also definition of F  where ( )h p =  

( ) ( )f p g p= ∩  for all primes p.  It means that 
every formation has the minimal local definition. If 
f  is the minimal local definition of F  and 

( )LF h=H  then ⊆F H  if and only if ( ) ( )f p h p⊆  
for all primes p.   

It is known that if f  is a local definition of F  
then F  is also a local definition of F  where 

( ) ( )pF p f p=N  for all primes p.  This local defini-
tion is called full.  

Lemma 1.1. Let G  be a simple non-abelian 
group, F  be a local formation and f  be a local 
definition of .F  Then G∈ F  if and only if 

( )G f p∈  for all ( )p G∈π .   
Proof. Follows from the definition of local 

formation.  
Lemma 1.2 [10, p. 272]. Let X  be a class of 

groups. Then the smallest formation containing X  
is 0 .XQR   

It is easy to see that if G G N, / ∈X  then 

0 0( { })G N= / .X X\QR QR  
Note that the formation generated by cyclic group 

mZ  is the formation ( )mA  of all abelian groups of 
the exponent dividing m.   

Lemma 1.3 [13, p. 14]. Let X  be a class of 
groups. The smallest local formation that contains 
X  is ( )LF f  where 

0( ) ( ( ) )p pf p H O H H′,= / | ∈XQR  
for ( )p∈π X  and ( )f p = ∅  otherwise and f  is 
the minimal local definition of .F    

Lemma 1.4 [13, p. 14]. Let X  be a class of 
groups. The smallest local hereditary formation that 
contains X  is ( )LF f  where  

0( ) ( ( ) )p pf p H O H H′,= / | ∈XSQR  
for ( )p∈π X  and ( )f p = ∅  otherwise and f  is 
the minimal local definition of .F  

The following theorems give descriptions of 
minimal simple groups:  

Theorem 1.5. (Thompson [11, p. 190]). All 
minimal simple non-abelian groups are:  

(1) (2 2 )pPSL ,  where p  is a prime; 
(2) (2 3 )pPSL ,  where p  is an odd prime; 
(3) (2 )PSL p,  where 5p >  is a prime and 

2 1 0 mod 5;p + ≡   
(4) (2 )pSz  where p  is an odd prime; 
(5) (3 3)PSL , .    
Theorem 1.6 (Dickson [11, p. 213]). Any sub-

group of (2 )nPSL p,  is isomorphic to one of the 
following groups.  

( )a  Elementary abelian p-groups.  
( )b  Cyclic groups mZ  of order m,  where m  

is a divisor of ( 1)np d± /  and ( 1 2)d p= − , .   
( )c  Dihedral groups of order 2m,  where m  is 

defined in ( )b .   
( )d  Alternating group 4A  if 2p >  or 2p =  

and 0 mod 2n ≡ .   
( )e  Symmetric group 4S  if 2 1 mod 16np ≡ .   
( )f  Alternating group 5A  if 5p =  or 

2 1 mod 5np ≡ .   
( )g  A semi-direct product of an elementary 

abelian p -group of order mp  and a cyclic group of 
order k,  where k  is a divisor of 1mp −  and 1np − .   

( )h  The group (2 )mPSL p,  if m  is a divisor of 
n, or the group (2 )mPGL p,  if 2m  is a divisor of n. 

Let (2 2 )pG PSL ,  be a minimal simple group. 
Note that subgroups of types (f) and (h) are not 
proper subgroups of G.  Let H N C=  be a sub-
group of type (g). Then it is straightforward to check 
that ( )HC N N= .   

Theorem 1.7 (Suzuki [12]). Any subgroup of 
( )G Sz q  is isomorphic to a subgroup of one of the 

following groups where 2 pq = .   
( )a  Frobenius groups of order 2 ( 1)q q − ,  

H QK= ,  Q H ,  ( )qQ Syl H∈  and K  is cyclic of 
order 1q − .   

( )b  Dihedral groups of order ( 1)q q − .   
( )c  Cyclic groups iA ,  1 2i = ,  of orders 

1q r± +  where 2 2r q= .   
( )d  ( )i G iB N A=  of order 4( 1)q r± + .   
(e) ( )Sz s  if q  is a power of s.  
 
2 Main Results 
2.1 Proof of the Theorem A 
Proposition 2.1. Let F  be a local formation of 

soluble groups. Then all s-critical groups for F  are 
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soluble if and only if all minimal simple non-abelian 
groups are not s-critical for .F   

Proof. Let F  be a local formation of soluble 
groups and G  be an unsolvable s-critical group for 
.F  Since F  is local formation, ( )G G/ Φ  is also s-

critical for .F  So we can assume that ( ) 1GΦ = .  
Now there is the unique minimal normal subgroup N 
of G. If N G≠  then groups N  and G N/  are solu-
ble. Hence G is soluble a contradiction. Now 
G N= .  It means that G  is a minimal simple non-
abelian group.   

Let G  be a group, F  and H  be local forma-
tions such that ( )G∈ FM  and ( )G∈ .HM  Then it 
is clear that ( )G∈ ∩ .FHM  It means that for every 
group G  if ( )G∈ FM  for some formation F  then 
there is the smallest local formation K  such that 

( )G∈ .KM   
Proposition 2.2. Let G be a simple non-abelian 

group and  
1 0

1

( ) ( ( ) )

( ) ( ) ;
p pf p H O H H G

for p G and f p otherwise
′,= / | <

∈π = ∅

QR
 

2 0

2

( ) ( ( ) )

( ) ( ) .
p pf p H O H H G

for p G and f p otherwise
′,= / | <

∈π = ∅

SQR
 

Then 1( )LF f  and 2( )LF f  are the smallest forma-
tion and hereditary formation among local forma-
tions F  with ( )G∈ .FM   

Proof. Let 2f f= .  According to lemma 1.4 
( )LF f  is the smallest local hereditary formation 

containing all proper subgroups of G.  
Let us show that ( )G LF f∈ ./  Assume that 

( )G LF f∈ .  Then ( )G f p∈  for some ( )p G∈π .  It 
means that ( )G Sϕ  is a homomorphic image of a 
subgroup S of a direct product H of groups 

1 nH … H, ,  from ( ( ) )p pH O H H G′,/ | < .S  Without 
loose of generality one may assume that S is the 
minimal subgroup with this property. Let iρ  be a 
projection of S on iH .  Assume that iS ker ker= ϕ ρ  
for all 1i … n= , , .  Then 

i i i

G S ker
ker ker ker ker ker ker

/ ϕ =
= ϕ ρ / ϕ ρ / ρ ∩ ϕ

 

for all 1i … n= , , .  Since iker Hρ ≤ ,  we see iker Sρ =  
for all 1i … n= , , .  A contradiction. Now iker ker Sϕ ρ <  
for some i.  So iker kerρ ⊆ ϕ.  It means that G  is a a 
homomorphic image of a subgroup of G, a contra-
diction. Thus ( )G∈ .FM   

If 1f f=  the proof is analogues.   
Let ( )LF f=F  be a local formation of soluble 

groups and G be a minimal simple non-abelian 
group. Let ( )LF h=H  be a minimal local formation 
with ( )G∈ .HM  Since ( )G∈ ,SM  it is clear that 

H  is soluble. So ( )G∈ FM  if and only if ⊆ .FH  
Proposition 2.2 gives us the minimal local definition 
h of .H  So it is sufficient to verify that 

( ) ( )h p f p⊆  for all primes p.   
Since all minimal simple non-abelian groups 

are well described it is sufficient to calculate h  for 
all this groups. With the help of theorems 1.5, 1.6 
and 1.7 we can do that.  
 Corollary 2.3. Let F  be a local formation of 
soluble groups, p  be a prime and 1( ) ( )p LF f=M  
where  

2

2

2,(2 1)
( ) (2) (2 1),

\ (2(2 1)).

p

p

p

if q
f q if q

if q

⎧ =−
⎪= ∈π −⎨
⎪∅ ∈ π −⎩

A

A

P
 

Then (2 2 ) ( )pPSL , ∈ FM  if and only if 1( )p ⊆ .FM   
Proof. Let us calculate minimal local formation 

F  with (2 2 ) ( )pPSL , ∈ .FM  It is possible to do this 
with the help of proposition 2.2. Let (2 2 )pG PSL , .  
Then G  has subgroups of types (a), (b), (c), (g), (d) 
and (f) from theorem 1.6. But the last two cases are 
possible only for 2p = .  In this case subgroups of 
type (g) and (d) coincide and subgroup of type (f) is 
G  itself.  

For all ( )q G∈π  and subgroups H  of types 
(a) and (b) ( ) 1q qH O H′,/ .   

For all subgroups H of type (c) 2 2 ( ) 1H O H′,/ .  
Now let H  be a subgroup of type (c) that is isomor-
phic to the dihedral group of order 2(2 1)p +  
(2(2 1)).p −  Then 2( )q qH O H Z′,/  for all  

(2 1)pq∈π +  ( (2 1)).pq∈π −  
Let 

2 1pH M Z
−

 where M  is an elementary 

abelian subgroup of order 2 p  be a subgroup of type 
(g). Then 2 2 2 1

( ) pH O H Z′, −
/  and ( ) 1q qH O H′,/  

for all (2 1)pq∈π − .  
 The proof of the following two corollaries is 
analogous.  
 Corollary 2.4. Let F  be a local formation of 
soluble groups, p be an odd prime and 

2 ( ) ( )p LF f=M  where  

2

2

3 1 3,
2

( ) (3) 2,
(2) (3 1) \{2},

\ (3(3 1)).

p

p

p

if q

f q if q
if q
if q

⎧ ⎛ ⎞−
=⎪ ⎜ ⎟

⎝ ⎠⎪⎪= =⎨
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⎪∅ ∈ π −⎩
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A
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Then (2 3 ) ( )pPSL , ∈ FM  if and only if 2 ( )p ⊆ .FM   
 Corollary 2.5. Let F  be a local formation of 
soluble groups, 5p >  be a prime such that 

2 1 0 mod 5p + ≡  and 3 ( ) ( )p LF f=M  where  



V.I. Murashka 
 

                 Проблемы физики, математики и техники, № 1 (22), 2015 86 

2

2
3 30

2

3

1 ,
2

(2) ( 1) \{2},
( )

( ) 1 0 16 2,
(3) 1 0 16 2,

\ ( ).

p if q p

if q p
f q

S Z if p mod and q
if p mod and q
if q p p

⎧ −⎛ ⎞ =⎜ ⎟⎪ ⎝ ⎠⎪
⎪ ∈π −⎪= ⎨ , − ≡ =⎪
⎪ − ≡ =
⎪
∅ ∈ π −⎪⎩

A

A

A

P

QR
 

Then (2 ) ( )PSL p, ∈ FM  if and only if 3 ( )p ⊆ .FM   
 Corollary 2.6. Let F  be a local formation of 
soluble groups and 4 ( )LF f=M  where  

8 160

3 30

(3) 13,
( (2 3) (2 3) ) 3,

( )
( ) 2,

{2,3,13}.

if q
GL SL Z Q SD if q
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A

QR
QR

Then (3 3) ( )PSL , ∈ FM  if and only if 4 ⊆ .M F   
Proof. Let us calculate minimal local formation 

F  with (3 3) ( )PSL , ∈ .FM  It is possible to do it 
with the help of proposition 2.2. Let (3 3)G PSL , .  
Then G  has 3 families of isomorphic maximal sub-
groups 13 3Z Z ,  the symmetric group 4S  of degree 4 
and the general affine group 9(2 3) (2 3)GA E GL, = ,  
where 9 (2 3) 9 3 3( )GAE C E Z Z,= ×  is a minimal nor-
mal subgroup of (2 3)GA , .   

13 3 13 13 13 3 3

13 3 3 3 13 3
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Z Z O Z Z Z
Z Z O Z Z

′,

′,

/ ,

/
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′,
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, / , ,
 

All maximal subgroups of (2 3)GA ,  are isomorphic 
to (2 3)GL ,  or to 9 iE M ,  1 2 3i = , , ,  where iM  is a 
maximal subgroup of (2 3)GL , .  So 

8 2 3
1 16 1M SD a x a x xax a= , | = = , =  

is the semidihedral group of order 16; 2 (2 3)M SL , ;  

3 12M D  is the dihedral group of order 12.  
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( )
( ) (2 3),

E M O E M Z
E M O E M M SL

′,

′,

/ ,

/ ,
 

9 3 2 2 9 3

9 3 3 3 9 3 2 2

( ) 1
( ) .

E M O E M
E M O E M Z Z

′,

′,

/ ,

/ ×
 

Among maximal subgroups of 9 16E SD  there are 

9 8E Z ,  9 8E D  and 9E Q  where 8D  and Q  

are the dihedral group of order 8 and the quaternion 
group.  
 

9 8 3 3 9 8 8

9 8 3 3 9 8 8

9 3 3 9

( )
( )
( ) .

E Z O E Z Z
E D O E D D

E Q O E Q Q

′,

′,

′,

/ ,

/ ,

/

 

 

Note that 2
16 8SD a D/ .  It is not difficult to cal-

culate that for all other subgroups H ,  ( )p pH O H′,/  
is the homomorphic image of ( )p pK O K′,/  for some 
considered subgroup K. It means the generating sets 
of (2) (3)f f,  and (3)f  have been calculated.  

 

Corollary 2.7. Let F  be a local formation of 
soluble groups, p be an odd prime and 5 ( )p =M  

( )LF f=  where  

2

2

(2 1) 2,
(4) (2 1)

( )
(2) (2 1),

\ (2(2 1)(2 1)).

p

p

p

p p

if q
if q

f q
if q
if q

⎧ − =
⎪ ∈π + ,⎪= ⎨

∈π −⎪
⎪∅ ∈ π + −⎩

A

A

A

P

 

 

Then (2 ) ( )pSz ∈M F  if and only if 5 ( )p ⊆ .M F   
Proof. Let us calculate minimal local formation 

F  with (2 ) ( )pSz ∈ .M F  One can do it with the help 
of proposition 2.2. Let (2 )pG Sz .  Since p is a 
prime it is necessary to consider only four cases 
from theorem 1.7.  

Let H be a Frobenius group of order 22 (2 1)p p − .  
Then 2 2 2 1

( ) pH O H Z′, −
/  and ( ) 1q qH O H′,/  for 

all (2 1)pq∈π − .   
Let H be the dihedral group of order 2 (2 1)p p − .  

Then 2 2 ( ) 1H O H′,/  and 2( )q qH O H Z′,/  for all 

(2 1)pq∈π − .   
Let H  be the cyclic group of order 2 1p r± +  

where 2 12 pr += .  Then ( ) 1q qH O H′,/  for all 
( )q H∈π .   
Let ( )GB N H= .  Then 2 2 ( ) 1B O B′,/  and 

4( )q qB O B Z′,/  for all ( ) \{2}q H∈π .  Note that 
2(2 1 2 1) 1p p+ , − = .    

Now theorem A follows from corollaries 2.3–
2.7.  

 
2.2 Proof of the theorem B 
From theorem A follows  
Proposition 2.8. Let ( )LF f=F  be a forma-

tion and ( ( ))( ) f pf p π= .S  Then:  

1( )pΓ  is subgraph of ( )fΓ ,F  if and only if 
(2 2 ) ( )pPSL , ∈ ;M F   

2 ( )pΓ  is subgraph of ( )fΓ ,F  if and only if 
(2 3 ) ( )pPSL , ∈ ;M F   
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3 ( )pΓ  is subgraph of ( )fΓ ,F  if and only if 
(2 ) ( )PSL p, ∈ ;M F   

4Γ  is subgraph of ( )fΓ ,F  if and only if 
(3 3) ( )PSL , ∈ ;M F   

5 ( )pΓ  is subgraph of ( )fΓ ,F  if and only if 
(2 ) ( )pSz ∈ .M F   

Let F  be a hereditary soluble S -formation. By 
[5] it is saturated. According to [4] ( )LF f=F  
where f  is a full local definition of F  such that 

( ( ))( ) f pf p π= .S  Assume that Г( )f,F  contains any 
graph from 1 2 3 4 5{ ( ) ( ) ( ) ( )}q q q qΓ ,Γ ,Γ ,Γ ,Γ  as sub-
graph. According to proposition 2.8 there is a mini-
mal simple s-critical for F  group. Thus it is not a 
S -formation. A contradiction.  

Assume that ( )fΓ ,F  does not contain sub-
graphs from 1 2 3 4 5{ ( ) ( ) ( ) ( )}q q q qΓ ,Γ ,Γ ,Γ ,Γ .  Let G  
be a s-critical for F -group with ( ) 1GΦ = .  Assume 
that G  is not solvable. Then all proper subgroups of 
G  are soluble. Hence G  is a minimal simple group. 
It follows from proposition 2.8 that ( )fΓ ,F  con-
tains graph from 1 2 3 4 5{ ( ) ( ) ( ) ( )}q q q qΓ∈ Γ ,Γ ,Γ ,Γ ,Γ  
that corresponds to G. A contradiction.  
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