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Abstract. We describe finite soluble groups in which every n-maximal subgroup 1s)§-sub-
normal.

1 Introduction

Throughout this paper, all groups are finite and G ‘always denotes a finite group.
We use U, 9t and 91" to denote the class of all'supersoluble groups, the class of all
nilpotent groups and the class of all soluble groups of nilpotent length at most r
(r > 1). The symbol P denotes the set of all'primes, 77 (G) denotes the set of prime
divisors of the order of G. If p is.a prime, then we use &), to denote the class of
all p-groups.

Let § be a class of groups.NIf 1€ &, then we write G to denote the intersec-
tion of all normal subgroups, N of G with G/N € %. The class % is said to be
a formation if either F =" or 1 € & and every homomorphic image of G/G&
belongs to & for any)group G. The formation ¥ is said to be saturated if G € §
whenever G/ ®(G) € § for any group G, hereditary it H € § whenever G € §
and H is a subgroup of G. A group G is called -critical provided G does not
belong to @& but every proper subgroup of G belongs to §. The Gaschiitz product
M o Hofithe formations I and & is the class of all groups G such that G® € M.

For any formation function f : P — {group formation}, the symbol LF( /) de-
notes.the collection of all groups G such that one has either G = 1 or G # 1 and
G/Cg(H/K) € f(p) for every chief factor H/K of G and every p € n(H/K).
It is well known that for any non-empty saturated formation ¥, there is a unique
formation function F such that § = LF(F) and F(p) = &, o F(p) < & for all
primes p (see [2, Chapter IV, Proposition 3.8]). The formation function F is called
the canonical local satellite of %. A chief factor H/K of G is called &-central
in G provided G/Cg(H/K) € F(p) for all primes p dividing |H /K|, otherwise
it is called §-eccentric.
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Fix some ordering ¢ of P. The record p¢g means that p precedes g in ¢ and
p # q.Recall that a group G of order p{' p5? - pp" is called ¢-dispersive when-
ever p1gpr¢ ---pp, and for every i there is a normal subgroup of G of order
p‘lx‘ pgz p?i. Furthermore, if ¢ is such that p¢q always implies p > ¢, then
every ¢-dispersive group is called Ore dispersive.

By definition, every formation is O-multiply saturated and for n > 1 a forma-
tion & is called n-multiply saturated if % = LF( f'), where every non-empty value
of the function f is an (n — 1)-multiply saturated formation (see [20,21]). In fact,
almost saturated formations met in mathematical practice are n-multiply saturated
for every natural n. For example, the formations of all soluble groupssall nilpo-
tent groups, all p-soluble groups, all p-nilpotent groups, all p-closed groups, all
p-decomposable groups, all Ore dispersive groups, all metanilpotent, groups are
n-multiply saturated for all n > 1. Nevertheless, the formations ‘ef-all supersolu-
ble groups and all p-supersoluble groups are saturated, butthey are not 2-multiply
saturated formations.

Recall that a subgroup H of G is called a 2-maximak.(second maximal) sub-
group of G whenever H is a maximal subgroup,of'some maximal subgroup M
of G. Similarly we can define 3-maximal subgtoupsy and so on.

The interesting and substantial direction in'finit€ group theory consists in study-
ing the relations between the structure of! the,group and its 7-maximal subgroups.
One of the earliest publication in this direction is the article of Huppert [9] who
established the supersolubility of a~group G whose all second maximal subgroups
are normal. In the same article Huppert proved that if all 3-maximal subgroups
of G are normal in G, then the commutator subgroup G’ of G is nilpotent and
the chief rank of G is atumost 2. These two results were developed by many au-
thors. Among the recent\results on n-maximal subgroups we can mention [8],
where the solubility jof*groups is established in which all 2-maximal subgroups
enjoy the coversaveidance property, and [5, 6, 14], where new characterizations of
supersoluble{groups in terms of 2-maximal subgroups were obtained. The classi-
fication of nonnilpotent groups whose all 2-maximal subgroups are TI-subgroups
appeared in [13]. Description was obtained in [3] of groups whose every 3-max-
imal'subgroup permutes with all maximal subgroups. The nonnilpotent groups are
described in [4] in which every two 3-maximal subgroups are permutable. The
groups are described in [15] whose all 3-maximal subgroups are S-quasinormal,
that is, permute with all Sylow subgroups. Subsequently this result was strength-
ened in [16] to provide a description of the groups whose all 3-maximal subgroups
are subnormal.

Despite of all these and many other known results about 7-maximal subgroups,
the fundamental work of Mann [17] still retains its value. It studied the structure
of groups whose n-maximal subgroups are subnormal. Mann proved that if all



Finite soluble groups with all n-maximal subgroups -subnormal 275

n-maximal subgroups of a soluble group G are subnormal and |7 (G)| >n + 1,
then G is nilpotent; but if |[7(G)| > n — 1, then G is ¢-dispersive for some order-
ing ¢ of . Finally, in the case |7 (G)| = n Mann described G completely.

Let § be a non-empty formation. Recall that a subgroup H of a group G is
said to be §-subnormal in G if either H = G or there exists a chain of subgroups
H =Hy < H; <:-- < H, = G such that H;_; is a maximal subgroup of H;
and H; /(Hi—1)n; € &.fori =1,...,n.

The main goal of this article is to prove the following formation analogs'of
Mann’s theorems.

Theorem A. Let & be an r-multiply saturated formation such that ! €' < N7 +!
for some r > 0. If every n-maximal subgroup of a soluble group G-is &§-subnormal
inGand|n(G)|>n+r+1,then G € §.

Theorem B. Let § = LF(F) be a saturated formation Such that 9t C & C U,
where F is the canonical local satellite of §. Let G be a soluble group with
|7 (G)| = n + 1. Then all n-maximal subgroups of\G\are &-subnormal in G if
and only if G is a group of one of the followingtypes:

D G eR.
() G = A x B, where A = G and \B.are Hall subgroups of G, while G is
Ore dispersive and satisfies the following:

(1) A is either of the formi N1 X --- X Ny, where each Nj is a minimal nor-
mal subgroup of Gywhich is a Sylow subgroup of G, fori = 1,...,t, or
a Sylow p-subgroup of G of exponent p for some prime p and the com-
mutator subgroup, the Frattini subgroup, and the center of A coincide,
while A ®(A) is an F-eccentric chief factor of G,

(2) everym=ingximal subgroup of G belongs to % and induces on the Sylow
pAsubgroup of A an automorphism group which is contained in F(p)
for every prime divisor p of |A|.

In theproof of Theorem B we often use Theorem A and the following useful

Theorem C. Let §§ be a hereditary saturated formation such that every &-critical
group is soluble and it has a normal Sylow p-subgroup G, # 1 for some prime p.
Then every 2-maximal subgroup of G is &-subnormal in G if and only if either
G € § or G is an §-critical group and G is a minimal normal subgroup of G.

Theorem D. Let § be a saturated formation such that Nt C & C U. If every n-max-
imal subgroup of a soluble group G is &-subnormal in G and |7 (G)| > n, then G
is ¢-dispersive for some ordering ¢ of P.
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All unexplained notation and terminology are standard. The reader is referred
to [2] or [1] if necessary.

2 Preliminary results

Let & be a non-empty formation. Recall that a maximal subgroup H of G is said
to be F-normal in G if G/Hg € §, otherwise it is said to be &-abnormal in G.
We use the following results.

Lemma 2.1. Let § be a formation and H an %&-subnormal subgroup of G

(1) If & is hereditary and K < G, then H N K is an §-subnormalsubgroup in K,
cf. [1, Lemma 6.1.7 (2)].

(2) If N is a normal subgroup in G, then HN/N is an F-subnormal subgroup
in G/N, cf. [1, Lemma 6.1.6 (3)].

(3) If K is a subgroup of G such that K is §-subnormal in H, then K is &-sub-
normal in G, c¢f. [1, Lemma 6.1.6 (1)].

4) If & is hereditary and K is a subgroup_of\G such that G8 <K, then K is
&-subnormal in G, cf. [1, Lemma 6.1.7.(1)].

The following lemma is evident:

Lemma 2.2. Let § be a hereditary formation. If G € &, then every subgroup of G
is &-subnormal in G.

Lemma 2.3. Let §§ be a hereditary saturated formation. If every n-maximal sub-
group of G is F-Subnormal in G, then every (n — 1)-maximal subgroup of G be-
longs to & and'every (n + 1)-maximal subgroup of G is F-subnormal in G.

Proof.~We first show that every (n — 1)-maximal subgroup of G belongs to . Let
H be an (n — 1)-maximal subgroup of G and K a maximal subgroup of H. Then
K\is an n-maximal subgroup of G and so, by hypothesis, K is §&-subnormal in G.
Hence K is §-subnormal in H by Lemma 2.1 (1). Thus all maximal subgroups
of H are -normal in H. Therefore H €  since & is saturated.

Now, let £ be an (n 4+ 1)-maximal subgroup of G, and let £; and E, be
an n-maximal and an (n — 1)-maximal subgroup of G, respectively, such that
E < E;| < E,. Then, by the above, E» € §, so E1 € &. Hence E is §&-subnor-
mal in £ by Lemma 2.2. By hypothesis, £ is §-subnormal in G. Therefore E is
&-subnormal in G by Lemma 2.1(3). The lemma is proved. o
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Lemma 2.4 (see [19, Chapter VI, Theorem 24.2]). Let & be a saturated formation
and G a soluble group. If GS # 1 and every &-abnormal maximal subgroup of G
belongs to &, then the following hold:

(1) GBisa p-group for some prime p,
(2) G/ ®(GDB) is an F-eccentric chief factor of G,

3) if G38 is a non-abelian group, then the commutator subgroup, the Frattini
subgroup, and the center of G coincide and are of exponent p,

@ if G3 is abelian, then G is elementary,
(5) if p > 2, then G8 is of exponent p, for p = 2 the exponent ofG% is.at most 4,

(6) every pair of &-abnormal maximal subgroups of G are conjugategn G.

Lemma 2.5 (see [19, Chapter VI, Theorem 24.5]). Let § be a.saturated formation.
Let G be an §-critical group and G has a normal Sylow p-subgroup G, # 1 for
some prime p. Then:

(1) G, = GS,

(2) F(G) = Gp®(G),

(3) Gy N CG(Gp/P(Gp)) = D(G) N Gyrwhere Gy is some complement of G,
inG.

Lemma 2.6 (see [19, Chapter VI, Theorems 26.3 and 26.5]). Let G be a U-critical

group. Then:

(1) G is soluble and |m(G)N< 3,

(2) if G is not a Schmidt group, then G is Ore dispersive,

(3) GY is the unigué normal Sylow subgroup of G,

@) if S is acomplement of G%in G, then S/S8 N O(G) is either a primary cyclic

group'or aMiller—-Moreno group.

Let &be a class of groups. Recall that the product of all normal subgroups of
a group G whose G-chief factors are F-central in G is called §-hypercentre of G
and denoted by Z&(G), see [2, p. 389].

Lemma 2.7 (see [7, Lemma 2.14]). Let § be a saturated formation and F be the
canonical local satellite of §. Let E be a normal p-subgroup of a group G. Then

E < Z%(G) ifand only if G/ Cg(E) € F(p).

Lemma 2.8 (see [20, Corollary 7.14]). The Gaschiitz product of any two n-multi-
ply saturated formations is an n-multiply saturated formation for every n > 0.
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We shall also need the following evident lemma.

Lemma 2.9. [f G = AB, then G = AB” forall x € G.

Let % be a class of groups and ¢ be a natural number with ¢ > 2. Recall that
& is called X;-closed if & contains every group G such that G has subgroups
Hy, ..., H; whose indices are pairwise coprime and H; € &, fori = 1,...,¢.

Lemma 2.10 (see [19, Chapter I, Lemma 4.11]). Every formation of nilpetent
groups is X3-closed.

If § =LF(f) and f(p) C & for all primes p, then f is called anvntegrated
local satellite of %. Let X be a set of groups. The symbol /,, form X _denotes the
intersection of all n-multiply saturated formations % such that\X € . In view
of [1, Remark 3.1.7], [, form X is an n-multiply saturated formation.

Lemma 2.11 (see [20, Theorem 8.3]). Let § be an n-multiply saturated forma-
tion for some n > 1. Then & has an integrated localsatellite f such that, for all

primes p, f(p) = lp—1 form(G/ Oy ,(G)|G €F):

Lemma 2.12 (see [22, Section 1.4]). Every~r-multiply saturated formation con-
tained in W+ is hereditary for any r = 0.

Lemma 2.13 (see [19, p. 35]). For anyjordering ¢ of PP the class of all ¢-dispersive
groups is a saturated formation.

Lemma 2.14 (see [7, Corollary 1.6]). Let & be a saturated formation containing
all nilpotent groups and ‘E"a normal subgroup of G. If E/E N ®(G) € §, then
E eR.

Lemma 2.15 _(see’[19, Theorem 15.10]). Let § be a saturated formation and G
be a group’such that G is nilpotent. Let H and M be subgroups of G, H € &,
H <M and HF(G) = G. If H is §-subnormal in M, then M € §.

3. Proof of Theorem A

First we give two proposition which may be independently interesting since they
generalize some known results.

Proposition 3.1. Suppose that G = A1 Ay, = A A3 = A1 A3z, where Ay, Ay and
Asz are soluble subgroups of G. If the three indices |G : Ng(A})|, |G : Ng(A%)|
and |G : Ng(A%)| are pairwise coprime, then G is soluble.

s
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Proof. Suppose that this proposition is false and let G be a counterexample with
|G| minimal.

(1) If N is a minimal normal subgroup of G, then G/ N is soluble. Hence N is
the unique minimal normal subgroup of G and Cg(N) = 1.

It is clear that AJN/N = (4;N)'N/N = (A;N/N), for i =1,2,3. Hence
NG(A;)N/N < Ng/n(A;N/N)'. On the other hand, 4;N/N ~ A;/A; N N is
soluble for all i = 1,2, 3. Therefore the hypothesis holds for G/ N, so G/ Nyis
soluble by the choice of G. Hence N is non-abelian and N is the unique minimal
normal subgroup of G. Therefore, since Cg(N) is normal in G, Cg(N) =d.

(2) At least two of the subgroups Ay, Az, A3 are non-abelian. (This diteetly fol-
lows from Kegel-Wielandt’s theorem on solubility of products ofnilpetent groups
[10, Chapter VI, Hauptsatz 4.3] and the choice of G.)

(3) There are two pairs i1 # j1 and iy # ja, where j1 =\3, such that the sub-
group A;, has a minimal normal subgroup L, such that Lo% < Ng (A;a).

Let L be a minimal normal subgroup of A;. Theh\L1 is a p-group for some
prime p since A; is soluble by hypothesis. On thether hand, again by hypothe-
sis, |G : Ng(A4%)| and |G : Ng(A5)] are coprime, so at least one of the subgroups
Ng (A%) or Ng(A%) contains a Sylow p-subgroup P of G. Without loss of gen-
erality we may assume that P < Ng(A})\Moreover, in view of Lemma 2.9 and
Sylow’s theorem we may assume that L "< P. Hence

A1Ng(4%)
1

LS = L= < Ng(4)).

Now let L, be a minimal\normal subgroup of A,. Then, as above, we have either
L2% < Ng(A4) or Ly8 < Ng(45).

Final contradiction. In view of (3) we may assume that A; has a minimal nor-
mal subgroup Ly.such that L1G < Ng (A’Z), and A, has a minimal normal sub-
group L, suchvthat L,% < Ng (Aj) for some i. In view of (2), at least one of the
subgroups A, or A; is not abelian. Without loss of generality we may suppose
that-d}, # 1. In view of (1), we have N < Ng(A}). Let H = A, N N. Suppose
that H # 1. Then H is a normal non-identity subgroup of N. Hence N is solu-
ble; contrary to (1). Finally, consider the case when H = 1. In this case we have
A, < Cg(N) < N, so A, =1 by (1). This contradiction completes the proof of
the result. O

Corollary 3.2. Suppose that G = A1 Ay = Ay A3 = A1 A3z, where Ay, Az and A3
are soluble subgroups of G. If the three indices |G : Ng(A1)|, |G : Ng(A2)| and
|G : Ng(A3)| are pairwise coprime, then G is soluble.
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Corollary 3.3 (H. Wielandt). If G has three soluble subgroups A1, A and Az
whose indices |G : A1|, |G : Az|, |G : As| are pairwise coprime, then G is itself
soluble.

Proposition 3.4. Let i be an r-multiply saturated formation and let, for some
r>0, NCMCN L. Then, for any prime p, both formations M and &, o M
are X, 43-closed.

Proof. Let M be the canonical local satellite of the formation 9Jt. Let % be.one
of the formations 9 or &, o M. Let G be any group such that for sofne’sub-
groups Hy, ..., Hy43 of G whose indices |G : Hy|,...,|G : Hy43| are pairwise
coprime we have Hy,..., Hr43 € §. We shall prove that G € %+ Suppose that
this is false and let G be a counterexample with » + |G| minimal{ Let ¥V be a min-
imal normal subgroup of G.

(1) N = G8 is the only minimal normal subgroup of Gand N < 04(G) for
some prime q. Hence if § = &, o M, then q # p.

It is clear that the hypothesis holds for G/N, so G/W € % by the choice of G.
Hence N = G3 since G ¢ &. Moreover, N is/a gégroup for some prime ¢ since
G is soluble by Proposition 3.1. Finally, if F=43 o I and p = g, then

GeGpro(GproM=6G,0F =7,

a contradiction. Hence we have (1).
Since the indices |G : H1|,. .4, |G 3 H, 3| are pairwise coprime, in view of (1)
we may assume without loss of generality that N < H; foralli =2,...,r 4 3.

2)Cg(N)=N.

First we show that N\ £ ®(G). Suppose that N < &(G). If r > 0, then F is
saturated by Lemma)2:8, so G € . This contradiction shows that r = 0 and so
& = G, oM by-Lemma 2.10 and the choice of G. Hence ¢ # p by (1). Let
O/N = Op(G)N) and P be a Sylow p-subgroup of O. Then

G = ONg(P) = NPNg(P) = NNg(P) = Ng(P)

by the Frattini Argument since N < ®(G). Hence in view of (1), O,(G/N) =1

and so G/N € M since G/N € F = &, o M. But then G is a p’-group. Hence

Hy, Hy, H3 € M. Thus G € N C & by Lemma 2.10. This contradiction shows

that N £ ®(G). But then Cg(N) = N by (1) and [2, Chapter A, Theorem 15.2].
3)r>0.

Suppose that r = 0. Then & = &, o M, where IMN is a formation of nilpotent
groups. Since N < H> € & and, by (2), CG(N) = N, Op(H3) = 1. Hence H> is
a p/-group. Similarly, H3 is a p’-group. Hence G = Hj H, is a p’-group. But then
H; € M, s0 G € F by Lemma 2.10. This contradiction shows that we have (3).




Finite soluble groups with all n-maximal subgroups &-subnormal 281

4) Hi/N € M(q) foralli =2,...,r + 3.

Let i € {2,...,r +3}. Then H; € M. Indeed, if F = &, oM, then ¢ # p
by (1). On the other hand, in view of (2), we get Cg (N) = N.Hence O,(H;) = 1,
which implies that H; € J)i. But then, by claim (2) and Lemma 2.7, we conclude
that H; /N = H,‘/CHZ.(N) € M(q).

(5) G/N € M(q).

By Lemma 2.11 and [2, Chapter IV, Proposition 3.8], M(q) = &4 o My, where
Mo = l,—1form (G/ Oy 4(G)|G € M). Since M € N1, G/ Oy 4(G).€ N,
so Mo € N" since My is an (r — 1)-multiply saturated formation. Therefore the
minimality of  + |G| and claim (4) imply that G/N € M(q).

Final contradiction. Since N is a g-group by (1), from claim (5) it follows
that G € &, o M(q) = M(q) € I € &, o M. This contradiction-Completes the
proof of the proposition. |

Corollary 3.5 (see [12, Satz 1.3]). Every saturated_ farmation contained in NZ is
Y4-closed.

Corollary 3.6. The class of all soluble groups of nilpotent length at mostr (r > 2)
is Xyyp-closed.

Proof. 1t is clear that N” is a hereditary formation. Moreover, in view of Lem-
ma 2.8, N is an (r — 1)-multiply saturated formation. So " is X, 4-closed by
Proposition 3.4. o

Proof of Theorem A. Suppose that the theorem is false and consider some coun-
terexample G of minhimal order. Take a maximal subgroup M of G. By hypothe-
sis, all (n — 1)maximal subgroups of M are F&-subnormal in G, and so they are
&-subnormal’ in M’ by Lemmas 2.1 (1) and 2.12. The solubility of G implies that
either |7 (M) = |7 (G)|or [xr(M)| = |7 (G)| — 1, s0 M € F by the choice of G.
Hence-Ghis an F-critical group.

Since G is soluble, G has a maximal subgroup 7" with |G : T| = p? for any
prime’ p dividing |G|. On the other hand, % is ¥,43-closed by Proposition3.4.
Hence |7(G)| < r + 2. Moreover, by hypothesis, |7 (G)| > n 4+ r + 1. Therefore
7 = 1. Thus all maximal subgroups of G are F-normal, so G/ P(G) € F. But
is a saturated formation and hence G € . This contradiction completes the proof
of the result. o

Corollary 3.7 (see [17, Theorem 6]). If each n-maximal subgroup of a soluble
group G is subnormal and |7 (G)| > n + 1, then G is nilpotent.
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Corollary 3.8 (see [11, Theorem Al). If every n-maximal subgroup of a soluble
group G is U-subnormal in G and |7w(G)| > n + 2, then G is supersoluble.

Corollary 3.9. Let & be the class of all groups G with G’ < F(G). If every n-max-
imal subgroup of a soluble group G is §-subnormal in G and |7w(G)| > n + 2,
then G € §.

Corollary 3.10. If every n-maximal subgroup of a soluble group G is N -subnor-
malin G (r > 1)and |n(G)| > n +r, then G € N".

4 Proofs of Theorems B, C, and D

Proof of Theorem C. First suppose that every 2-maximal subgroup of G is §-sub-
normal in G. Assume that G ¢ . We shall show that G is an §-critical group and
G is a minimal normal subgroup of G. Let M be a maximal'subgroup of G and T
be a maximal subgroup of M. By hypothesis, T is -subnormal in G. Therefore T
is F-normal in M by Lemma 2.1 (1), so M/ Ty € &»Since T is arbitrary and & is
saturated, M € ¥. Consequently, all maximal subgroups of G belong to F. Hence
G is an §-critical group. Then, by hypothesis,"G”is soluble and it has a normal
Sylow p-subgroup G, # 1 for some prime'p+-Thus G, = GS by Lemma 2.5. On
the other hand, by Lemma 2.4, G,/ ®(Gp) is a chief factor of G.

Let M be an F-abnormal maximal subgroup of G. Then G, £ M by Lem-
ma 2.1(4), so G = GpM and M =G, N M)Gp = ®(Gp)Gpr, where Gy is
aHall p’-subgroup of G. Asstme that (G,) # 1.Itis clear that &(Gp) £ P(M).
Let T be a maximal subgroup of M such that ®(G,) £ T. Then M = O(G,)T.
Since T is §-subnormal in G, there is a maximal subgroup L of G such that
T < Land G/Lg.e%. Then G, < Lg, so

G =G,M = G,®(G,)T = G,T <L,

a contradi¢tion® Hence ®(G,) = 1. Therefore G, = G 3 is a minimal normal sub-
groupof G.

Now.suppose that G is an g-critical group and G is a minimal normal sub-
group’'of G. Let T be a 2-maximal subgroup of G and M be a maximal subgroup
of G such that T is a maximal subgroup of M. Since M € §, T is &-subnormal
in M by Lemma 2.2. Therefore, if M is §-normal in G, then T is -subnormal
in G by Lemma 2.1 (3). Assume that M is §-abnormal in G. Then GZ £ M by
Lemma 2.1 (4). Therefore, since G¥ is a minimal normal subgroup of G by hy-
pothesis, G = G8 x M and G8T is a maximal F-normal subgroup of G. More-
over, since G is an g-critical group, G3T e & and hence T is ¥-subnormal in
G3T by Lemma 2.2. Hence T is §-subnormal in G. The theorem is proved. o
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From Theorem C and Lemma 2.6 we get

Corollary 4.1 (see [11, Theorem 3.1]). Every 2-maximal subgroup of G is U-
subnormal in G if and only if G is a U-critical group and GY is a minimal normal
subgroup of G.

Proof of Theorem B. First suppose that all n-maximal subgroups of G are -sub-
normal in G. We shall show, in this case, that either G € § or G is a group,of
type II. Assume that this is false and consider a counterexample G for which
|G| + n is minimal. Therefore A = G& # 1. Then:

(a) The hypothesis holds for every maximal subgroup of G.

Let M be a maximal subgroup of G. By hypothesis, all (n — 9-maximal sub-
groups of M are §-subnormal in G, and so they are §-subnormal in M by Lem-
mas 2.1 (1) and 2.12. Moreover, the solubility of G implies, that one has either
|7 (M)| = |7(G)| or |[x(M)| = [7(G)| — 1.

(b) If M is a maximal subgroup of G and |w(M)|'<=\|7(G)|, then M € .

In view of hypothesis and Lemmas 2.1 (1) and\2/12, all (n — 1)-maximal sub-
groups of M are §-subnormal in M . Since |t(M)| = |7 (G)| = n+1=n—1+2,
M € & by Theorem A.

(c) If W is a Hall q'-subgroup of G¥or some q € (G), then either W € & or
W is a group of type II.

If W is not a maximal subgroup of G, then there is a maximal subgroup V
of G such that W < V and | (V)| = |7 (G)|. By (b), V € &. Hence W € ¥ by
Lemma 2.12. Suppose that\WW ‘is a maximal subgroup of G. Then, by (a), the
hypothesis holds for Wy so either W € % or W is a group of the type II by the
choice of G.

(d) The hypothesis holds for G/ N, where N is a minimal normal subgroup
of G.

Arguingsimilarly as in the proof of necessity in [11, Theorem B], we see that in
the case when N is not a Sylow subgroup of G the hypothesis holds for G/ N . Con-
siderithecase when N is a Sylow p-subgroup of G. Let E be a Hall p’-subgroup
of G.At is clear that |7 (E)| = |7(G)| — 1 and E is a maximal subgroup of G. Let
H/N be an (n — 1)-maximal subgroup of G/N. Then H is an (n — 1)-maximal
subgroup of G and H = H N NE = N(H N E). There is a chain of subgroups
H=Hy<H| <---< Hy_1 =G of G, where H;_; is a maximal subgroup
of H; i =1,...,n—1). Then H;—; N E is a maximal subgroup of H; N E, for
i =1,...,n—1.Indeed, suppose that for some i there is a subgroup K of H; N E
suchthat Hi_1 N E <K < H;NE.Then(H;—_; N E)N < KN <(H; N E)N,
soH;_1=Hi_1NEN <KN < H;NEN = H;. Whence either KN = H;_
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or KN =H;.If KN = Hi_j,then Hi_1NE=KNNE=K(NNE)=K.
In the second case we have H; N E = KN N E = K(N N E) = K. Therefore
H;_1 N E is a maximal subgroup of H; N E, so H N E is an (n — 1)-maximal
subgroup of E. Since E is a maximal subgroup of G, H N E is an n-maximal
subgroup of G. Hence H N E is F-subnormal in G by hypothesis. Therefore
H/N = (H N E)N/N is §-subnormal in G/N by Lemma 2.1(2).

@ |7 (G)] > 2.
If |7(G)| = 2, then n = 1 and so all maximal subgroups of G are F-normal
in G by hypothesis. Hence G € § since  is a saturated formation, a contradiction.

(f) G is an Ore dispersive group (see Claim (a) in the proof of [11, Theerem B]).

(g) A is a nilpotent group.

Suppose that this is false. Let N be a minimal normal subgroup of G. Then
by claim (d), (G/N)® = GEN/N ~ G¥/G® N N is 4 nilpotent group. It is
known that the class of all nilpotent groups is a saturated formation. Hence in
the case when G has a minimal normal subgroup RyA'N we have that the group
G8/(GENN)N (G N R) ~ G is nilpotent. Thus N is the unique minimal
normal subgroup of G and N < GS. If No2 d(G), then G%/G{’Y NeoG) ~
(G8/N)/((G8 N ®(G))/N) is nilpotentysd G is nilpotent by Lemma 2.14.
Therefore N £ ©(G). Hence ®(G) =l ‘and there is a maximal subgroup L of G
suchthat G = N x L and Lg = 1. Thus Cg(N) = N by [2, A, Theorem 15.2]
and N # A.

Case 1: |7 (G)| = 3. By hypothesis, either all maximal subgroups of G or all
its 2-maximal subgroups, are, ¥-subnormal in G. In the first case we infer that
G € &, which contradicts, the choice of G. Hence all 2-maximal subgroups of G
are F-subnormal. Since'% C U, in view of Lemma 2.6, every ¥-critical group has
a normal Sylow subgroup. Whence Theorem C and Lemma 2.12 imply that G is
an F-critical group and A = G is a minimal normal subgroup of G. Therefore
A = N, alcontradiction.

Case2: |z (G)| = 4. Assume that N isa p-group, and take a Sylow subgroup P
of G suchthat N < P.Observe thatif N # P,then L € § by (b),andso A = N,
a contradiction. Hence N = P.

Case 2.1: |x(G)| = 4. (1) All 3-maximal subgroups of G are &-subnormal in G
and L is an &-critical group.

Since G & ¥ and |7 (G)| = 4, either all 2-maximal subgroups of G or all its 3-
maximal subgroups are -subnormal in G. In the first case G is an §-critical group
and A = G is a minimal normal subgroup of G by Theorem C and Lemma 2.12.
Hence we get A = N, a contradiction. Therefore all 3-maximal subgroups of G
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are §-subnormal in G. Thus all second maximal subgroups of G belong to ¥ by
Lemmas 2.3 and 2.12. Consequently, either L € & or L is an §-critical group. But
in the first case N = A, a contradiction. Therefore L is an -critical group.

2)L =0 x(RxT),where Q, R, T are Sylow subgroups of G, Q = LS is
a minimal normal subgroup of L, and G8 = PO.

Since N = P isa Sylow p-subgroup of G and |7 (G)| = 4, |w(L)| = 3. Hence
in view of (f), L = QO x(RxT), where Q, R, T are Sylow subgroups of G
Moreover, Q = LS by Lemma 2.5 and Q is a minimal normal subgroup_of L
by Theorem C and Lemma 2.12 since every 2-maximal subgroup of L is'g§-sub-
normal in L by (1) and Lemmas 2.1 (1) and 2.12. Finally, since G/N €& and
G/PQ ~ L/Q € %, wehave G = PQ.

(3) V = PQR is not supersoluble. Hence V & §.

Assume that V' is a supersoluble group. Since F (V') is a characteristic subgroup
of VV and V is a normal subgroup of G, F (V') is normal in'Gx Hence every Sylow
subgroup of F (V') is normal in G. But N is the unique minimal normal subgroup
of G. Therefore F(V) = N = P. Thus V/P ~ QR is an abelian group. Hence
R is normal in L and so R < F(L). In view/of kemma 2.5, F(L) = Q®(L).
Whence R < ®(L). This contradiction shows that V' is not supersoluble. Thus
V & & since & C U by hypothesis.

4) V is a maximal subgroup of G, Hence |T| = t is a prime.

If V is not a maximal subgroup-of G, then there is a maximal subgroup U
of G such that V < U and |(U)| = |7 (G)|. Hence U € & by (b), so V € & by
Lemma 2.12, a contradiction. Therefore V' is a normal maximal subgroup of G.
Whence |T| is a prime.

(5) |Q| = q is aprime and R = (x) is a cyclic group.

Since V' is a maximal subgroup of G by (4), all 2-maximal subgroups of V' are
&-subnormal-in V/by (1) and Lemmas 2.1 (1) and 2.12. Hence, in view of (3),
V is an FeCritical group by Theorem C and Lemma 2.12. Therefore, in fact, V' is
a U-critical group by (3) since § < U. Hence QR is supersoluble. Since V is
normal‘in G and ®(G) =1, ®(V) = 1. Therefore QR is a Schmidt group by
Lemma 2.6. Hence R is cyclic and Q is a minimal normal subgroup of QR by
Lemma 2.4. Whence | Q| is a prime.

(6) |R| = ris a prime and C,(Q) = Q.

By (5), L is a supersoluble group. Suppose that |R| = r? is not a prime and
let M be a maximal subgroup of L such that |[L : M| =r. Let W = PM. Then
7(W) =n(G),so W € & by (b) and hence W is supersoluble. As Cg(N) = N,
it follows that F(W) = P. Hence W/P ~ M is abelian. It is clear that Q < M,
so M < Cr(Q).Hence T < F(L). On the other hand, we have F(L) = Q®(L)
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by Lemma 2.5. Therefore T £ F(L). This contradiction shows that |R| = r and
so Cr(Q) = Q by Lemma 2.5.

(N1+# Cg(x)NPQ = Py < P.

Suppose that Cg(x) N PQ = 1. Then, by Thompson’s theorem [18, Theo-
rem 10.5.4], PQ is a nilpotent group, so Q < Cg(P) = P, a contradiction. Thus
Cg(x) N PQ # 1. Suppose that g divides |[Cg(x) N PQ|. Then, by (5), for some
a € Pwehave Q% < Cg(x)N PQ,s0 (0% RT) < Ng(R).Hence if E is a Hall
p’-subgroup of Ng(R), then E ~ L. Therefore L has a normal r-subgroupyso
Cr(Q) # 0, acontradiction. Thus Cg(x) N PQ = P; < P.

Final contradiction for Case 2.1. Let D = (P1, RT). Then D < Ng(R).If g
divides |D]|, then, as above, we have Cr(Q) # Q. Thus D m Q¢ =1 for all
a € P. Moreover, if P < D, then PR =P x R and R < Cg(P) = P. There-
fore P £ D and D is not a maximal subgroup of G. Hence D is a k-maximal
subgroup of G for some k& > 2. Then there is a 3-maximal subgroup S of G such
that RT < S < D. By hypothesis, S is §-subnormal\in G. Hence at least one of
the maximal subgroups L or PRT is §-normalim\G, contrary to (2).

Case 2.2: |z (G)| > 4. If n(L) = {p1,e..\ P}, then t > 3. Let E; be a Hall
pj-subgroup of L and X; = PE;. We shall show that E; € & foralli =1,...,¢.
By (c), either X; € § or X; is a groupvof type II, for i = 1,...,¢. In the for-
mer case we have E; >~ X;/P e®F=Assume that X; is a group of type II. Then
Xl?Ty is nilpotent, so Xl.% < F(X;)»But since P is normal in X; and Cg(P) = P,
F(X;) = P. Hence Xl.% = P,so E; € §&. Since ¢t > 3, Proposition 3.4 implies
that L € §. Therefore A= M, a contradiction. Hence we have (g).

(h) A is a Hall subgroup of G.

Suppose that'this is false. Since G is Ore dispersive by (f), for the greatest prime
divisor p of{|Gsthe Sylow p-subgroup P is normal in G. Assume that P is not
a minimal mormal subgroup of G. Then there is a maximal subgroup M of G
such that\G = PM and P N M # 1. Since |7 (M)| = |n(G)|, M € & by (b).
Hence G/P ~ M/M NP € &, s0 A= G < P. Suppose that ®(P) # 1. Let
N \be/a minimal normal subgroup of G such that N < ®(P). By (d), the hy-
pothesis holds for G/N, so either G/N € § or G/N is a group of type II by
the choice of G. If G/N € &, then A = N < ®(P). Since P is normal in G,
d(P) < D(G). Thus A < &(G) and so G € F, a contradiction. Hence G/ N is
a group of type II. Therefore AN/N = GSN/N = (G/N)¥ is a Hall subgroup
of G/N. Consequently, AN = P. Hence A®(P) = P,so A = P, a contradic-
tion. Thus ®(P) = 1. By Maschke’s theorem, P = Nj x --- X Ny is the direct
product of some minimal normal subgroups of G. If Ny # P, then G/N; € §
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and G/ N, € & by Theorem A. Consequently, so is G. This contradiction shows
that P is a minimal normal subgroup of G.

By (d), the hypothesis holds for G/ P, so either G/ P € & or G/ P is a group of
type Il by the choice of G. If G/ P € &, then A = P, a contradiction. Hence G/ P
is a group of type II. Therefore AP/P = GS P/P = (G/P)¥ is a Hall subgroup
of G/P.If P < A,then A = P x Ay, where A, is a Hall p’-subgroup of A. But
since Ap» >~ A/P and A/ P is a Hall subgroup of G/ P, A is a Hall subgroup of G.
Therefore PNA = 1, so A is a Hall subgroup of G since AP/P ~ AJANP >~ A,

(1) A is either of the form Ny X --- X Ny, where each N; is a minimal‘normal
subgroup of G, which is a Sylow subgroup of G, for i =1,....t, or a Sylow
p-subgroup of G of exponent p for some prime p and the commutator. subgroup,
the Frattini subgroup, and the center of A coincide, while A/ ®(A) is an §-eccen-
tric chief factor of G.

If A is not a minimal normal subgroup of G, then arguing similarly as in the
proof of claim (c) in [11, Theorem B], we have (i).

(j) Every n-maximal subgroup of G belongs to & ‘and induces on the Sylow
p-subgroup of A the automorphism group which is,contained in F(p) for every
prime divisor p of |A|.

Let H be any n-maximal subgroup of G.'Suppose that H is a maximal subgroup
of V, where V is an (n — 1)-maximal subgroup of G. Since V' € & by Lemmas 2.3
and 2.12, H € §.

Let E = AH. Since A is notmal in E and A is nilpotent by (g), 4 < F(E).
Whence E = F(E)H. SincenH is F-subnormal in G, H is §-subnormal in E
by Lemmas 2.1 (1) and 2.12, Therefore £ € § by Lemma 2.15. Let P be a Sy-
low p-subgroup of A andvK /L a chief factor of £ such that 1 <L < K < P.
Since £ € &, E/Cp(K/L) € F(p). Hence P < Zg(E),so E/Cg(P) € F(p)
by Lemma 2.7./Then

H/Cu(P) = H/Cp(P)NH ~ HCg(P)/CE(P) € F(p).

Now)suppose that either G € & or G is a group of type IL. If G € ¥, then every
subgroup of G is -subnormal in G by Lemmas 2.2 and 2.12. Let G be a group of
typeJI. Take an n-maximal subgroup H of G. Put E = G H. Let P be a Sylow
p-subgroup of GS and K/L a chief factor of E suchthat 1 < L < K < P. By
hypothesis, H/Cg (P) € F(p), so

H/Cy(K/L) ~ (H/Ca(P))/(Cu(K/L)/CH(P)) € F(p).
Since G¥ is normal in E and G is nilpotent,

G8 < F(E) < Cg(K/L).
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Hence
E/Cg(K/L)=E/Cg(K/L)NE

= E/Cg(K/LYNGSH
= E/G8(Cg(K/L)N H)
=G8H/G8Cyx(K/L)
~ H/G8Cyx(K/L)N H
= H/Cu(K/L)(GS N H)
= H/Cu(K/L),

so E/CEg(K/L) € F(p) since F(p) is hereditary by Lemma 2.12-and [1, Propo-
sition 3.1.40]. Then P < Zg(E), whence GS < Zx(E)»Thus E/Zx(G) € F.
Hence E € &, so H is an &-subnormal subgroup of GSH=E by Lemmas 2.2
and 2.12. Since G < GSH, GSH s &-subnormal|in G by Lemmas 2.1 (4)
and 2.12. Consequently, in view of Lemma 2.1 (3),/H\1s §-subnormal in G. The
theorem is proved. o

Corollary 4.2 (see [11, Theorem B]). Given.a soluble group G with the property
that |7 (G)| = n + 1, all n-maximal subgroups of G are U-subnormal in G if and
only if G is a group of one of the following types:

(1) G is supersoluble.

() G = A x B, wheie A= G% and B are Hall subgroups of G, while G is
Ore dispersive and. satisfies the following:

(1) A is either of the form N1 X --- X Ny, where each N; is a minimal nor-
mal subgroup of G, which is a Sylow subgroup of G, fori =1,...,t,
ora Sylow p-subgroup of G of exponent p for some prime p and the
commutator subgroup, the Frattini subgroup, and the center of A co-
incide, every chief factor of G below ®(G) is cyclic, while A/ ®(A) is
a noncyclic chief factor of G,

(2) forevery prime divisor p of the order of A every n-maximal subgroup H
of G is supersoluble and induces on the Sylow p-subgroup of A an
automorphism group which is an extension of some p-group by abelian
group of exponent dividing p — 1.

For a proof of Theorem D see the proof of [11, Theorem C].
Finally, note that there are examples which show that the restrictions on |7 (G)|
in Theorems A, B, and D cannot be weakened.
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