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Abstract. A subgroup A of a group G is called seminormal in G if there exists a sub-
group B such that G D AB and AX is a subgroup of G for every subgroup X of B . We
introduce the new concept that unites subnormality and seminormality. A subgroup A of
a group G is called semisubnormal in G if A is subnormal in G or seminormal in G.
A group G D AB with semisubnormal supersoluble subgroups A and B is studied. The
equality GU D .G0/N is established; moreover, if the indices of subgroups A and B in G
are relatively prime, then GU D GN2

. Here N, U and N2 are the formations of all nilpo-
tent, supersoluble and metanilpotent groups, respectively; HX is the X-residual of H .
Also we prove the supersolubility of G D AB when all Sylow subgroups of A and of B
are semisubnormal in G.

1 Introduction

Throughout this paper, all groups are finite, and G always denotes a finite group.
We use the standard notation and terminology of [13].

In 1953, Huppert [12] gave an example of a non-supersoluble group with super-
soluble non-conjugate subgroups A and B of index 2. Since A and B are normal
in G, it follows that G is soluble and G D AB; see [13, Theorem II.3.9]. Baer [3]
obtained the supersolubility of a group G D AB such that A and B are normal
supersoluble subgroups and the derived subgroupG0 is nilpotent. Baer’s result was
extended by weakening normality to subnormality in [20, Theorem 3]. Besides,
GU D .G0/N for a group G D AB with supersoluble subnormal subgroups A
and B; see [20, Theorem 2]. Here N and U are the formations of all nilpotent and
supersoluble groups, respectively; GU and .G0/N are the corresponding residuals
of G.

It is well known that every normal subgroup permutes with any subgroup of
a group. Hence if A and B are normal subgroups of G D AB , then A permutes
with every subgroup of B and B permutes with every subgroup of A. In this case,
a group G D AB is called a mutually permutable product of A and B; see [4,
p. 149]. If any subgroups of A and of B are permutable, then a group G D AB is
called a totally permutable product of A and B; see [4, p. 149].
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Asaad and Shaalan in [2, Theorem 3.8] extended Baer’s theorem by considering
mutually permutable subgroups. They also proved in [2, Theorem 3.1] that if G
is a totally permutable product of supersoluble subgroups A and B , then G is
supersoluble.

Asaad and Shaalan’s results were developed by other authors; see, for instance,
the references in [4]. The result associated with total permutability was generalized
in works [1, 10, 16].

A subgroup A of a group G is called seminormal in G if there exists a sub-
group B such that G D AB and AX is a subgroup of G for every subgroup X
of B; see [23]. It is obvious that any subgroup of prime index is seminormal. If
the subgroups A and B of G D AB are mutually permutable, then A and B are
seminormal in G.

Example 1.1. Let Zn be a cyclic group of order n. A group

G D Z7 Ì AutZ7 D Z7 Ì .Z2 �Z3/

is the product of subgroups A ' Z2 �Z3 and B ' Z7 ÌZ2 that are seminormal
in G. But A and B are not mutually permutable since A does not permute with
some order 2 subgroups of B .

Groups with some seminormal subgroups have been investigated by many au-
thors; see, for example, [7, 11, 15, 17, 23]. In particular, the supersolubility of
a group with seminormal Sylow subgroups was obtained in [11, 17].

We introduce the following concept that unites subnormality and seminormality.

Definition. A subgroup A of a group G is called semisubnormal in G if A is
subnormal in G or seminormal in G.

Let A and B be semisubnormal subgroups of G D AB . In the present paper,
we prove that G is supersoluble in the following cases:

� A is nilpotent and B is supersoluble; see Theorem A;

� A and B are supersoluble and G0 is nilpotent; see Theorem B;

� all Sylow subgroups of A and of B are semisubnormal in G; see Theorem D.

In Theorem C, for a group G D AB with supersoluble semisubnormal sub-
groups A and B , we obtain the equality GU D .G0/N. Besides, if the indices of
the subgroups A and B inG are relatively prime, thenGU D GN2

. Here N2 is the
formation of all metanilpotent groups.

From these theorems, we deduce some corollaries that present independent in-
terest. The above-mentioned results of works [2,3] are covered by Theorems A–D.
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In Section 5, as an application, we localize previous results to the p-supersolu-
ble case.

2 Preliminary results

In this section, we give some definitions and basic results which are essential in
the sequel.

A group whose chief factors have prime order is called supersoluble. Recall that
a p-closed group is a group with a normal Sylow p-subgroup and a p-nilpotent
group is a group with a normal Hall p0-subgroup.

We say a group G has a Sylow tower if there is a normal series such that each
quotient is isomorphic to a Sylow subgroup. Let G have order pa1

1 p
a2

2 : : : p
ak

k
,

where p1 > p2 > : : : > pk . We sayG has an ordered Sylow tower of supersoluble
type if there exists a series

1 D G0 < G1 < G2 < � � � < Gk�1 < Gk D G

of normal subgroups of G such that Gi=Gi�1 is isomorphic to a Sylow pi -sub-
group of G for each i D 1; 2; : : : ; k.

Denote by G0, Z.G/, F.G/ and ˆ.G/ the derived subgroup, center, Fitting
and Frattini subgroups of G, respectively; Op.G/ and Op0.G/ the greatest normal
p- and p0-subgroups ofG, respectively. We use Ept to denote an elementary abel-
ian group of order pt and Zm to denote a cyclic group of order m. The semidirect
product of a normal subgroup A and a subgroup B is written as follows: A Ì B .
Denote by �.G/ the set of all prime divisors of the order ofG. A groupG is called
primary if j�.G/j D 1.

Let X be non-empty formation. Then GX denotes the X-residual of G, that is
the intersection of all those normal subgroups N of G for which G=N 2 X.

Lemma 2.1 ([6, Theorems 1.2, 1.4, 1.6–1.8, Corollary 3.2]). The following state-
ments hold.

(1) The class U is a hereditary saturated formation.

(2) Every minimal normal subgroup of a supersoluble group has prime order.

(3) Let N be a normal subgroup of G, and assume that G=N is supersoluble. If
N is either cyclic, or N � Z.G/, or N � ˆ.G/, then G is supersoluble.

(4) Each supersoluble group has an ordered Sylow tower of supersoluble type.

(5) The derived subgroup of a supersoluble group is nilpotent.

(6) A group G is supersoluble if and only if every maximal subgroup of G has
prime index.

РЕПОЗИТОРИЙ ГГ
У И

МЕНИ Ф
. С

КО
РИНЫ
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If H is a subgroup of G, then HG D
T
x2G H

x is called the core of H in G.
If a group G contains a maximal subgroup M with trivial core, then G is said to
be primitive and M is its primitivator.

Lemma 2.2 ([20, Lemma 6]). Let G be a soluble group. Assume that G 62 U, but
G=K 2 U for every non-trivial normal subgroup K of G. Then

(1) G contains a unique minimal normal subgroup N ,

N D F.G/ D Op.G/ D CG.N / for some p 2 �.G/;

(2) Z.G/ D Op0.G/ D ˆ.G/ D 1,

(3) G is primitive, G D N ÌM , where M is maximal in G with trivial core,

(4) N is an elementary abelian subgroup of order pn, n > 1,

(5) if V is a subgroup G and G D VN , then V DM x for some x 2 G.

Lemma 2.3 ([5, Propositions 2.2.8, 2.2.11]). Let F and H be formations, and let
K be normal in G. Then

(1) .G=K/F D GFK=K,

(2) GFH D .GH/F,

(3) if H � F, then GF � GH.

Recall that a group G is said to be siding if every subgroup of the derived sub-
group G0 is normal in G; see [22, Definition 2.1]. Metacyclic groups, t-groups
(groups in which every subnormal subgroup is normal) are siding. The group
G D .Z6 �Z2/ ÌZ2 ([24], IdGroup(G) = [24,8]) is siding, but it is not meta-
cyclic and is not a t-group.

Lemma 2.4. Let G be siding. Then the following statements hold.

(1) If N is normal in G, then G=N is siding.

(2) If H is a subgroup of G, then H is siding.

(3) G is supersoluble.

Proof. (1) By [18, Lemma 4.6], .G=N/0 D G0N=N . Let A=N be an arbitrary
subgroup of .G=N/0. Then

A � G0N; A D A \G0N D .A \G0/N:
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Since A \G0 � G0, we have A \G0 is normal in G. Hence .A \G0/N=N is
normal in G=N .

(2) Since H � G, it follows that H 0 � G0. Let A be an arbitrary subgroup
of H 0. Then A � G0, and A is normal in G. Therefore, A is normal in H .

(3) We proceed by induction on the order of G. Let N � G0 and jN j D p,
where p is prime. By the hypothesis, N is normal in G. By induction, G=N is
supersoluble and G is supersoluble by Lemma 2.1 (3).

Remark 2.5. By Lemma 2.4, the class of all siding groups is a hereditary ho-
momorph. The supersoluble group G D S3 � S3 ([24], IdGroup(G) = [36,10])) is
not siding. Really, the derived subgroup G0 D hai � hbi is an elementary abelian
group of order 9, but the subgroup habi of G0 is not normal in G. Moreover, all
primitive quotients of G are isomorphic to either a cyclic group of order 2, or S3,
hence are siding. Thus the class of all siding groups is not a Schunck class and
formation.

3 Properties of semisubnormal subgroups

Lemma 3.1. The following statements hold.

(1) IfH is a semisubnormal subgroup ofG andH � X � G, thenH is semisub-
normal in X .

(2) If H is a semisubnormal subgroup of G and N is normal in G, then HN=N
is semisubnormal in G=N .

(3) If H is a semisubnormal subgroup of G and Y is a non-empty set of elements
from G, then HY D hHy j y 2 Y i is semisubnormal in G. In particular, Hg

is semisubnormal in G for any g 2 G.

Proof. If H is subnormal in G, then statements (1)–(3) are true; see [14, Chap-
ter 2]. If H is seminormal, then these statements were proved in [15, Lemmas 2
and 5]. Thus statements (1)–(3) are true.

Lemma 3.2. The following statements hold.

(1) Let p be the greatest prime in �.G/, and let P be a Sylow p-subgroup of G.
If P is semisubnormal in G, then P is normal in G.

(2) If any Sylow subgroup of G is semisubnormal in G, then G is supersoluble.

(3) Let H be a maximal subgroup of G. If H is semisubnormal in G, then the
index of H in G is prime.
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(4) If every maximal subgroup of G is semisubnormal in G, then G is supersol-
uble.

(5) If the index of H in G is prime, then H is semisubnormal in G.

Proof. (1) It is clear that if P is subnormal in G, then P is normal in G. If P is
seminormal in G and p is maximal in �.G/, then by [17, Lemma 4], P is normal
in G.

(2) Suppose that G has at least one subnormal Sylow subgroup P . Then P is
normal in G and therefore seminormal in G. Hence any Sylow subgroup of G is
seminormal in G. By [17, Corollary 6], G is supersoluble.

(3) If H is subnormal in G, then H is normal in G and jG W H j is prime. Let
H be seminormal in G, and let K be a subgroup of G such that HK D G and
HK1 is a subgroup of G for every subgroup K1 of K. Let r be a prime which
divides the index jG W H j, and let R be a Sylow r-subgroup of K. Then HR D G
and G D H hxi for x 2 R nH . We choose an element x of minimal order. Then
H hxri D hxriH D H and jG W H j D r .

(4) Let M be a maximal subgroup of G. By (3), the index of M in G is prime.
By Lemma 2.1 (6), G is supersoluble.

(5) Let jG W H j D r , and let R be a Sylow r-subgroup of G. Then R is not
contained in H and there exists an element x 2 R nH . Let

jxj D ra and jhxi \H j D ra1 :

It is obvious that a > a1; hence

jhxiH j D
jhxijjH j

jhxi \H j
D
ra jGj

r

ra1
� jGj; hxiH D G:

Now xr belongs to H and H is seminormal in G, and therefore is semisubnormal
in G.

Example 3.3. A group with seminormal 2-maximal subgroups is supersoluble;
see [23]. A group with subnormal 2-maximal subgroups can be non-supersolvable.
Any non-supersoluble Schmidt group (a non-nilpotent group whose proper sub-
groups are all nilpotent) confirms this fact. Such a group G D P ÌQ, where
jP j D pm, jQj D q and m > 1, is the order of p modulo q, for example, A4.
Since P is a minimal normal subgroup of G, it follows that P and Qy , y 2 P ,
are all maximal subgroups of G. It is clear that all 2-maximal subgroups are sub-
normal in G. Hence a group with semisubnormal 2-maximal subgroups can be
non-supersolvable.
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Recall that AG D hAg j g 2 Gi is the smallest normal subgroup of G contain-
ing A.

Lemma 3.4. The following statements hold.

(1) If A is a semisubnormal 2-nilpotent subgroup of G, then AG is soluble.

(2) Let p be the smallest prime divisor of order of G. If A is semisubnormal in G
and p does not divide the order of A, then p does not divide the order of AG .

Proof. (1) If A is subnormal in G, then by [18, Theorem 5.31], AG is soluble. If
A is seminormal in G, then AG is soluble by [15, Lemma 10].

(2) If A is a subnormal p0-subgroup of G, then by [18, Theorem 5.31], AG is
a p0-subgroup. If A is a seminormal p0-subgroup of G, then AG is a p0-subgroup
by [15, Lemma 11].

Lemma 3.5. Let G be soluble. If G has a subgroupH of prime index, then G=HG
is supersoluble.

Proof. Suppose thatH is not normal inG. ThenHG ¤ H andG=HG is primitive
with primitivator H=HG . By [18, Theorem 4.42],

G=HG D .P=HG/ Ì .H=HG/; P=HG D CG=HG
.P=HG/:

Let jG W H j D p, where p is prime. Then

jG=HG W H=HG j D jG W H j D p; jP=HG j D p:

The subgroup H=HG is cyclic, as the automorphism group of P=HG of prime
order. Hence G=HG is supersoluble. If H is normal in G, then H D HG and
G=HG is supersoluble.

Let X be seminormal in G. Then there exists a subgroup Y such that G D XY
and XY1 is a proper subgroup in G for every proper subgroup Y1 of Y . Here
a subgroup Y is called a supersupplement to X in G.

Lemma 3.6. Let A be a seminormal subgroup of a soluble group G, and let r be
the greatest prime in �.G/. If A is r-closed, then Ar is subnormal in G.

Proof. Let Y be a supersupplement to A in G, and let X be a maximal subgroup
of Y of prime index. By hypothesis, A permutes with X . Then by induction, Ar
is subnormal in AX . Since AX is a subgroup of G of prime index, it follows
that, by Lemma 3.5, G=.AX/G is supersoluble. Let jG W AX j D t . If t D r , then
AX=.AX/G is a r 0-group. Hence Ar � .AX/G . Since Ar is subnormal in AX ,
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we have Ar is subnormal in .AX/G and therefore is subnormal in G. If t ¤ r ,
then t < r and G=.AX/G is a r 0-group. Thus Ar � .AX/G and Ar is subnormal
in G.

Lemma 3.7. Let A and B be semisubnormal in G and G D AB . If A and B have
an ordered Sylow tower of supersoluble type, then G has an ordered Sylow tower
of supersoluble type.

Proof. We proceed by induction on jGj. Since A is 2-nilpotent, it follows, by
Lemma 3.4 (1), that AG is soluble and G D AGB is soluble. Let r 2 �.G/ with
r maximal. It is clear that a Sylow r-subgroup Ar is normal in A. Let A be semi-
normal in G. Then by Lemma 3.6, Ar is subnormal in G. If A is subnormal in G,
then Ar is subnormal in G. Similarly, a Sylow r-subgroup Br of B is subnormal
in G. Since R D ArBr is a Sylow subgroup of G, we have that G is r-closed.
The subgroups AR=R ' A=A \R and BR=R ' B=B \R are semisubnormal
in G=R D .AR=R/.BR=R/ and have an ordered Sylow tower of supersoluble
type. By induction, G=R has an ordered Sylow tower of supersoluble type; hence
G has an ordered Sylow tower of supersoluble type.

4 On the supersolubility of a factorized group with semisubnormal
factors

Theorem A. Let A and B be semisubnormal subgroups of G and G D AB . If A
is nilpotent and B is supersoluble, then G is supersoluble.

Proof. If A is subnormal in G, then AG is the nilpotent normal subgroup of G.
Hence, in the factorization G D AB , we can replace the subgroup A by the nilpo-
tent normal subgroupAG . Further, we assume thatA is seminormal inG. Let Y be
a supersupplement to A in G.

Assume that the claim is false, and let G be a minimal counterexample. If N is
a non-trivial normal subgroup of G, then the subgroups AN=N and BN=N are
semisubnormal in G=N by Lemma 3.1 (2), AN=N ' A=A \N is nilpotent and
BN=N ' B=B \N is supersoluble. Then by induction,

G=N D .AN=N/.BN=N/

is supersoluble. By Lemmas 2.1 (4) and 3.7, G has an ordered Sylow tower of
supersoluble type, and therefore we apply Lemma 2.2. We keep for G the nota-
tion of this lemma; in particular, N D Gp is the Sylow p-subgroup for the great-
est p 2 �.G/. Since G D AB , it follows that N D ApBp, where Ap and Bp are
Sylow p-subgroups of A and B , respectively; see [13, Theorem VI.4.6].
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Suppose that Ap D 1. Then N D Bp � B . We choose a minimal normal sub-
group N1 of B such that N1 � N . Since B is supersoluble, we have jN1j D p
by Lemma 2.1 (2). Since N1 � N � Y , it follows that there exists a subgroup
AN1 D ŒN1�A and N1 is normal in G; this contradicts Lemma 2.2 (4). Thus the
assumption Ap D 1 is false and Ap ¤ 1.

Assume thatBp D 1. HenceN D Ap � A andN D A by Lemma 2.2 (1). Then
B \N D 1 and B is maximal in G. Since B is semisubnormal in G, we have, by
Lemma 3.2 (3), the index of B in G is prime; this contradicts Lemma 2.2 (4).

Let Y1 be a Hall p0-subgroup of Y . Then AY1 is a subgroup of G and Ap
is normal in AY1. Since N is abelian, a Sylow p-subgroup Yp of Y central-
izes Ap and Ap is normal in G; hence Ap D N . Because A is nilpotent and by
Lemma 2.2 (1), it follows thatA D N . SinceB is supersoluble, we haveBp is nor-
mal in B . In this case, Bp is normal in N D A and therefore is normal in G. Thus
Bp D N and G D AB D NB D B is supersoluble, a contradiction. The theorem
is proved.

Corollary 4.1. Let A and B be subgroups of G and G D AB . Suppose that A is
nilpotent and B is supersoluble. Then G is supersoluble in each of the following
cases.

(1) A and B are mutually permutable; see [2, Theorem 3.2].

(2) A and B are subnormal in G; see [20, Lemma 10].

(3) A and B are seminormal in G.

(4) One of the subgroupsA orB is seminormal inG; the other is subnormal inG.

(5) The indices of A and B in G are prime; see [21, Theorem A].

(6) One of the subgroups A or B is semisubnormal in G; the index of the other
in G is prime.

Recall that if every subnormal subgroup of a group G is normal in G, then
G is called a t-group. In 1957, Gaschütz [9] proved that the soluble t-groups
can be represented as a semidirect product of a normal abelian Hall subgroup of
odd order and a Dedekind subgroup. In [8, Theorem 2], Cossey obtained that if
G D AB , where A and B are the normal soluble t-subgroups of G, then G is
supersoluble. If A and B are subnormal in G, then G can be non-supersoluble;
see [8].

Corollary 4.2. IfG D AB ,A is a supersoluble semisubnormal subgroup ofG and
B is a normal siding subgroup of G, then G is supersoluble.
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Proof. We use induction on the order of G. If N is a non-trivial normal subgroup
of G, then AN=N is semisubnormal in G=N by Lemma 3.1 (2) and is supersol-
uble,BN=N is a normal siding subgroup ofG=N by Lemma 2.4 (1). By induction,
G=N D .AN=N/.BN=N/ is supersoluble.

Let A be seminormal in G, and let U be a supersupplement to A in G. Since
G is soluble, then U has a subgroup U1 of prime index, and hence M D AU1 is
a subgroup of prime index inG. If A is subnormal inG, then the segment of a sub-
normal series between the subgroups A and G can be compacted to a composition
series. Because G is soluble, it follows that there exists a maximal subgroup M
of G of prime index such that A �M . By Dedekind’s identity, M D A.M \ B/.
Since A is semisubnormal in M by Lemma 3.1 (1) and M \ B is a normal siding
subgroup of M , we have that M is supersoluble by induction. If B is nilpotent,
then by Theorem A, G is supersoluble. Hence B is non-nilpotent and B 0 ¤ 1.

Let N be a minimal normal subgroup of G such that N � B 0. If N is not con-
tained in M , then G D N ÌM and jN j is prime. By Lemma 2.1 (3), G is super-
soluble. Suppose that N is contained in M and N1 is a subgroup of N of prime
order such thatN1 is normal inM . ThenN1 is normal inB and therefore is normal
in G. By Lemma 2.1 (3), G is supersoluble.

Example 4.3. The non-supersoluble group

G D Z3 � ..S3 � S3/ ÌZ2/

([24], IdGroup = [216,157]) is the product of a normal supersoluble subgroup
A ' S3 � S3 and a subnormal siding subgroup

B ' Z3 �Z3 � S3; B 0 ' Z3:

A subgroup that is isomorphic to Z4 is a supplement to B . Therefore, in Corol-
lary 4.2, the condition of normality of the siding factor cannot be weakened to
subnormality and seminormality.

Corollary 4.4. Let A and B be subgroups of G, and let G D AB . Suppose that A
is supersoluble and that B is normal and siding. Then G is supersoluble in each
of the following cases.

(1) A is subnormal in G; see [22, Corollary 3.3].

(2) A is normal in G.

(3) A is normal in G, and B is a soluble t-group; see [19, Theorem 3].

(4) A is seminormal in G.

(5) The indices of A and B in G are prime; see [21, Theorem B].
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Theorem B. Let A and B be semisubnormal supersoluble subgroups ofG, and let
G D AB . If the derived subgroup G0 is nilpotent, then G is supersoluble.

Proof. Assume that the claim is false, and let G be a minimal counterexample. If
N is a non-trivial normal subgroup of G, then the subgroups AN=N and BN=N
are semisubnormal in G=N by Lemma 3.1 (2) and are supersoluble. Since

.G=N/0 D G0N=N ' G0=G0 \N;

it follows that the derived subgroup .G=N/0 is nilpotent. Consequently, G=N sat-
isfies the hypothesis of the theorem, and by induction, G=N is supersoluble. By
Lemmas 2.1 (4) and 3.7, G has an ordered Sylow tower of supersoluble type, and
therefore we apply Lemma 2.2. We keep for G the notation of this lemma; in
particular, N D Gp is the Sylow p-subgroup for the greatest p 2 �.G/. By hy-
pothesis, G0 is nilpotent; hence N D G0 and G=N is abelian.

Suppose that AN D G. Then A \N D 1, and A is a maximal subgroup of G.
Since A is semisubnormal in G, then by Lemma 3.2 (3), the index of A in G is
prime; this contradicts Lemma 2.2 (4). Thus the assumption is false, andAN < G.
By Lemma 3.1 (1), A is semisubnormal in AN , and AN is supersoluble by induc-
tion. Similarly, we have BN < G and BN is supersoluble. NowG D .AN/.BN/
is the product of normal supersoluble subgroups AN and BN , andG0 is nilpotent.
By Baer’s theorem [3], G is supersoluble. The theorem is proved.

Corollary 4.5. Let A and B be supersoluble subgroups of G, and let G D AB . If
G0 is nilpotent, then G is supersoluble in each of the following cases.

(1) A and B are mutually permutable; see [2, Theorem 3.8].

(2) A and B are subnormal in G; see [20, Theorem 3].

(3) A and B are seminormal in G.

(4) One of the subgroupsA orB is seminormal inG; the other is subnormal inG.

(5) The indices of A and B in G are prime; see [21, Corollary 3.6].

(6) One of the subgroups A or B is semisubnormal in G; the index of the other
in G is prime.

Corollary 4.6. Let A and B be semisubnormal supersoluble subgroups of G with
relatively prime indices in G. If G is metanilpotent, then G is supersoluble.

Proof. Since .jG W Aj; jG W Bj/ D 1, we have G D AB . We use induction on the
order of G. From the proof of Theorem B, we obtain that G D N ÌM is a primi-
tive group, whereM is a maximal subgroup ofG andN DF.G/DGp is a unique
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minimal normal subgroup ofG, where p is the greatest in �.G/. Besides, AN and
BN are proper subgroups ofG. The subgroupsA andN are semisubnormal inAN
and supersoluble; moreover, .jAN W Aj; jAN W N j/ D 1. Since AN is metanilpo-
tent, by induction, AN is supersoluble. Similarly, BN is supersoluble. SinceG=N
is nilpotent, AN and BN are subnormal in G. Now G D .AN/.BN/ is the prod-
uct of subnormal supersoluble subgroups AN and BN such that its indices in G
are relatively prime. By [20, Corollary 3.1], G is supersoluble.

Corollary 4.7. Let A and B be semisubnormal supersoluble subgroups of G with
relatively prime indices in G. If j�.G/j � 2, then G is supersoluble.

Proof. By Lemma 3.7, G has an ordered Sylow tower of supersoluble type. By
hypothesis, j�.G/j � 2; hence G is metanilpotent. By Corollary 4.6, G is super-
soluble.

Example 4.8. Huppert [12] and Baer [3] gave the first examples of non-supersol-
uble groups that are products of two normal supersoluble subgroups. The groups
in these examples are metanilpotent and have orders 23 � 52 and 23 � p2. Hence we
cannot omit the condition .jG W Aj; jG W Bj/ D 1 in Corollaries 4.6 and 4.7.

Let p; q be primes, and let S¹p;qº be the formation of all ¹p; qº-groups. For
a group G, we introduce the following notation:

B.G/ D
\

8¹p;qº��.G/

GS¹p;qº :

It is clear that B.G/ is normal in G, and if G is ¹p; qº-nilpotent, then

�.B.G// \ ¹p; qº D ;:

In particular, if G is non-primary and has a Sylow tower, then

jB.G/j � j�.G/j � 2:

Theorem C. Let A and B be semisubnormal supersoluble subgroups of G and
G D AB . Then

(1) GU D .G0/N,

(2) if .jG W Aj; jG W Bj/ D 1, then GU D GN2

\B.G/ D .G0/N.

Proof. (1) IfG is supersoluble, thenGUD 1 andG0 is nilpotent by Lemma 2.1 (5).
Consequently, .G0/N D 1 D GU, and the statement is true. Further, we assume
that G is non-supersoluble. By Lemmas 2.1 (4) and 3.7, G has an ordered Sylow
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tower of supersoluble type. Since U � NA, we have

G.NA/
D .GA/N D .G0/N � GU

by Lemma 2.3 (2) and (3). Next we check the reverse inclusion. For this, we prove
that G=.G0/N is supersoluble. The derived subgroup

.G=.G0/N/0 D G0.G0/N=.G0/N D G0=.G0/N

is nilpotent. The quotients

G=.G0/N D .A.G0/N=.G0/N/.B.G0/N=.G0/N/;

A.G0/N=.G0/N ' A=A \ .G0/N; B.G0/N=.G0/N ' B=B \ .G0/N;

hence the subgroupsA.G0/N=.G0/N andB.G0/N=.G0/N are supersoluble, and by
Lemma 3.1 (2), these subgroups are semisubnormal in G=.G0/N. By Theorem B,
G=.G0/N is supersoluble. Thus GU � .G0/N, and (1) is proved.

(2) First we prove thatGU D GN2

\B.G/. It is obvious that all quotients ofG
satisfy the hypothesis of the theorem. Since G=GN2

2 N2, it follows that G=GN2

is supersoluble by Corollary 4.6. Hence GU � GN2

. Since G=GS¹p;qº 2 S¹p;qº,
we have G=GS¹p;qº is supersoluble by Corollary 4.7. By Remak’s lemma [18,
Lemma 2.33], G=B.G/ is isomorphic to a subgroup of direct productY

8¹p;qº��.G/

G=GS¹p;qº :

Thus G=B.G/ is supersoluble, and GU � GN2

\B.G/.
Next we prove the reverse inclusion. By Lemma 2.1 (5), every supersoluble

group is metanilpotent. Hence U � N2 andGN2

� GU by Lemma 2.3 (3). There-
fore,

GN2

\B.G/ � GN2

� GU:

So the equality GU D GN2

\B.G/ is proved. By (1), we have

GU
D GN2

\B.G/ D .G0/N:

The theorem is proved.

Theorem D. Let A and B be subgroups of G and G D AB . If all Sylow subgroup
of A and of B are semisubnormal in G, then G is supersoluble.
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Proof. We use induction on the order of G. Let t be the smallest in �.G/. We
consider r ¤ t . By Lemma 3.4 (2), t does not divide the order of AGr . Similarly,
t does not divide the order of BGr , and the subgroup

H D
Y
r¤t

AGr B
G
r

is a normal t 0-subgroup of G, i.e. H D Gt 0 . In particular, G is soluble. By [13,
Theorem VI.4.6], Gt 0 D At 0Bt 0 . By induction, Gt 0 is supersoluble; hence G has
an ordered Sylow tower of supersoluble type.

Let N be a non-trivial proper normal subgroup of G. Then

G=N D .AN=N/.BN=N/:

Let S=N be a Sylow s-subgroup of AN=N , and let T be a Sylow s-subgroup
of S \ A. Then TN=N D S=N , and T is a Sylow s-subgroup of A.

Since T is semisubnormal inG, by Lemma 3.1 (2), TN=N D S=N is semisub-
normal in G=N . Similarly, if K=N is a Sylow subgroup of BN=N , then K=N is
semisubnormal in G=N . By induction, G=N is supersoluble. By Lemma 2.2, G is
primitive, and we use for G the notation of this lemma. In particular, N D Gp,
and p is the greatest in �.G/.

Let N1 � N and jN1j D p. Since M is a Hall p0-subgroup of G, we have
M D Ap0Bp0 .

Let �.Ap0/ D �1 [ �2. If r 2 �1, then Ar is seminormal in G, and if r 2 �2,
then Ar is subnormal in G. It is obvious that �1 and �2 can be chosen so that
�1 \ �2 D ;. Suppose that r 2 �1. Then Ar is seminormal in G, and there is
a subgroup U such that G D ArU and Ar permutes with every subgroups of U .
Because N � U , it follows that Ar permutes with N1. Since it is true for any
r 2 �1, we have A�1

permutes with N1. Let r 2 �2. Then Ar is subnormal in G,
and .Ar/G is a r-group. Hence N � .Ar/G . It is impossible because p ¤ r . Thus
�2 D ; and �.Ap0/ D �1. Therefore, Ap0 permutes with N1.

Similarly, Bp0 permutes with N1. Hence M permutes with N1. Now MN1 is
a subgroup ofG, andN1 is normal inMN1. SinceN is abelian, thenN1 is normal
in NM D G; this contradicts jN j > p. The theorem is proved.

Let G be a product of two subgroups. The following example shows that if all
maximal subgroups of these subgroups are semisubnormal in G, then G can be
non-supersoluble.

Example 4.9. The alternating groupG D A4 of degree 4 is a product of subgroups
A D Z3 and B D Z2 �Z2. It is clear that all maximal subgroups of A and of B
are semisubnormal in G. But G is non-supersoluble.
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5 Applications to p-supersoluble groups

A group is said to be p-soluble if the order of each of its chief factors is either
a p-power or coprime to p. A group is said to be p-supersoluble if the order of
each of its factors is either equal to p or coprime to p. We write pS for the class
of all p-soluble groups and pU for the class of all p-supersoluble groups. The
classes of all p-closed and p-nilpotent groups are equal to the products NpEp0

and Ep0Np, respectively, where Np is the class of all p-groups and Ep0 is the
class of all p0-groups. The classes pS, NpEp0 and Ep0Np are radical hereditary
saturated formations and NpEp0 [Ep0Np � pS.

Lemma 5.1 ([13, Theorem VI.9.1]). The following statements hold.

(1) The class pU is a hereditary saturated formation.

(2) Each minimal normal subgroup of a p-supersoluble group is either a p0-sub-
group or a group of order p. In particular, the p-rank of a p-supersoluble
group is equal to 1.

(3) Let N be a normal subgroup of G and G=N 2 pU. If N is cyclic or

N 2 ¹Z.G/;Op0.G/;ˆ.G/º;

then G 2 pU.

(4) The derived subgroup of a p-supersoluble group is p-nilpotent.

Lemma 5.2 ([19, Lemma 4]). Let G be a p-supersoluble group, let P be a Sylow
p-subgroup of G, and let H be a Hall p0-subgroup of G. If Op0.G/ D 1, then the
following statements hold.

(1) P is normal in G and F.G/ D P .

(2) If ˆ.G/ D 1, then P D P1 � P2 � : : : � Pt , where Pi is a normal subgroup
of G of prime order for any i . In particular, P is elementary abelian.

(3) H is abelian of exponent dividing p � 1.

(4) G is supersoluble.

Lemma 5.3 ([19, Lemma 5]). Suppose that a p-soluble group G does not belong
to pU, but G=K 2 pU for every non-trivial normal subgroup K of G. Then the
following hold.

(1) Z.G/ D Op0.G/ D ˆ.G/ D 1.

(2) G has a unique minimal normal subgroupN ,N DF.G/DOp.G/DCG.N /.
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(3) G is a primitive andG D N ÌM , whereM is a maximal subgroup ofG with
trivial core.

(4) N is an elementary abelian group of order pn, n > 1.

(5) IfM is abelian, thenM is cyclic of order dividing pn � 1, and n is the small-
est positive integer such that pn � 1 .mod jM j/.

Lemma 5.4 ([19, Corollary 1.1]). Let A and B be normal p-supersoluble sub-
groups of G, and let G D AB . If G0 is p-nilpotent, then G is p-supersoluble.

Theorem E. Let A and B be semisubnormal subgroups of a p-soluble group G
and G D AB . If A is p-nilpotent and B is p-supersoluble, then G is p-super-
soluble.

Proof. We use induction on the order of G. Let N be a non-trivial normal sub-
group of G. The quotients

G=N D .AN=N/.BN=N/;

AN=N ' A=A \N; BN=N ' B=B \N;

hence AN=N is p-nilpotent and BN=N is p-supersoluble. By Lemma 3.1 (2),
these subgroups are semisubnormal in G=N . Consequently, G=N satisfies the hy-
pothesis of the theorem, and by induction,G=N is p-supersoluble. By Lemma 5.3,
G has a unique minimal normal subgroup N , N D F.G/ D Op.G/ D CG.N /
and N is an elementary abelian group of order pn, n > 1.

Suppose that AN D G. Then A \N D 1, and A is a maximal subgroup of G.
By hypothesis, A is semisubnormal in G, and by Lemma 3.2 (3), the index of M
inG is prime; this contradicts jN j>p. Thus the assumption is false, andAN <G.
Similarly, BN < G.

The subgroups A and N are semisubnormal in AN , A is p-nilpotent, and N is
p-supersoluble. By induction, AN is p-supersoluble. Similarly, BN is p-super-
soluble since N and B are semisubnormal in BN , N is p-nilpotent and B is
p-supersoluble.

Since Op0.G/ D 1 and N D CG.N / D Op.G/, we have

Op0.AN/ D 1 D Op0.BN/:

By Lemma 5.2, AN and BN are supersoluble and p-closed; besides, its Hall
p0-subgroups are abelian. Hence A is nilpotent, and B is supersoluble. By The-
orem A, G is supersoluble.
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Theorem F. LetA and B be semisubnormal p-supersoluble subgroups of a p-sol-
uble group G and G D AB . If G0 is p-nilpotent, then G is p-supersoluble.

Proof. By induction and by Lemma 5.3, we obtain that G D N ÌM is a prim-
itive group, where M is a maximal subgroup of G and N D F.G/ D Op.G/ is
a unique minimal normal subgroup of G for some prime p 2 �.G/. By hypoth-
esis, the derived subgroup of G is p-nilpotent. Since Op0.G/ D 1, it follows that
G0 is a p-group. Thus N D G0 and G=N is abelian.

Besides, AN and BN are proper subgroups of G. The subgroups A and N
are semisubnormal in AN and p-supersoluble. Since .AN/0 is p-nilpotent, by
induction, AN is p-supersoluble. Similarly, BN is p-supersoluble. Since G=N
is abelian, we have AN and BN are normal in G. Now G D .AN/.BN/ is the
product of normal p-supersoluble subgroups AN and BN . By Lemma 5.4, G is
p-supersoluble, a contradiction.

Theorem G. Let G D AB be a p-soluble group, and let A and B be semisub-
normal p-supersoluble subgroups of G. Then GpU D .G0/Ep0Np .

Proof. If G is p-supersoluble, then we have GpU D 1 and G0 is p-nilpotent by
Lemma 5.1 (4). Consequently, GpU D 1 D .G0/Ep0Np , and the statement is true.
Further, we assume that G is non-p-supersoluble.

Since pU � Ep0NpA, we have

G.Ep0NpA/
D .GA/Ep0Np D .G0/Ep0Np � GpU

by Lemma 2.3 (2) and (3). Next we check the reverse inclusion. For this, we prove
that G=.G0/Ep0Np is p-supersoluble. The derived subgroup

.G=.G0/Ep0Np /0 D G0.G0/Ep0Np=.G0/Ep0Np D G0=.G0/Ep0Np

is p-nilpotent. The quotients

G=.G0/Ep0Np D .A.G0/Ep0Np=.G0/Ep0Np /.B.G0/Ep0Np=.G0/Ep0Np /;

A.G0/Ep0Np=.G0/Ep0Np ' A=A \ .G0/Ep0Np ;

B.G0/Ep0Np=.G0/Ep0Np ' B=B \ .G0/Ep0Np ;

hence the subgroups A.G0/Ep0Np=.G0/Ep0Np and B.G0/Ep0Np=.G0/Ep0Np are
p-supersoluble, and by Lemma 3.1 (2), these subgroups are semisubnormal in
G=.G0/Ep0Np . By Theorem F, G=.G0/Ep0Np is p-supersoluble. The theorem is
proved.
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