УДК 517.925

ЗАДАЧА ЕРУГИНА О СУЩЕСТВОВАНИИ НЕРЕГУЛЯРНЫХ РЕШЕНИЙ ЛИНЕЙНОЙ СИСТЕМЫ В ОДНОМ СЛУЧАЕ НЕНУЛЕВОГО СРЕДНЕГО ПЕРИОДИЧЕСКОГО КОЭФФИЦИЕНТА

М.С. Белокурский

Гомельский государственный университет им. Ф. Скорины, Гомель, Беларусь

ERUGIN'S PROBLEM ON THE EXISTENCE OF IRREGULAR SOLUTIONS IN ONE CASE OF THE LINEAR SYSTEM WITH NONZERO MEAN OF PERIODIC COEFFICIENT

M.S. Belokursky

F. Scorina Gomel State University, Gomel, Belarus

Получены необходимые и достаточные условия существования сильно нерегулярного периодического решения линейной периодической дифференциальной системы.

Ключевые слова: сильно нерегулярное периодическое решение, линейная дифференциальная система, периодический коэффициент.

The necessary and sufficient conditions under which linear periodic differential system has strongly irregular periodic solutions were obtained.

Keywords: strongly irregular periodic solution, linear differential system, periodic coefficient.

Введение

Как известно, периодическая дифференциальная система при определенных условиях может иметь периодические решения, период которых несоизмерим с периодом самой системы [1]-[6] и др. Такие периодические решения присущи достаточно широким классам дифференциальных систем, и названы сильно нерегулярными. Отметим, что сильно нерегулярные периодические колебания имеют место, например, в системе с двумя степенями свободы, представляющей собой два одинаковых маятника, соединенных упругой горизонтальной связью с жесткостью, периодически зависящей от времени. Такого рода колебания могут возникать и в электрическом аналоге такой системы – двух колебательных контурах, соединенных периодически меняющейся емкостью.

В монографии [3, §36] Н.П. Еругин рассматривал линейную систему вида

 $\dot{x} = (AP(t) + B)x, \ t \in R, \ x \in R^n, \ n \ge 2, \ (0.1)$ где A, B — постоянные $(n \times n)$ -матрицы, P(t) — непрерывная ω -периодическая $(n \times n)$ -матрица. В системе (0.1) матрицы A и P(t) будем называть стационарным и периодическим коэффициентами соответственно. Для системы (0.1) с диагональным периодическим коэффициентом P(t) Н.П. Еругиным изучены вопросы существования сильно нерегулярных периодических решений, при этом, в частности, было доказано, что если матрица A невырожденная, то искомые решения

у системы (0.1) отсутствуют. Случай треугольного периодического коэффициента P(t) был рассмотрен в работе [7]. Случай произвольного периодического коэффициента, но с нулевым средним значением, был исследован в работе [8].

Следует отметить, что системы вида (0.1) рассматриваются при решении задач управления асимптотическими инвариантами, в том числе показателями Ляпунова, стационарных управляемых систем при помощи периодических управлений [9], [10], а также задач стабилизации линейных систем управления периодической обратной связью, включая проблему Брокетта [11], [12].

1 Сильно нерегулярное периодическое решение линейной системы

Пусть K – кольцо матриц размерности $n \times n$ над полем $\mathbb R$ и $M \in K$. Множество матриц

$$Ann_1M = \{Z | ZM = 0, Z \in K\}$$

будем называть левым аннулятором матрицы M.

Предположим, что стационарный коэффициент и усреднение периодического коэффициента удовлетворяют условию

$$A \in Ann_{l}\widehat{P}.\tag{1.1}$$

В силу условия (1.1) стационарный коэффициент является вырожденным. Для определенности будем считать, что

$$\operatorname{rank} A = q < n. \tag{1.2}$$

Пусть $x(t) - \Omega$ -периодическое решение системы (0.1), при этом считаем, что хотя бы одна

© Белокурский М.С., 2015

из его компонент отлична от стационарной, а отношение ω/Ω является иррациональным числом. При выполнении условия (1.2) найдется постоянная неособенная $(n \times n)$ -матрица S такая, что у матрицы SA первые q строк будут линейно независимыми, а остальные n-q строк будут нулевыми. Введем замену переменных

$$x = S^{-1}z, (1.3)$$

которая приводит систему (0.1) к системе

$$\dot{z} = (SAP(t)S^{-1} + SBS^{-1})z,$$
 (1.4)

где $SAP(t)S^{-1}$ — непрерывная ω -периодическая $(n \times n)$ -матрица, у которой последние n-q строк нулевые.

Тогда в силу [5] Ω -периодический вектор z(t) = Sx(t) удовлетворяет системе

$$\dot{z} = (SA\hat{P}S^{-1} + SBS^{-1})z,
(SAP(t)S^{-1} - SA\hat{P}S^{-1})z = 0.$$
(1.5)

С учетом условия (1.1) система (1.5) принимает вид

$$\dot{z} = Cz, \ G(t)z = 0$$

 $(C = SBS^{-1}, \ G(t) = SAP(t)S^{-1}).$ (1.6)

Обозначим через $G_1(t)$ матрицу размерности $q \times n$, составленную из первых q строк матрицы G(t). Тогда, учитывая структуру матрицы SA, систему (1.6) можно записать в виде

$$\dot{z} = Cz, \ G_1(t)z = 0.$$
 (1.7)

Если столбцы матрицы $G_1(t)$ линейно независимы, то из второй системы в (1.7) следует тривиальность z(t), что противоречит сделанному допущению. Значит, матрица $G_1(t)$ имеет неполный столбцовый ранг

$$\operatorname{rank}_{\operatorname{col}} G_1 = r < n. \tag{1.8}$$

При выполнении условия (1.8) согласно [6, с. 43] найдется постоянная неособенная $(n \times n)$ -матрица Q такая, что у матрицы $G_1(t)Q$ первые n-r=p столбцов будут нулевыми, в то время как остальные r столбцов будут линейно независимыми. Введем еще одну замену переменных

$$z = Qy, \tag{1.9}$$

которая приводит систему (1.7) к системе

$$\dot{y} = Dy, \ G_2(t)y = 0$$

 $(D = Q^{-1}SBS^{-1}Q, \ G_2(t) = G_1(t)Q).$ (1.10)

Эта система имеет сильно нерегулярное периодическое решение $y(t) = Q^{-1}Sx(t)$. Так как у матрицы $G_2(t)$ первые p столбцов нулевые, а остальные r столбцов линейно независимы, то из второй системы в (1.10) на основании [6, c. 43] следует, что последние r компонент вектора y(t) будут тривиальными, т. е.

$$y(t) = \operatorname{col}(y^{[p]}(t), y_{[r]}(t)),$$

$$y^{[p]}(t) = \operatorname{col}(y_1(t), \dots, y_p(t)),$$

$$y_{[r]}(t) = \operatorname{col}(y_{p+1}(t), \dots, y_p(t)) \equiv 0.$$

Это означает, что система (1.10) имеет следующую структуру

$$\dot{y}^{[p]} = D_{p,p} y^{[p]}, \ D_{r,p} y^{[p]} = 0, \ y_{[r]} = 0, \ (1.11)$$
 где $D_{p,p}, D_{r,p}$ – левые верхний и нижний блоки матрицы D (нижние индексы указывают размерность). Как видно из (1.11), Ω -периодический вектор $y^{[p]}(t)$ является решением линейной стационарной системы. Поэтому среди собственных значений матрицы коэффициентов $D_{p,p}$ первой системы в (1.11) будут числа

 $\pm i\lambda_{j}, \ (j=1,\ldots,p';\ p'\leq [p/2]), \qquad (1.12)$ где $\lambda_{j}=2m_{j}\pi/\Omega, \ m_{j}\in\mathbb{N}.$ Пусть h_{j} — число групп элементарных делителей, отвечающих собственному значению $\pm i\lambda_{j}, \quad (j=1,\ldots,p';\ h_{1}+\ldots+h_{p'}=h;2h\leq p).$ Это означает, что вектор $y^{[p]}(t)$ представлен тригонометрическим полиномом вида

$$y^{[p]}(t) = \sum_{j=1}^{p'} a_j \cos \lambda_j t + b_j \sin \lambda_j t, \quad (1.13)$$

где коэффициенты a_j , b_j зависят от 2h произвольных вещественных постоянных. Поскольку $y^{[p]}(t)$ удовлетворяет и второй системе в (1.11), то имеет место тождество

$$D_{r,p} \sum_{j=1}^{p'} a_j \cos \lambda_j t + b_j \sin \lambda_j t \equiv 0.$$
 (1.14)

Итак, если система (0.1) имеет сильно нерегулярное периодическое решение x(t), то выполняются условия (1.8), (1.12), (1.14) при этом

$$x(t) = S^{-1}Q \operatorname{col}(y^{[p]}(t), 0, ..., 0),$$
 (1.15)

где вектор $v^{[p]}(t)$ определяется равенством (1.13).

Покажем, что полученные условия являются достаточными. Обратимся к системе (1.7). В силу условия (1.8) найдется постоянная неособенная $(n \times n)$ -матрица Q такая, что замена переменных (1.9) приводит (1.7) к системе (1.10), где у матрицы $G_2(t)$ первые p столбцов нулевые, а остальные r столбцов линейно независимы. Согласно [6, с. 43] последнее обстоятельство означает, что

$$y = \text{col}(y^{[p]}, 0, ..., 0), y^{[p]} = \text{col}(y_1, ..., y_n).$$

С учетом этого система (1.10) примет вид (1.11). Поскольку чисто мнимые числа (1.12) будут собственными значениями матрицы $D_{p,p}$, то первая система в (1.11) имеет 2h-параметрическое семейство Ω -периодических решений (1.13). Так как выполняется тождество (1.14), то система (1.11) имеет решение

$$y(t) = \text{col}(y^{[p]}(t), 0, ..., 0).$$

Обратная замена переменных $y=Q^{-1}z$ позволяет найти Ω -периодическое решение системы (1.7), а значит и системы (1.6). В силу условия (1.1) вектор z(t) удовлетворяет также и системе (1.5). Тогда из [5] вытекает, что z(t) является Ω -периодическим решением системы (1.4). Возвращаясь к исходным переменным, заключаем, что тригонометрический многочлен (1.15) является сильно нерегулярным решением системы (0.1).

Таким образом, доказана

Теорема 1.1. Пусть в системе (0.1) стационарный коэффициент и усреднение периодического коэффициента удовлетворяют условию (1.1).

Если система (0.1) имеет сильно нерегулярное периодическое решение, то оно будет тригонометрическим многочленом вида (1.15). Для того чтобы (1.15) было решением системы (0.1), необходимо и достаточно, чтобы выполнялись условия (1.8), (1.12), (1.14).

2 Пример нахождения сильно нерегулярного периодического решения линейной системы

Рассмотрим 2π - периодическую систему

$$\dot{x} = -3x + y \cos t + z(2 - \cos t),
\dot{y} = -6x + 2y \cos t + z(3 - 2\cos t),
\dot{z} = -6x + 3z.$$
(2.1)

Для этой системы

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} -3 & 0 & 2 \\ -6 & 0 & 3 \\ -6 & 0 & 3 \end{pmatrix},$$

$$P(t) = \begin{pmatrix} \cos t & 1 & -1 - \cos t \\ \cos t & 1 - \cos t & -1 \\ -\cos t & -1 + \cos t & 1 \end{pmatrix},$$

$$\hat{P} = \frac{1}{2\pi} \int_{0}^{2\pi} P(\tau) d\tau = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Как видим, среднее значение периодического коэффициента является нетривиальным. Кроме этого, стационарный коэффициент является левым аннулятором среднего значения периодического коэффициента, т. е. выполнено условие (1.1).

С помощью замены переменных

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = S^{-1} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

система (2.1) приводится к системе

$$+ \begin{pmatrix} -3 & 2 & 0 \\ -6 & 3 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}. \tag{2.2}$$

Согласно [5], с учетом условия (1.1), искомое решение $(u(t), v(t), w(t))^T$ системы (2.2) удовлетворяет системе

$$\begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 3 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix},$$

$$\begin{pmatrix} 2\cos t & -\cos t & \cos t \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
(2.3)

Учитывая структуру матрицы коэффициентов второй системы в (2.3) искомое решение $(u(t), v(t), w(t))^T$ удовлетворяет также и системе

$$\begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 3 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix},$$

$$\begin{pmatrix} 2\cos t \\ -\cos t \\ \cos t \end{pmatrix}^{T} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$(2.4)$$

Еще одна замена переменных

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = Q \begin{pmatrix} u_1 \\ v_1 \\ w_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ w_1 \end{pmatrix}$$

приводит систему (2.4) к системе

$$\begin{pmatrix} \dot{u}_{1} \\ \dot{v}_{1} \\ \dot{w}_{1} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_{1} \\ v_{1} \\ w_{1} \end{pmatrix},$$

$$\begin{pmatrix} 0 \\ 0 \\ \cos t \end{pmatrix}^{T} \begin{pmatrix} u_{1} \\ v_{1} \\ w_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
(2.5)

Матрица второй системы из (2.5) имеет один ненулевой столбец. Поэтому соответствующая компонента w_1 периодического нерегулярного решения должна быть нулевой. Тогда система (2.5) примет вид

$$\begin{pmatrix} \dot{u}_1 \\ \dot{v}_1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \end{pmatrix}, \quad w_1 = 0.$$

Собственные числа матрицы коэффициентов редуцированной системы $\lambda_{1,2}=\pm i\sqrt{3}$. Поэтому последняя система имеет двухпараметрическое семейство сильно нерегулярных периодических решений

$$\begin{pmatrix} u_1 \\ v_1 \end{pmatrix} = \begin{pmatrix} a\cos\sqrt{3}t + b\sin\sqrt{3}t \\ \frac{1}{2}(b\sqrt{3} - a)\cos\sqrt{3}t - \frac{1}{2}(a\sqrt{3} + b)\sin\sqrt{3}t \\ w_1 = 0, \end{pmatrix},$$

где a,b — произвольные вещественные постоянные, которые удовлетворяют и системе (2.5). Теперь, возвращаясь к исходным переменным, находим решение системы (2.1)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = S^{-1}Q \begin{pmatrix} u_1 \\ v_1 \\ w_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ w_1 \end{pmatrix} =$$

$$= \begin{pmatrix} a\cos\sqrt{3}t + b\sin\sqrt{3}t \\ \frac{1}{2}(3a + b\sqrt{3})\cos\sqrt{3}t + \frac{1}{2}(3b - a\sqrt{3})\sin\sqrt{3}t \\ \frac{1}{2}(3a + b\sqrt{3})\cos\sqrt{3}t + \frac{1}{2}(3b - a\sqrt{3})\sin\sqrt{3}t \end{pmatrix},$$

период которого несоизмерим с периодом самой системы.

ЛИТЕРАТУРА

- 1. *Massera*, *J.L.* Observaciones sobre les soluciones periodicas de ecuaciones diferenciales / J.L. Massera // Bol. de la Facultad de Ingenieria. 1950. Vol. 4, № 1. P. 37–45.
- 2. *Курцвейль*, Я. О периодических и почти периодических решениях систем обыкновенных дифференциальных уравнений / Я. Курцвейль, О. Вейвода // Чехосл. матем. журнал. 1955. Т. 5, № 3. С. 362—370.
- 3. *Еругин*, *Н.П.* Линейные системы обыкновенных дифференциальных уравнений с периодическими и квазипериодическими коэффициентами / Н.П. Еругин. Мн.: АН БССР, 1963. 273 с.
- 4. *Гайшун*, *И.В.* Уравнения в полных производных с периодическими коэффициентами / И.В. Гайшун // Докл. АН БССР. 1979. Т. 23, № 8. С. 684–686.

- 5. *Грудо*, Э.И. О периодических решениях с несоизмеримыми периодами периодических дифференциальных систем / Э.И. Грудо // Дифференц. уравнения. 1986. Т. 22, № 9. С. 1499–1504.
- 6. Деменчук, А.К. Асинхронные колебания в дифференциальных системах. Условия существования и управления. / А.К. Деменчук. Lambert Academic Publishing. Saarbrücken, 2012. 186 с.
- 7. Белокурский, М.С. Решение задачи Еругина о существовании нерегулярных решений линейной системы с треугольным периодическим коэффициентом / М.С. Белокурский, А.К. Деменчук // Доклады НАН Беларуси. 2014. Т. 58, N = 4. С. 17—22.
- 8. Белокурский, М.С. Решение задачи Еругина о существовании нерегулярных решений линейной системы с нулевым средним периодического коэффициента / М.С. Белокурский // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2015. N 1. С. 35—42.
- 9. Зайцев, В.А. Глобальная достижимость и глобальная ляпуновская приводимость двумерных и трехмерных линейных управляемых систем с постоянными коэффициентами / В.А. Зайцев // Вестник Удмуртского университета. Математика. Ижевск. 2003. С. 31–62.
- 10. Габдрахимов, $A.\Phi$. О ляпуновской приводимости стационарных управляемых систем / $A.\Phi$. Габдрахимов, B.A. Зайцев // Изв. ИМИ УдГУ, 2006. № 3 (37). С. 21–22.
- 11. *Leonov*, *G.A.* Stabilization of linear system / G.A. Leonov, M.M. Shumafov // Cambridge Scientific Publishers, 2012. 430 p.
- 12. *Леонов*, *Г.А.* Стабилизационная проблема Брокетта / Г.А. Леонов // Автоматика и телемеханика. -2001. N = 5. C. 190-193.

Поступила в редакцию 15.06.15.