—МАТЕМАТИКА-

УДК 512.542

РАЗРЕШИМЫЕ ФОРМАЦИИ С УСЛОВИЕМ ШЕМЕТКОВА

В.И. Мурашко

Гомельский государственный университет им. Ф. Скорины, Гомель, Беларусь

SOLUBLE FORMATIONS WITH THE SHEMETKOV PROPERTY

V.I. Murashka

F. Scorina Gomel State University, Gomel, Belarus

Описаны все насыщенные разрешимые формации \mathfrak{F} , у которых все минимальные не \mathfrak{F} -группы разрешимы. Всякой локальной формации $\mathfrak{F} = LF(f)$ такой, что $f(p) = \mathfrak{S}_{\pi(f(p))}$ для всех $p \in \pi(\mathfrak{F})$ и $f(p) = \emptyset$ в противном случае, был поставлен в соответствие ориентированный граф $\Gamma(\mathfrak{F}, f)$ без петель, вершинами которого являются простые числа из $\pi(\mathfrak{F})$, и (p_i, p_j) – ребро $\Gamma(\mathfrak{F}, f)$ тогда и только тогда, когда $p_j \in \pi(f(p_i))$. С помощью графов такого типа были описаны все наследственные разрешимые формации с условием Шеметкова.

Ключевые слова: минимальная простая группа, минимальная не 🖇 -группа, наследственная локальная формация, формация с условием Шеметкова, связанный с формацией граф.

All saturated soluble formations whose all *s*-critical groups are soluble were described. With every local formation $\mathfrak{F} = LF(f)$, such that $f(p) = \mathfrak{S}_{\pi(f(p))}$ for all $p \in \pi(\mathfrak{F})$ and $f(p) = \emptyset$ otherwise, was associated directed graph $\Gamma(\mathfrak{F}, f)$ without loops whose vertices are prime numbers from $\pi(\mathfrak{F})$ and (p_i, p_j) is an edge of $\Gamma(\mathfrak{F}, f)$ if and only if $p_j \in \pi(f(p_i))$. With the help of such kind's graphs all hereditary soluble formations with the Shemetkov property were described.

Keywords: minimal simple group, s-critical group, hereditary local formation, formation with the Shemetkov property, graph associated with formation.

Introduction

All considered groups are finite. Recall that \mathfrak{S} (\mathfrak{S}_{π}) is the class of all soluble groups (π -groups). Let \mathfrak{F} be a class of groups. A group *G* is called *s*-critical for \mathfrak{F} (or minimal non- \mathfrak{F} -group) if *G* is not in \mathfrak{F} but all proper subgroups of *G* are in \mathfrak{F} . The set of all *s*-critical groups for \mathfrak{F} is denoted by $\mathcal{M}(\mathfrak{F})$. Recall that $\pi(G)$ is the set of all prime divisors of |G| for a group *G* and $\pi(\mathfrak{F})$ is the set of all prime divisors of orders of groups from \mathfrak{F} for a class of groups \mathfrak{F} .

In 1924 [1] O.Yu. Shmidt described all *s*-critical groups for \mathfrak{N} where \mathfrak{N} is the formation of all nilpotent groups. These groups are called Shmidt groups. In 1951 [2] N. Ito showed that all *s*-critical groups for the class of *p*-nilpotent groups are also Shmidt groups. L.A. Shemetkov in the Kourovka Notebook [3] posed the following problem: "Find all local hereditary formations \mathfrak{F} of finite groups such that every *s*-critical group for \mathfrak{F} is either a cyclic group of prime order or a Shmidt group". Such formations are called formations with the Shemetkov property or briefly S-formations.

In the soluble universe this problem was solved in 1984 [4] by V.N. Semenchuk and A.F. Vasil'ev. In particular there was shown that \mathfrak{F} is a saturated

© Murashka V.I., 2015 82 hereditary \tilde{S} -formation if and only if $\mathfrak{F} = LF(f)$ where f is a full local definition of \mathfrak{F} such that $f(p) = \mathfrak{S}_{\pi(f(p))}$ for all $p \in \pi(\mathfrak{F})$ and $f(p) = \emptyset$ otherwise. Note that A.N. Skiba in 1990 [5] showed that a hereditary soluble \tilde{S} -formation is saturated.

But in the universe of all groups formations that are \breve{S} -formations in the soluble universe may not be \breve{S} -formations. For example let $\mathfrak{F} = LF(f)$ where $f(p) = \mathfrak{S}_{\{2,3,5\}}$ for $p \in \{2,3,5\}$ and $f(p) = \varnothing$ otherwise. It is easy to see that the alternating group of degree 5 is *s*-critical for \mathfrak{F} .

In the general case the problem was solved independently by A. Ballester-Bolinshes and M.D. Perez-Ramos [6] and S.F. Kamornikov [8]. According to the corollary 2.4.23 [7] a hereditary local formation \mathfrak{F} is \breve{S} -formation if and only if

1) $\mathfrak{F} = LF(f)$ where f is a full local definition of \mathfrak{F} such that $f(p) = \mathfrak{G}_{\pi(f(p))}$ for all $p \in \pi(\mathfrak{F})$ and $f(p) = \emptyset$ otherwise and

2) $\mathcal{M}(\mathfrak{F})$ contains only solvable groups.

But the second condition for an arbitrary hereditary local formation is hard to verify. That is why in [7, p. 117] the following question was posed: "Describe all hereditary local formation \mathfrak{F} with $\mathcal{M}(\mathfrak{F}) \subseteq \mathfrak{S}^{"}$. Theorem A gives the answer for this question in case when \mathfrak{F} is a soluble formation.

Theorem A. Let \mathfrak{F} be a local soluble formation. Then $\mathcal{M}(\mathfrak{F}) \subseteq \mathfrak{S}$ if and only if \mathfrak{F} does not contain the following local subformations:

 $\mathfrak{M}_1(p) = LF(f)$ where p is a prime and

$$f(q) = \begin{cases} \mathfrak{A}(2^{p} - 1) & \text{if } q = 2, \\ \mathfrak{A}(2) & \text{if } q \in \pi(2^{2p} - 1), \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(2(2^{2p} - 1)); \end{cases}$$

 $\mathfrak{M}_2(p) = LF(f)$ where p is an odd prime and

$$f(q) = \begin{cases} \mathfrak{A}\left(\frac{3^{p}-1}{2}\right) & \text{if } q = 3, \\ \mathfrak{A}(3) & \text{if } q = 2, \\ \mathfrak{A}(2) & \text{if } q \in \pi(3^{2p}-1) \setminus \{2\}, \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(3(3^{2p}-1)); \end{cases}$$

 $\mathfrak{M}_3(p) = LF(f)$ where *p* is a prime such that $p^2 + 1 \equiv 0 \mod 5$ and

$$f(q) = \begin{cases} \Re\left(\frac{p-1}{2}\right) & \text{if } q = p, \\ \Re(2) & \text{if } q \in \pi(p^2 - 1) \setminus \{2\}, \\ \mathbf{QR}_0(S_3, Z_3) & \text{if } p^2 - 1 \equiv 0 \mod 16 \text{ and } q = 2, \\ \Re(3) & \text{if } p^2 - 1 \neq 0 \mod 16 \text{ and } q = 2, \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(p^3 - p); \end{cases}$$

$$\mathfrak{M}_4 = LF(f)$$
 where

$$f(q) = \begin{cases} \mathfrak{A}(3) & \text{if } q = 13, \\ \mathbf{QR}_0(GL(2,3), SL(2,3), Z_8, Q, SD_{16}) & \text{if } q = 3, \\ \mathbf{QR}_0(Z_3, S_3) & \text{if } q = 2, \\ \varnothing & \text{if } q \notin \{2, 3, 13\}; \end{cases}$$

 $\mathfrak{M}_{5}(p) = LF(f)$ where p is an odd prime and

$$f(q) = \begin{cases} \mathfrak{A}(2^{p} - 1) & \text{if } q = 2, \\ \mathfrak{A}(4) & \text{if } q \in \pi(2^{2p} + 1), \\ \mathfrak{A}(2) & \text{if } q \in \pi(2^{p} - 1), \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(2(2^{2p} + 1)(2^{p} - 1)). \end{cases}$$

In this work a criterion of hereditary soluble formation to be a \breve{S} -formation only in terms of its local definition is given.

Let \mathfrak{Z} denote the class of Sylow tower groups. T. Hawkes [9] described all groups G such that $G \notin \mathfrak{Z}$ and all proper subgroups and epimorphic images of G belong to \mathfrak{Z} . In his description he associated with every group G a directed graph whose vertices are elements from $\pi(G)$ and (p_1, p_2) is the edge for $p_1, p_2 \in \pi(G)$ if and only if $p_2 \in \pi(G/O_{p'_1,p_1}(G))$. An analogous idea is used for description of all solvable \breve{S} -formations.

Problems of Physics, Mathematics and Technics, № 1 (22), 2015

Let $\mathfrak{F} = LF(f)$ be a local hereditary formation where f is a full local definition of \mathfrak{F} such that $f(p) = \mathfrak{S}_{\pi(f(p))}$ for all $p \in \pi(\mathfrak{F})$ and $f(p) = \emptyset$ otherwise. Let associate with \mathfrak{F} directed graph $\Gamma(\mathfrak{F}, f)$ without loops whose vertices are prime numbers from $\pi(\mathfrak{F})$ and (p_i, p_j) is an edge of $\Gamma(\mathfrak{F}, f)$ for $p_i \neq p_j$ if and only if $p_j \in \pi(f(p_i))$. For example $\Gamma(\mathfrak{N}, f)$ is the set of isolated vertices where $f(p) = \mathfrak{S}_p$. All considered graphs are assumed to be subgraphs of the full directed graph without loops on \mathbb{P} .

Let *p* be a prime and $\Gamma_1(p)$ be a graph whose set of vertices is $\pi(2(2^{2p}-1))$ and edges are (2,q)for $q \in \pi(2^p - 1)$ and (q, 2) for $p \in \pi(2^{2p} - 1)$.

Let *p* be a an odd prime and $\Gamma_2(p)$ be a graph whose set of vertices is $\pi(3(3^{2p}-1))$ and edges are (3,q) for $p \in \pi(\frac{3^p-1}{2})$, (q,2) for $p \in \pi(3^{2p}-1) \setminus \{2\}$ and (2,3).

Let *p* be a a prime such that $p^2 + 1 \equiv 0 \mod 5$ and $\Gamma_3(p)$ be a graph whose set of vertices is $\pi(p(p^2 - 1))$ and edges are (p,q) for $q \in \pi(\frac{p-1}{2})$, (q,2) for $q \in \pi(p^2 - 1) \setminus \{2\}$ and (2,3).

Let Γ_4 be a graph whose set of vertices is $\{2,3,13\}$ and edges are (13,3), (3,2) and (2,3).

Let *p* be an odd prime and $\Gamma_5(p)$ be a graph whose set of vertices is $\pi(2(2^{2p}+1)(2^p-1))$ and edges are (2,q) for $q \in \pi(2^p-1)$ and (q,2) for $p \in \pi((2^{2p}+1)(2^p-1))$.

Theorem B. Let \mathcal{F} be a hereditary soluble formation. Then the following statements are equivalent:

(1) \mathfrak{F} is formation with the Shemetkov property;

(2) $\mathfrak{F} = LF(f)$ where f is a full local definition of \mathfrak{F} such that $f(p) = \mathfrak{S}_{\pi(f(p))}$ for all $p \in \pi(\mathfrak{F})$ and $f(p) = \emptyset$ otherwise and $\Gamma(\mathfrak{F}, f)$ does not contain graphs from $\{\Gamma_1(q), \Gamma_2(q), \Gamma_3(q), \Gamma_4, \Gamma_5(q)\}$ as subgraphs.

1 Preliminaries

Standard notation and terminology are used. If necessary it can be found in [7], [10]. For $\pi = \emptyset$ we assume that $\mathfrak{S}_{\pi} = \emptyset$.

Recall that for a class of group \mathfrak{X} $\mathbf{Q}\mathfrak{X} = (G \mid \exists H \in \mathfrak{X} \text{ and epimorphism from } H \text{ onto } G)$

> $\mathbf{R}_{0}\mathfrak{X} = (G \mid \exists N_{i} \triangleleft G(i = 1, ..., n))$ with $G \mid N_{i} \in \mathfrak{X}$ and $\bigcap_{i=1}^{n} N_{i} = 1$ $\mathbf{S}\mathfrak{X} = (G \mid \exists H \in \mathfrak{X} \text{ and } G \leq H).$

Class $\mathfrak{F} = \mathbf{R}_0 \mathfrak{F}$ and $\mathfrak{F} = \mathbf{Q}\mathfrak{F}$ is called formation. Function $f : \mathbb{P} \to \{formations\}$ is called formation function. Formation \mathfrak{F} is called saturated if from $G/\Phi(G) \in \mathfrak{F}$ it follows that $G \in \mathfrak{F}$. According to the well known Gashutz – Lubeseder – Schmid Theorem saturated formations are exactly local formations, i. e. formations $\mathfrak{F} = LF(f)$ defined by a formation function f:

 $LF(f) = (G \mid \text{ if } H / K \text{ is a chief factor of } G$ and $p \in \pi(H / K)$ then $G / C_G(H / K) \in f(p)$).

Let f and g be local definitions of formation \mathfrak{F} . Then h is also definition of \mathfrak{F} where $h(p) = f(p) \cap g(p)$ for all primes p. It means that every formation has the minimal local definition. If f is the minimal local definition of \mathfrak{F} and $\mathfrak{H} = LF(h)$ then $\mathfrak{F} \subseteq \mathfrak{H}$ if and only if $f(p) \subseteq h(p)$ for all primes p.

It is known that if f is a local definition of \mathfrak{F} then F is also a local definition of \mathfrak{F} where $F(p) = \mathfrak{N}_p f(p)$ for all primes p. This local definition is called full.

Lemma 1.1. Let G be a simple non-abelian group, \mathfrak{F} be a local formation and f be a local definition of \mathfrak{F} . Then $G \in \mathfrak{F}$ if and only if $G \in f(p)$ for all $p \in \pi(G)$.

Proof. Follows from the definition of local formation. \Box

Lemma 1.2 [10, p. 272]. *Let* \mathfrak{X} *be a class of groups. Then the smallest formation containing* \mathfrak{X} *is* $QR_0\mathfrak{X}$.

It is easy to see that if $G, G / N \in \mathfrak{X}$ then

 $\boldsymbol{QR}_{0}\mathfrak{X} = \boldsymbol{QR}_{0}(\mathfrak{X} \setminus \{G / N\}).$

Note that the formation generated by cyclic group Z_m is the formation $\mathfrak{A}(m)$ of all abelian groups of the exponent dividing *m*.

Lemma 1.3 [13, p. 14]. Let \mathfrak{X} be a class of groups. The smallest local formation that contains \mathfrak{X} is LF(f) where

$$f(p) = \boldsymbol{QR}_{0}(H / O_{p',p}(H) | H \in \mathfrak{X})$$

for $p \in \pi(\mathfrak{X})$ and $f(p) = \emptyset$ otherwise and f is the minimal local definition of \mathfrak{F} .

Lemma 1.4 [13, p. 14]. Let \mathfrak{X} be a class of groups. The smallest local hereditary formation that contains \mathfrak{X} is LF(f) where

$$f(p) = \boldsymbol{Q}\boldsymbol{R}_{0}\boldsymbol{S}(H / O_{p',p}(H) | H \in \mathfrak{X})$$

for $p \in \pi(\mathfrak{X})$ and $f(p) = \emptyset$ otherwise and f is the minimal local definition of \mathfrak{F} .

The following theorems give descriptions of minimal simple groups:

Theorem **1.5.** (Thompson [11, p. 190]). *All minimal simple non-abelian groups are:*

(1) $PSL(2,2^p)$ where p is a prime;

(2) $PSL(2,3^{p})$ where p is an odd prime;

(3) PSL(2, p) where p > 5 is a prime and $p^2 + 1 \equiv 0 \mod 5$;

(4) $Sz(2^{p})$ where p is an odd prime;

(5) PSL(3,3).

Theorem 1.6 (Dickson [11, p. 213]). Any subgroup of $PSL(2, p^n)$ is isomorphic to one of the following groups.

(a) Elementary abelian p-groups.

(b) Cyclic groups Z_m of order m, where m is a divisor of $(p^n \pm 1)/d$ and d = (p-1,2).

(c) Dihedral groups of order 2m, where m is defined in (b).

(d) Alternating group A_4 if p > 2 or p = 2and $n \equiv 0 \mod 2$.

(e) Symmetric group S_4 if $p^{2n} \equiv 1 \mod 16$.

(f) Alternating group A_5 if p=5 or $p^{2n} \equiv 1 \mod 5$.

(g) A semi-direct product of an elementary abelian p-group of order p^m and a cyclic group of order k, where k is a divisor of $p^m - 1$ and $p^n - 1$.

(h) The group $PSL(2, p^m)$ if m is a divisor of n, or the group $PGL(2, p^m)$ if 2m is a divisor of n.

Let $G \approx PSL(2, 2^p)$ be a minimal simple group. Note that subgroups of types (f) and (h) are not proper subgroups of G. Let $H = N \ge C$ be a subgroup of type (g). Then it is straightforward to check that $C_H(N) = N$.

Theorem 1.7 (Suzuki [12]). Any subgroup of $G \approx Sz(q)$ is isomorphic to a subgroup of one of the following groups where $q = 2^{p}$.

(a) Frobenius groups of order $q^2(q-1)$, H = QK, $Q \triangleleft H$, $Q \in Syl_q(H)$ and K is cyclic of order q-1.

(b) Dihedral groups of order q(q-1).

(c) Cyclic groups A_i , i = 1, 2 of orders $q \pm r + 1$ where $r^2 = 2q$.

(d) B_i = N_G(A_i) of order 4(q±r+1).
 (e) Sz(s) if q is a power of s.

2 Main Results 2.1 Proof of the Theorem A Brongesition 2.1 Let Theorem A

Proposition 2.1. Let \mathcal{F} be a local formation of soluble groups. Then all s-critical groups for \mathcal{F} are

soluble if and only if all minimal simple non-abelian groups are not s-critical for \mathcal{F} .

Proof. Let \mathfrak{F} be a local formation of soluble groups and G be an unsolvable *s*-critical group for \mathfrak{F} . Since \mathfrak{F} is local formation, $G/\Phi(G)$ is also *s*-critical for \mathfrak{F} . So we can assume that $\Phi(G) = 1$. Now there is the unique minimal normal subgroup N of G. If $N \neq G$ then groups N and G/N are soluble. Hence G is soluble a contradiction. Now G = N. It means that G is a minimal simple nonabelian group. \Box

Let G be a group, \mathfrak{F} and \mathfrak{H} be local formations such that $G \in \mathcal{M}(\mathfrak{F})$ and $G \in \mathcal{M}(\mathfrak{H})$. Then it is clear that $G \in \mathcal{M}(\mathfrak{H} \cap \mathfrak{F})$. It means that for every group G if $G \in \mathcal{M}(\mathfrak{F})$ for some formation \mathfrak{F} then there is the smallest local formation \mathfrak{K} such that $G \in \mathcal{M}(\mathfrak{K})$.

Proposition 2.2. Let G be a simple non-abelian group and

$$f_1(p) = \mathbf{QR}_0(H / O_{p',p}(H) | H < G)$$

for $p \in \pi(G)$ and $f_1(p) = \emptyset$ otherwise;
 $f_2(p) = \mathbf{QR}_0 \mathbf{S}(H / O_{p',p}(H) | H < G)$

for $p \in \pi(G)$ and $f_2(p) = \emptyset$ otherwise. Then $LF(f_1)$ and $LF(f_2)$ are the smallest forma-

tion and hereditary formation among local formations \mathcal{F} with $G \in \mathcal{M}(\mathcal{F})$.

Proof. Let $f = f_2$. According to lemma 1.4 LF(f) is the smallest local hereditary formation containing all proper subgroups of *G*.

Let us show that $G \notin LF(f)$. Assume that $G \in LF(f)$. Then $G \in f(p)$ for some $p \in \pi(G)$. It means that $G \simeq \varphi(S)$ is a homomorphic image of a subgroup *S* of a direct product *H* of groups $H_1, ..., H_n$ from $\mathbf{S}(H / O_{p', p}(H) | H < G)$. Without loose of generality one may assume that *S* is the minimal subgroup with this property. Let ρ_i be a projection of *S* on H_i . Assume that $S = ker\varphi ker\rho_i$ for all i = 1, ..., n. Then

$$G \simeq S / ker \varphi =$$

$$= ker\phi ker\rho_i / ker\phi \simeq ker\rho_i / ker\rho_i \cap ker\phi$$

for all i = 1,...,n. Since $ker\rho_i \le H$, we see $ker\rho_i = S$ for all i = 1,...,n. A contradiction. Now $ker\varphi ker\rho_i < S$ for some *i*. So $ker\rho_i \subseteq ker\varphi$. It means that *G* is a a homomorphic image of a subgroup of *G*, a contradiction. Thus $G \in \mathcal{M}(\mathfrak{F})$.

If $f = f_1$ the proof is analogues.

Let $\mathfrak{F} = LF(f)$ be a local formation of soluble groups and *G* be a minimal simple non-abelian group. Let $\mathfrak{H} = LF(h)$ be a minimal local formation with $G \in \mathcal{M}(\mathfrak{H})$. Since $G \in \mathcal{M}(\mathfrak{S})$, it is clear that \mathfrak{H} is soluble. So $G \in \mathcal{M}(\mathfrak{F})$ if and only if $\mathfrak{H} \subseteq \mathfrak{F}$. Proposition 2.2 gives us the minimal local definition h of \mathfrak{H} . So it is sufficient to verify that $h(p) \subseteq f(p)$ for all primes p.

Since all minimal simple non-abelian groups are well described it is sufficient to calculate h for all this groups. With the help of theorems 1.5, 1.6 and 1.7 we can do that.

Corollary 2.3. Let \mathfrak{F} be a local formation of soluble groups, p be a prime and $\mathfrak{M}_1(p) = LF(f)$ where

$$f(q) = \begin{cases} \mathfrak{A}(2^{p} - 1) & \text{if } q = 2, \\ \mathfrak{A}(2) & \text{if } q \in \pi(2^{2p} - 1), \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(2(2^{2p} - 1)) \end{cases}$$

Then $PSL(2,2^p) \in \mathcal{M}(\mathfrak{F})$ if and only if $\mathfrak{M}_1(p) \subseteq \mathfrak{F}$.

Proof. Let us calculate minimal local formation \mathfrak{F} with $PSL(2, 2^p) \in \mathcal{M}(\mathfrak{F})$. It is possible to do this with the help of proposition 2.2. Let $G \simeq PSL(2, 2^p)$. Then *G* has subgroups of types (*a*), (*b*), (*c*), (*g*), (*d*) and (*f*) from theorem 1.6. But the last two cases are possible only for p = 2. In this case subgroups of type (*g*) and (*d*) coincide and subgroup of type (*f*) is *G* itself.

For all $q \in \pi(G)$ and subgroups H of types (a) and (b) $H / O_{q',q}(H) \simeq 1$.

For all subgroups *H* of type (c) $H / O_{2',2}(H) \approx 1$. Now let *H* be a subgroup of type (c) that is isomorphic to the dihedral group of order $2(2^p + 1)$ $(2(2^p - 1))$. Then $H / O_{q',q}(H) \approx Z_2$ for all

$$q \in \pi(2^p + 1) \ (q \in \pi(2^p - 1)).$$

Let $H \simeq M > Z_{2^{p}-1}$ where M is an elementary abelian subgroup of order 2^{p} be a subgroup of type (g). Then $H / O_{2',2}(H) \simeq Z_{2^{p}-1}$ and $H / O_{q',q}(H) \simeq 1$ for all $q \in \pi(2^{p}-1)$. \Box

The proof of the following two corollaries is analogous.

Corollary 2.4. Let \mathfrak{F} be a local formation of soluble groups, p be an odd prime and $\mathfrak{M}_2(p) = LF(f)$ where

$$f(q) = \begin{cases} \mathfrak{A}\left(\frac{3^{p}-1}{2}\right) & \text{if } q = 3, \\ \mathfrak{A}(3) & \text{if } q = 2, \\ \mathfrak{A}(2) & \text{if } q \in \pi(3^{2p}-1) \setminus \{2\}, \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(3(3^{2p}-1)). \end{cases}$$

Then $PSL(2,3^p) \in \mathcal{M}(\mathfrak{F})$ if and only if $\mathfrak{M}_2(p) \subseteq \mathfrak{F}$.

Corollary 2.5. Let \mathfrak{F} be a local formation of soluble groups, p > 5 be a prime such that $p^2 + 1 \equiv 0 \mod 5$ and $\mathfrak{M}_3(p) = LF(f)$ where

$$f(q) = \begin{cases} \mathfrak{A}\left(\frac{p-1}{2}\right) & \text{if } q = p, \\ \mathfrak{A}(2) & \text{if } q \in \pi(p^2 - 1) \setminus \{2\}, \\ \mathbf{QR}_0(S_3, Z_3) & \text{if } p^2 - 1 \equiv 0 \mod 16 \text{ and } q = 2, \\ \mathfrak{A}(3) & \text{if } p^2 - 1 \not\equiv 0 \mod 16 \text{ and } q = 2, \\ \varnothing & \text{if } q \in \mathbb{P} \setminus \pi(p^3 - p). \end{cases}$$

Then $PSL(2, p) \in \mathcal{M}(\mathfrak{F})$ if and only if $\mathfrak{M}_3(p) \subseteq \mathfrak{F}$.

Corollary 2.6. Let \mathcal{F} be a local formation of soluble groups and $\mathfrak{M}_4 = LF(f)$ where

$$f(q) = \begin{cases} \mathfrak{A}(3) & \text{if } q = 13, \\ \mathbf{QR}_0(GL(2,3), SL(2,3), Z_8, Q, SD_{16}) & \text{if } q = 3, \\ \mathbf{QR}_0(Z_3, S_3) & \text{if } q = 2, \\ \varnothing & \text{if } q \notin \{2,3,13\} \end{cases}$$

Then $PSL(3,3) \in \mathcal{M}(\mathfrak{F})$ *if and only if* $\mathfrak{M}_4 \subseteq \mathfrak{F}$ *.*

Proof. Let us calculate minimal local formation \mathfrak{F} with $PSL(3,3) \in \mathcal{M}(\mathfrak{F})$. It is possible to do it with the help of proposition 2.2. Let $G \simeq PSL(3,3)$. Then *G* has 3 families of isomorphic maximal subgroups $Z_{13} \\ightarrow Z_3$, the symmetric group S_4 of degree 4 and the general affine group $GA(2,3) = E_9 \\ightarrow GL(2,3)$ where $E_9 = C_{GA(2,3)}(E_9) \cong Z_3 \\ightarrow Z_3$ is a minimal normal subgroup of GA(2,3).

$$\begin{split} Z_{13} &\gtrsim Z_3 / O_{13',13}(Z_{13} \\aggreen Z_3) &\simeq Z_3, \\ Z_{13} &\gtrsim Z_3 / O_{3',3}(Z_{13} \\aggreen Z_3) &\simeq 1, \\ S_4 / O_{2',2}(S_4) &\simeq S_3, \\ S_4 / O_{3',3}(S_4) &\simeq Z_2, \\ GA(2,3) / O_{2',2}(GA(2,3)) &\simeq S_3, \\ GA(2,3) / O_{3',3}(GA(2,3)) &\simeq GL(2,3). \end{split}$$

All maximal subgroups of GA(2,3) are isomorphic to GL(2,3) or to $E_9 > M_i$, i = 1,2,3, where M_i is a maximal subgroup of GL(2,3). So

$$M_1 \simeq SD_{16} = \left\langle a, x \mid a^8 = x^2 = 1, xax = a^3 \right\rangle$$

is the semidihedral group of order 16; $M_2 \approx SL(2,3)$; $M_3 \approx D_{12}$ is the dihedral group of order 12.

$$GL(2,3) / O_{2',2}(GL(2,3)) \simeq S_3,$$

$$GL(2,3) / O_{3',3}(GL(2,3)) \simeq Z_2,$$

$$E_9 \ge M_1 / O_{2',2}(E_9 \ge M_1) \simeq 1,$$

$$E_9 \ge M_2 / O_{2',2}(E_9 \ge M_2) \simeq Z_3,$$

$$E_9 \ge M_2 / O_{3',3}(E_9 \ge M_2) \simeq M_2 \simeq SL(2,3),$$

$$E_9 \ge M_3 / O_{2',2}(E_9 \ge M_3) \simeq 1,$$

$$E_9 \ge M_3 / O_{3',3}(E_9 \ge M_3) \simeq Z_2 \times Z_2.$$

Among maximal subgroups of $E_9 \, > \, SD_{16}$ there are $E_9 \, > \, Z_8$, $E_9 \, > \, D_8$ and $E_9 \, > \, Q$ where D_8 and Q

are the dihedral group of order 8 and the quaternion group.

$$\begin{split} E_9 &\gtrsim Z_8 / O_{3',3}(E_9 \geq Z_8) \simeq Z_8, \\ E_9 &\geq D_8 / O_{3',3}(E_9 \geq D_8) \simeq D_8, \\ E_9 &\geq Q / O_{3',3}(E_9 \geq Q) \simeq Q. \end{split}$$

Note that $SD_{16} / \langle a^2 \rangle \approx D_8$. It is not difficult to calculate that for all other subgroups H, $H / O_{p',p}(H)$ is the homomorphic image of $K / O_{p',p}(K)$ for some considered subgroup K. It means the generating sets of f(2), f(3) and f(3) have been calculated. \Box

Corollary 2.7. Let \mathfrak{F} be a local formation of soluble groups, p be an odd prime and $\mathfrak{M}_5(p) = = LF(f)$ where

$$f(q) = \begin{cases} \mathfrak{A}(2^{p} - 1) & \text{if } q = 2, \\ \mathfrak{A}(4) & \text{if } q \in \pi(2^{2p} + 1), \\ \mathfrak{A}(2) & \text{if } q \in \pi(2^{p} - 1), \\ \emptyset & \text{if } q \in \mathbb{P} \setminus \pi(2(2^{2p} + 1)(2^{p} - 1)). \end{cases}$$

Then $Sz(2^p) \in \mathcal{M}(\mathfrak{F})$ if and only if $\mathfrak{M}_5(p) \subseteq \mathfrak{F}$.

Proof. Let us calculate minimal local formation \mathfrak{F} with $Sz(2^p) \in \mathcal{M}(\mathfrak{F})$. One can do it with the help of proposition 2.2. Let $G \simeq Sz(2^p)$. Since p is a prime it is necessary to consider only four cases from theorem 1.7.

Let *H* be a Frobenius group of order $2^{2p}(2^p - 1)$. Then $H / O_{2',2}(H) \simeq Z_{2^p-1}$ and $H / O_{q',q}(H) \simeq 1$ for all $q \in \pi(2^p - 1)$.

Let *H* be the dihedral group of order $2^{p}(2^{p}-1)$. Then $H / O_{2',2}(H) \approx 1$ and $H / O_{q',q}(H) \approx Z_{2}$ for all $q \in \pi(2^{p}-1)$.

Let *H* be the cyclic group of order $2^{p} \pm r+1$ where $r^{2} = 2^{p+1}$. Then $H / O_{q',q}(H) \approx 1$ for all $q \in \pi(H)$.

Let $B = N_G(H)$. Then $B / O_{2',2}(B) \approx 1$ and $B / O_{q',q}(B) \approx Z_4$ for all $q \in \pi(H) \setminus \{2\}$. Note that $(2^{2p} + 1, 2^p - 1) = 1$. \Box

Now theorem A follows from corollaries 2.3–2.7.

2.2 Proof of the theorem B

From theorem A follows **Proposition 2.8.** Let $\mathfrak{F} = LF(f)$ be a formation and $f(p) = \mathfrak{S}_{\pi(f(p))}$. Then:

 $\Gamma_1(p)$ is subgraph of $\Gamma(\mathfrak{F}, f)$ if and only if $PSL(2, 2^p) \in \mathcal{M}(\mathfrak{F});$

 $\Gamma_2(p)$ is subgraph of $\Gamma(\mathfrak{F}, f)$ if and only if $PSL(2, \mathfrak{I}^p) \in \mathcal{M}(\mathfrak{F});$

 $\Gamma_3(p)$ is subgraph of $\Gamma(\mathfrak{F}, f)$ if and only if $PSL(2, p) \in \mathcal{M}(\mathfrak{F});$

 Γ_4 is subgraph of $\Gamma(\mathfrak{F}, f)$ if and only if $PSL(3,3) \in \mathcal{M}(\mathfrak{F});$

 $\Gamma_5(p)$ is subgraph of $\Gamma(\mathfrak{F}, f)$ if and only if $Sz(2^p) \in \mathcal{M}(\mathfrak{F}).$

Let \mathfrak{F} be a hereditary soluble \overline{S} -formation. By [5] it is saturated. According to [4] $\mathfrak{F} = LF(f)$ where f is a full local definition of \mathfrak{F} such that $f(p) = \mathfrak{S}_{\pi(f(p))}$. Assume that $\Gamma(\mathfrak{F}, f)$ contains any graph from $\{\Gamma_1(q), \Gamma_2(q), \Gamma_3(q), \Gamma_4, \Gamma_5(q)\}$ as subgraph. According to proposition 2.8 there is a minimal simple *s*-critical for \mathfrak{F} group. Thus it is not a \overline{S} -formation. A contradiction.

Assume that $\Gamma(\mathfrak{F}, f)$ does not contain subgraphs from $\{\Gamma_1(q), \Gamma_2(q), \Gamma_3(q), \Gamma_4, \Gamma_5(q)\}$. Let *G* be a *s*-critical for \mathfrak{F} -group with $\Phi(G) = 1$. Assume that *G* is not solvable. Then all proper subgroups of *G* are soluble. Hence *G* is a minimal simple group. It follows from proposition 2.8 that $\Gamma(\mathfrak{F}, f)$ contains graph from $\Gamma \in \{\Gamma_1(q), \Gamma_2(q), \Gamma_3(q), \Gamma_4, \Gamma_5(q)\}$ that corresponds to *G*. A contradiction. \Box

REFERENCES

1. *Shmidt*, *O.Yu*. Groups all whose subgroups are special / O. Yu. Shmidt // Mat. Sbornik. – 1924. – Vol. 31. – P. 366–372. (In Russian).

2. *Ito, N.* Note on (LM)-groups of finite order / N. Ito // Kodai Math. Seminar Report. -1951. - Vol. 3, $N \ge 1-2. - P. 1-6.$

3. The Kourovka Notebook: Unsolved Problems in Group Theory, Novosibirsk, 1992.

4. Semenchuk, V.N. Characterization of local formations § by properties of minimal non-§-groups / V.N. Semenchuck, A.F. Vasil'ev // Studies of normal and subgroup structure of finite groups, Nauka i technika. – 1984. – P. 175–181.

5. *Skiba*, *A.N.* On a class of formations of finite groups / A.N. Skiba // Dokl. BSSR. – 1994. – Vol. 34, № 11. – P. 982–985. (In Russian).

6. *Ballester-Bolinshes*, *A*. On § -critical groups / A. Ballester-Bolinshes, M.D. Perez-Ramos // J. Algebra. – 1995. – № 174. – P. 948–958.

7. *Kamornikov*, *S.F.* Subgroup's functors and classes of finite groups / S.F. Kamornikov, M.V. Selkin. – Minsk: Belaruskaya nauka, 2003. – 254 p. (In Russian)

8. *Kamornikov*, *S.F.* On two problems by L.A. Shemetkov / S.F. Kamornikov // Siberian Mathematical Journal. – 1994. – Vol. 35, № 4. – P. 713–721.

9. Hawkes, T. On the class of Sylow tower groups / T. Hawkes // Math. Z. $-1968. - N \ge 105. - P. 393-398.$

10. *Doerk*, *K*. Finite soluble groups / K. Doerk, T. Hawkes. – Berlin – New-York: Walter de Gruyter, 1992. – 891 p.

11. *Huppert*, *B*. Endlicher gruppen I / B. Huppert. – Berlin: Springer, 1967. – 793 p.

12. Suzuki, M. On a class of doubly transitive groups / M. Suzuki // Ann. Math. – 1962. – N_{2} 75. – P. 105–145.

13. *Skiba*, *A.N.* Algebra of formations / A.N. Skiba. – Minsk: Belaruskaya nauka, 1997. – 240 p. (In Russian).

Поступила в редакцию 22.09.14.