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Finite soluble groups with
all n-maximal subgroups F-subnormal

Viktoria A. Kovaleva and Alexander N. Skiba

Communicated by Francesco de Giovanni

Abstract. We describe finite soluble groups in which every n-maximal subgroup is F-sub-
normal.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
We use U, N and Nr to denote the class of all supersoluble groups, the class of all
nilpotent groups and the class of all soluble groups of nilpotent length at most r
(r � 1). The symbol P denotes the set of all primes, �.G/ denotes the set of prime
divisors of the order of G. If p is a prime, then we use Gp to denote the class of
all p-groups.

Let F be a class of groups. If 1 2 F, then we write GF to denote the intersec-
tion of all normal subgroups N of G with G=N 2 F. The class F is said to be
a formation if either F D ; or 1 2 F and every homomorphic image of G=GF

belongs to F for any group G. The formation F is said to be saturated if G 2 F

whenever G=ˆ.G/ 2 F for any group G, hereditary if H 2 F whenever G 2 F

and H is a subgroup of G. A group G is called F-critical provided G does not
belong to F but every proper subgroup of G belongs to F. The Gaschütz product
M ı H of the formations M and H is the class of all groups G such that GH 2M.

For any formation function f W P ! ¹group formationº, the symbol LF.f / de-
notes the collection of all groups G such that one has either G D 1 or G ¤ 1 and
G=CG.H=K/ 2 f .p/ for every chief factor H=K of G and every p 2 �.H=K/.
It is well known that for any non-empty saturated formation F, there is a unique
formation function F such that F D LF.F / and F.p/ D Gp ı F.p/ � F for all
primes p (see [2, Chapter IV, Proposition 3.8]). The formation function F is called
the canonical local satellite of F. A chief factor H=K of G is called F-central
in G provided G=CG.H=K/ 2 F.p/ for all primes p dividing jH=Kj, otherwise
it is called F-eccentric.
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274 V. A. Kovaleva and A. N. Skiba

Fix some ordering � of P . The record p�q means that p precedes q in � and
p ¤ q. Recall that a groupG of order p˛1

1 p
˛2

2 � � �p
˛n
n is called �-dispersive when-

ever p1�p2� � � ��pn and for every i there is a normal subgroup of G of order
p
˛1

1 p
˛2

2 � � �p
˛i

i . Furthermore, if � is such that p�q always implies p > q, then
every �-dispersive group is called Ore dispersive.

By definition, every formation is 0-multiply saturated and for n � 1 a forma-
tion F is called n-multiply saturated if F D LF.f /, where every non-empty value
of the function f is an .n � 1/-multiply saturated formation (see [20,21]). In fact,
almost saturated formations met in mathematical practice are n-multiply saturated
for every natural n. For example, the formations of all soluble groups, all nilpo-
tent groups, all p-soluble groups, all p-nilpotent groups, all p-closed groups, all
p-decomposable groups, all Ore dispersive groups, all metanilpotent groups are
n-multiply saturated for all n � 1. Nevertheless, the formations of all supersolu-
ble groups and all p-supersoluble groups are saturated, but they are not 2-multiply
saturated formations.

Recall that a subgroup H of G is called a 2-maximal (second maximal) sub-
group of G whenever H is a maximal subgroup of some maximal subgroup M
of G. Similarly we can define 3-maximal subgroups, and so on.

The interesting and substantial direction in finite group theory consists in study-
ing the relations between the structure of the group and its n-maximal subgroups.
One of the earliest publication in this direction is the article of Huppert [9] who
established the supersolubility of a group G whose all second maximal subgroups
are normal. In the same article Huppert proved that if all 3-maximal subgroups
of G are normal in G, then the commutator subgroup G0 of G is nilpotent and
the chief rank of G is at most 2. These two results were developed by many au-
thors. Among the recent results on n-maximal subgroups we can mention [8],
where the solubility of groups is established in which all 2-maximal subgroups
enjoy the cover-avoidance property, and [5, 6, 14], where new characterizations of
supersoluble groups in terms of 2-maximal subgroups were obtained. The classi-
fication of nonnilpotent groups whose all 2-maximal subgroups are TI-subgroups
appeared in [13]. Description was obtained in [3] of groups whose every 3-max-
imal subgroup permutes with all maximal subgroups. The nonnilpotent groups are
described in [4] in which every two 3-maximal subgroups are permutable. The
groups are described in [15] whose all 3-maximal subgroups are S -quasinormal,
that is, permute with all Sylow subgroups. Subsequently this result was strength-
ened in [16] to provide a description of the groups whose all 3-maximal subgroups
are subnormal.

Despite of all these and many other known results about n-maximal subgroups,
the fundamental work of Mann [17] still retains its value. It studied the structure
of groups whose n-maximal subgroups are subnormal. Mann proved that if all
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Finite soluble groups with all n-maximal subgroups F-subnormal 275

n-maximal subgroups of a soluble group G are subnormal and j�.G/j � nC 1,
then G is nilpotent; but if j�.G/j � n � 1, then G is �-dispersive for some order-
ing � of P . Finally, in the case j�.G/j D n Mann described G completely.

Let F be a non-empty formation. Recall that a subgroup H of a group G is
said to be F-subnormal in G if either H D G or there exists a chain of subgroups
H D H0 < H1 < � � � < Hn D G such that Hi�1 is a maximal subgroup of Hi
and Hi=.Hi�1/Hi

2 F, for i D 1; : : : ; n.
The main goal of this article is to prove the following formation analogs of

Mann’s theorems.

Theorem A. Let F be an r-multiply saturated formation such that N�F�NrC1

for some r � 0. If every n-maximal subgroup of a soluble groupG is F-subnormal
in G and j�.G/j � nC r C 1, then G 2 F.

Theorem B. Let F D LF.F / be a saturated formation such that N � F � U,
where F is the canonical local satellite of F. Let G be a soluble group with
j�.G/j � nC 1. Then all n-maximal subgroups of G are F-subnormal in G if
and only if G is a group of one of the following types:

(I) G 2 F.

(II) G D A Ì B , where A D GF and B are Hall subgroups of G, while G is
Ore dispersive and satisfies the following:

(1) A is either of the form N1 � � � � �Nt , where each Ni is a minimal nor-
mal subgroup ofG, which is a Sylow subgroup ofG, for i D 1; : : : ; t , or
a Sylow p-subgroup of G of exponent p for some prime p and the com-
mutator subgroup, the Frattini subgroup, and the center of A coincide,
while A=ˆ.A/ is an F-eccentric chief factor of G,

(2) every n-maximal subgroup of G belongs to F and induces on the Sylow
p-subgroup of A an automorphism group which is contained in F.p/
for every prime divisor p of jAj.

In the proof of Theorem B we often use Theorem A and the following useful

Theorem C. Let F be a hereditary saturated formation such that every F-critical
group is soluble and it has a normal Sylow p-subgroup Gp ¤ 1 for some prime p.
Then every 2-maximal subgroup of G is F-subnormal in G if and only if either
G 2 F or G is an F-critical group and GF is a minimal normal subgroup of G.

Theorem D. Let F be a saturated formation such that N�F� U. If every n-max-
imal subgroup of a soluble group G is F-subnormal in G and j�.G/j � n, then G
is �-dispersive for some ordering � of P .
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All unexplained notation and terminology are standard. The reader is referred
to [2] or [1] if necessary.

2 Preliminary results

Let F be a non-empty formation. Recall that a maximal subgroup H of G is said
to be F-normal in G if G=HG 2 F, otherwise it is said to be F-abnormal in G.

We use the following results.

Lemma 2.1. Let F be a formation and H an F-subnormal subgroup of G.

(1) If F is hereditary andK � G, thenH \K is an F-subnormal subgroup inK,
cf. [1, Lemma 6.1.7 (2)].

(2) If N is a normal subgroup in G, then HN=N is an F-subnormal subgroup
in G=N , cf. [1, Lemma 6.1.6 (3)].

(3) If K is a subgroup of G such that K is F-subnormal in H , then K is F-sub-
normal in G, cf. [1, Lemma 6.1.6 (1)].

(4) If F is hereditary and K is a subgroup of G such that GF � K, then K is
F-subnormal in G, cf. [1, Lemma 6.1.7 (1)].

The following lemma is evident.

Lemma 2.2. Let F be a hereditary formation. If G 2 F, then every subgroup of G
is F-subnormal in G.

Lemma 2.3. Let F be a hereditary saturated formation. If every n-maximal sub-
group of G is F-subnormal in G, then every .n � 1/-maximal subgroup of G be-
longs to F and every .nC 1/-maximal subgroup of G is F-subnormal in G.

Proof. We first show that every .n � 1/-maximal subgroup ofG belongs to F. Let
H be an .n � 1/-maximal subgroup of G and K a maximal subgroup of H . Then
K is an n-maximal subgroup of G and so, by hypothesis, K is F-subnormal in G.
Hence K is F-subnormal in H by Lemma 2.1 (1). Thus all maximal subgroups
of H are F-normal in H . Therefore H 2 F since F is saturated.

Now, let E be an .nC 1/-maximal subgroup of G, and let E1 and E2 be
an n-maximal and an .n � 1/-maximal subgroup of G, respectively, such that
E � E1 � E2. Then, by the above, E2 2 F, so E1 2 F. Hence E is F-subnor-
mal in E1 by Lemma 2.2. By hypothesis, E1 is F-subnormal in G. Therefore E is
F-subnormal in G by Lemma 2.1(3). The lemma is proved.
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Finite soluble groups with all n-maximal subgroups F-subnormal 277

Lemma 2.4 (see [19, Chapter VI, Theorem 24.2]). Let F be a saturated formation
andG a soluble group. IfGF ¤ 1 and every F-abnormal maximal subgroup ofG
belongs to F, then the following hold:

(1) GF is a p-group for some prime p,

(2) GF=ˆ.GF/ is an F-eccentric chief factor of G,

(3) if GF is a non-abelian group, then the commutator subgroup, the Frattini
subgroup, and the center of G coincide and are of exponent p,

(4) if GF is abelian, then GF is elementary,

(5) if p > 2, thenGF is of exponent p, for p D 2 the exponent ofGF is at most 4,

(6) every pair of F-abnormal maximal subgroups of G are conjugate in G.

Lemma 2.5 (see [19, Chapter VI, Theorem 24.5]). Let F be a saturated formation.
Let G be an F-critical group and G has a normal Sylow p-subgroup Gp ¤ 1 for
some prime p. Then:

(1) Gp D GF,

(2) F.G/ D Gpˆ.G/,

(3) Gp0 \ CG.Gp=ˆ.Gp// D ˆ.G/ \Gp0 , whereGp0 is some complement ofGp
in G.

Lemma 2.6 (see [19, Chapter VI, Theorems 26.3 and 26.5]). LetG be a U-critical
group. Then:

(1) G is soluble and j�.G/j � 3,

(2) if G is not a Schmidt group, then G is Ore dispersive,

(3) GU is the unique normal Sylow subgroup of G,

(4) if S is a complement of GU in G, then S=S \ˆ.G/ is either a primary cyclic
group or a Miller–Moreno group.

Let F be a class of groups. Recall that the product of all normal subgroups of
a group G whose G-chief factors are F-central in G is called F-hypercentre of G
and denoted by ZF.G/, see [2, p. 389].

Lemma 2.7 (see [7, Lemma 2.14]). Let F be a saturated formation and F be the
canonical local satellite of F. Let E be a normal p-subgroup of a group G. Then
E � ZF.G/ if and only if G=CG.E/ 2 F.p/.

Lemma 2.8 (see [20, Corollary 7.14]). The Gasch Rutz product of any two n-multi-
ply saturated formations is an n-multiply saturated formation for every n � 0.
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278 V. A. Kovaleva and A. N. Skiba

We shall also need the following evident lemma.

Lemma 2.9. If G D AB , then G D ABx for all x 2 G.

Let F be a class of groups and t be a natural number with t � 2. Recall that
F is called †t -closed if F contains every group G such that G has subgroups
H1; : : : ;Ht whose indices are pairwise coprime and Hi 2 F, for i D 1; : : : ; t .

Lemma 2.10 (see [19, Chapter I, Lemma 4.11]). Every formation of nilpotent
groups is †3-closed.

If F D LF.f / and f .p/ � F for all primes p, then f is called an integrated
local satellite of F. Let X be a set of groups. The symbol ln form X denotes the
intersection of all n-multiply saturated formations F such that X � F. In view
of [1, Remark 3.1.7], ln form X is an n-multiply saturated formation.

Lemma 2.11 (see [20, Theorem 8.3]). Let F be an n-multiply saturated forma-
tion for some n � 1. Then F has an integrated local satellite f such that, for all
primes p, f .p/ D ln�1 form.G=Op0;p.G/jG 2 F/.

Lemma 2.12 (see [22, Section 1.4]). Every r-multiply saturated formation con-
tained in NrC1 is hereditary for any r � 0.

Lemma 2.13 (see [19, p. 35]). For any ordering � of P the class of all �-dispersive
groups is a saturated formation.

Lemma 2.14 (see [7, Corollary 1.6]). Let F be a saturated formation containing
all nilpotent groups and E a normal subgroup of G. If E=E \ˆ.G/ 2 F, then
E 2 F.

Lemma 2.15 (see [19, Theorem 15.10]). Let F be a saturated formation and G
be a group such that GF is nilpotent. Let H and M be subgroups of G, H 2 F,
H �M and HF.G/ D G. If H is F-subnormal in M , then M 2 F.

3 Proof of Theorem A

First we give two proposition which may be independently interesting since they
generalize some known results.

Proposition 3.1. Suppose that G D A1A2 D A2A3 D A1A3; where A1, A2 and
A3 are soluble subgroups of G. If the three indices jG W NG.A01/j, jG W NG.A

0
2/j

and jG W NG.A03/j are pairwise coprime, then G is soluble.
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Finite soluble groups with all n-maximal subgroups F-subnormal 279

Proof. Suppose that this proposition is false and let G be a counterexample with
jGj minimal.

(1) If N is a minimal normal subgroup of G, then G=N is soluble. Hence N is
the unique minimal normal subgroup of G and CG.N / D 1.

It is clear that A0iN=N D .AiN/
0N=N D .AiN=N/

0, for i D 1; 2; 3. Hence
NG.A

0
i /N=N � NG=N .AiN=N/

0. On the other hand, AiN=N ' Ai=Ai \N is
soluble for all i D 1; 2; 3. Therefore the hypothesis holds for G=N , so G=N is
soluble by the choice of G. Hence N is non-abelian and N is the unique minimal
normal subgroup of G. Therefore, since CG.N / is normal in G, CG.N / D 1.

(2) At least two of the subgroups A1; A2; A3 are non-abelian. (This directly fol-
lows from Kegel–Wielandt’s theorem on solubility of products of nilpotent groups
[10, Chapter VI, Hauptsatz 4.3] and the choice of G.)

(3) There are two pairs i1 ¤ j1 and i2 ¤ j2, where j1 D i2, such that the sub-
group Aia has a minimal normal subgroup La such that LaG � NG.A0ja

/.
Let L1 be a minimal normal subgroup of A1. Then L1 is a p-group for some

prime p since A1 is soluble by hypothesis. On the other hand, again by hypothe-
sis, jG W NG.A02/j and jG W NG.A03/j are coprime, so at least one of the subgroups
NG.A

0
2/ or NG.A03/ contains a Sylow p-subgroup P of G. Without loss of gen-

erality we may assume that P � NG.A02/. Moreover, in view of Lemma 2.9 and
Sylow’s theorem we may assume that L1 � P . Hence

LG1 D L
A1A2

1 D L
A1NG.A

0
2/

1 � NG.A
0
2/:

Now let L2 be a minimal normal subgroup of A2. Then, as above, we have either
L2

G
� NG.A

0
1/ or L2G � NG.A03/.

Final contradiction. In view of (3) we may assume that A1 has a minimal nor-
mal subgroup L1 such that L1G � NG.A02/, and A2 has a minimal normal sub-
group L2 such that L2G � NG.A0i / for some i . In view of (2), at least one of the
subgroups A2 or Ai is not abelian. Without loss of generality we may suppose
that A02 ¤ 1. In view of (1), we have N � NG.A02/. Let H D A02 \N . Suppose
that H ¤ 1. Then H is a normal non-identity subgroup of N . Hence N is solu-
ble, contrary to (1). Finally, consider the case when H D 1. In this case we have
A02 � CG.N / � N , so A02 D 1 by (1). This contradiction completes the proof of
the result.

Corollary 3.2. Suppose thatG D A1A2 D A2A3 D A1A3; whereA1,A2 andA3
are soluble subgroups of G. If the three indices jG W NG.A1/j, jG W NG.A2/j and
jG W NG.A3/j are pairwise coprime, then G is soluble.
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Corollary 3.3 (H. Wielandt). If G has three soluble subgroups A1, A2 and A3
whose indices jG W A1j, jG W A2j, jG W A3j are pairwise coprime, then G is itself
soluble.

Proposition 3.4. Let M be an r-multiply saturated formation and let, for some
r � 0, N�M�NrC1. Then, for any prime p, both formations M and Gp ıM

are †rC3-closed.

Proof. Let M be the canonical local satellite of the formation M. Let F be one
of the formations M or Gp ıM. Let G be any group such that for some sub-
groups H1; : : : ;HrC3 of G whose indices jG W H1j; : : : ; jG W HrC3j are pairwise
coprime we have H1; : : : ;HrC3 2 F. We shall prove that G 2 F. Suppose that
this is false and letG be a counterexample with r C jGjminimal. LetN be a min-
imal normal subgroup of G.

(1) N D GF is the only minimal normal subgroup of G and N � Oq.G/ for
some prime q. Hence if F D Gp ıM, then q ¤ p.

It is clear that the hypothesis holds for G=N , so G=N 2 F by the choice of G.
Hence N D GF since G 62 F. Moreover, N is a q-group for some prime q since
G is soluble by Proposition 3.1. Finally, if F D Gp ıM and p D q, then

G 2 Gp ı .Gp ıM/ D Gp ıF D F;

a contradiction. Hence we have (1).
Since the indices jG W H1j; : : : ; jG W HrC3j are pairwise coprime, in view of (1)

we may assume without loss of generality that N � Hi for all i D 2; : : : ; r C 3.

(2) CG.N / D N .
First we show that N — ˆ.G/. Suppose that N � ˆ.G/. If r > 0, then F is

saturated by Lemma 2.8, so G 2 F. This contradiction shows that r D 0 and so
F D Gp ıM by Lemma 2.10 and the choice of G. Hence q ¤ p by (1). Let
O=N D Op.G=N/ and P be a Sylow p-subgroup of O . Then

G D ONG.P / D NPNG.P / D NNG.P / D NG.P /

by the Frattini Argument since N � ˆ.G/. Hence in view of (1), Op.G=N/ D 1
and so G=N 2M since G=N 2 F D Gp ıM. But then G is a p0-group. Hence
H1;H2;H3 2M. Thus G 2M � F by Lemma 2.10. This contradiction shows
that N — ˆ.G/. But then CG.N / D N by (1) and [2, Chapter A, Theorem 15.2].

(3) r > 0.
Suppose that r D 0. Then F D Gp ıM, where M is a formation of nilpotent

groups. SinceN � H2 2 F and, by (2), CG.N / D N ,Op.H2/ D 1. HenceH2 is
a p0-group. Similarly,H3 is a p0-group. HenceG D H1H2 is a p0-group. But then
H1 2M, so G 2 F by Lemma 2.10. This contradiction shows that we have (3).
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Finite soluble groups with all n-maximal subgroups F-subnormal 281

(4) Hi=N 2M.q/ for all i D 2; : : : ; r C 3.
Let i 2 ¹2; : : : ; r C 3º. Then Hi 2M. Indeed, if F D Gp ıM, then q ¤ p

by (1). On the other hand, in view of (2), we getCG.N / D N . HenceOp.Hi / D 1,
which implies that Hi 2M. But then, by claim (2) and Lemma 2.7, we conclude
that Hi=N D Hi=CHi

.N / 2M.q/.

(5) G=N 2M.q/.
By Lemma 2.11 and [2, Chapter IV, Proposition 3.8],M.q/ D Gq ıM0, where

M0 D lr�1form .G=Oq0;q.G/jG 2M/. Since M � NrC1, G=Oq0;q.G/ 2 Nr ,
so M0 � Nr since M0 is an .r � 1/-multiply saturated formation. Therefore the
minimality of r C jGj and claim (4) imply that G=N 2M.q/.

Final contradiction. Since N is a q-group by (1), from claim (5) it follows
that G 2 Gq ıM.q/ DM.q/ �M � Gp ıM. This contradiction completes the
proof of the proposition.

Corollary 3.5 (see [12, Satz 1.3]). Every saturated formation contained in N2 is
†4-closed.

Corollary 3.6. The class of all soluble groups of nilpotent length at most r (r � 2)
is †rC2-closed.

Proof. It is clear that Nr is a hereditary formation. Moreover, in view of Lem-
ma 2.8, Nr is an .r � 1/-multiply saturated formation. So Nr is †rC2-closed by
Proposition 3.4.

Proof of Theorem A. Suppose that the theorem is false and consider some coun-
terexample G of minimal order. Take a maximal subgroup M of G. By hypothe-
sis, all .n � 1/-maximal subgroups of M are F-subnormal in G, and so they are
F-subnormal in M by Lemmas 2.1 (1) and 2.12. The solubility of G implies that
either j�.M/j D j�.G/j or j�.M/j D j�.G/j � 1, so M 2 F by the choice of G.
Hence G is an F-critical group.

Since G is soluble, G has a maximal subgroup T with jG W T j D pa for any
prime p dividing jGj. On the other hand, F is †rC3-closed by Proposition3.4.
Hence j�.G/j � r C 2. Moreover, by hypothesis, j�.G/j � nC r C 1. Therefore
n D 1. Thus all maximal subgroups of G are F-normal, so G=ˆ.G/ 2 F. But F

is a saturated formation and hence G 2 F. This contradiction completes the proof
of the result.

Corollary 3.7 (see [17, Theorem 6]). If each n-maximal subgroup of a soluble
group G is subnormal and j�.G/j � nC 1, then G is nilpotent.
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282 V. A. Kovaleva and A. N. Skiba

Corollary 3.8 (see [11, Theorem A]). If every n-maximal subgroup of a soluble
group G is U-subnormal in G and j�.G/j � nC 2, then G is supersoluble.

Corollary 3.9. Let F be the class of all groupsG withG0 � F.G/. If every n-max-
imal subgroup of a soluble group G is F-subnormal in G and j�.G/j � nC 2,
then G 2 F.

Corollary 3.10. If every n-maximal subgroup of a soluble group G is Nr -subnor-
mal in G (r � 1) and j�.G/j � nC r , then G 2 Nr .

4 Proofs of Theorems B, C, and D

Proof of Theorem C. First suppose that every 2-maximal subgroup ofG is F-sub-
normal inG. Assume thatG 62 F. We shall show thatG is an F-critical group and
GF is a minimal normal subgroup ofG. LetM be a maximal subgroup ofG and T
be a maximal subgroup ofM . By hypothesis, T is F-subnormal inG. Therefore T
is F-normal inM by Lemma 2.1 (1), soM=TM 2 F. Since T is arbitrary and F is
saturated,M 2 F. Consequently, all maximal subgroups ofG belong to F. Hence
G is an F-critical group. Then, by hypothesis, G is soluble and it has a normal
Sylow p-subgroup Gp ¤ 1 for some prime p. Thus Gp D GF by Lemma 2.5. On
the other hand, by Lemma 2.4, Gp=ˆ.Gp/ is a chief factor of G.

Let M be an F-abnormal maximal subgroup of G. Then Gp —M by Lem-
ma 2.1 (4), so G D GpM and M D .Gp \M/Gp0 D ˆ.Gp/Gp0 , where Gp0 is
a Hall p0-subgroup ofG. Assume thatˆ.Gp/ ¤ 1. It is clear thatˆ.Gp/ — ˆ.M/.
Let T be a maximal subgroup of M such that ˆ.Gp/ — T . Then M D ˆ.Gp/T .
Since T is F-subnormal in G, there is a maximal subgroup L of G such that
T � L and G=LG 2 F. Then Gp � LG , so

G D GpM D Gpˆ.Gp/T D GpT � L;

a contradiction. Henceˆ.Gp/ D 1. ThereforeGp D GF is a minimal normal sub-
group of G.

Now suppose that G is an F-critical group and GF is a minimal normal sub-
group of G. Let T be a 2-maximal subgroup of G and M be a maximal subgroup
of G such that T is a maximal subgroup of M . Since M 2 F, T is F-subnormal
in M by Lemma 2.2. Therefore, if M is F-normal in G, then T is F-subnormal
in G by Lemma 2.1 (3). Assume that M is F-abnormal in G. Then GF 6�M by
Lemma 2.1 (4). Therefore, since GF is a minimal normal subgroup of G by hy-
pothesis, G D GF ÌM and GFT is a maximal F-normal subgroup of G. More-
over, since G is an F-critical group, GFT 2 F and hence T is F-subnormal in
GFT by Lemma 2.2. Hence T is F-subnormal in G. The theorem is proved.
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From Theorem C and Lemma 2.6 we get

Corollary 4.1 (see [11, Theorem 3.1]). Every 2-maximal subgroup of G is U-
subnormal in G if and only if G is a U-critical group and GU is a minimal normal
subgroup of G.

Proof of Theorem B. First suppose that all n-maximal subgroups of G are F-sub-
normal in G. We shall show, in this case, that either G 2 F or G is a group of
type II. Assume that this is false and consider a counterexample G for which
jGj C n is minimal. Therefore A D GF ¤ 1. Then:

(a) The hypothesis holds for every maximal subgroup of G.
Let M be a maximal subgroup of G. By hypothesis, all .n � 1/-maximal sub-

groups of M are F-subnormal in G, and so they are F-subnormal in M by Lem-
mas 2.1 (1) and 2.12. Moreover, the solubility of G implies that one has either
j�.M/j D j�.G/j or j�.M/j D j�.G/j � 1.

(b) If M is a maximal subgroup of G and j�.M/j D j�.G/j, then M 2 F.
In view of hypothesis and Lemmas 2.1 (1) and 2.12, all .n � 1/-maximal sub-

groups ofM are F-subnormal inM . Since j�.M/j D j�.G/j � nC1 D n�1C2,
M 2 F by Theorem A.

(c) If W is a Hall q0-subgroup of G for some q 2 �.G/, then either W 2 F or
W is a group of type II.

If W is not a maximal subgroup of G, then there is a maximal subgroup V
of G such that W � V and j�.V /j D j�.G/j. By (b), V 2 F. Hence W 2 F by
Lemma 2.12. Suppose that W is a maximal subgroup of G. Then, by (a), the
hypothesis holds for W , so either W 2 F or W is a group of the type II by the
choice of G.

(d) The hypothesis holds for G=N , where N is a minimal normal subgroup
of G.

Arguing similarly as in the proof of necessity in [11, Theorem B], we see that in
the case whenN is not a Sylow subgroup ofG the hypothesis holds forG=N . Con-
sider the case when N is a Sylow p-subgroup of G. Let E be a Hall p0-subgroup
of G. It is clear that j�.E/j D j�.G/j � 1 and E is a maximal subgroup of G. Let
H=N be an .n � 1/-maximal subgroup of G=N . Then H is an .n � 1/-maximal
subgroup of G and H D H \NE D N.H \E/. There is a chain of subgroups
H D H0 < H1 < � � � < Hn�1 D G of G, where Hi�1 is a maximal subgroup
of Hi (i D 1; : : : ; n � 1). Then Hi�1 \E is a maximal subgroup of Hi \E, for
i D 1; : : : ; n � 1. Indeed, suppose that for some i there is a subgroupK ofHi \E
such thatHi�1 \E � K � Hi \E. Then .Hi�1 \E/N � KN � .Hi \E/N ,
soHi�1 D Hi�1 \EN � KN � Hi \EN D Hi . Whence eitherKN D Hi�1
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or KN D Hi . If KN D Hi�1, then Hi�1 \E D KN \E D K.N \E/ D K.
In the second case we have Hi \E D KN \E D K.N \E/ D K. Therefore
Hi�1 \E is a maximal subgroup of Hi \E, so H \E is an .n � 1/-maximal
subgroup of E. Since E is a maximal subgroup of G, H \E is an n-maximal
subgroup of G. Hence H \E is F-subnormal in G by hypothesis. Therefore
H=N D .H \E/N=N is F-subnormal in G=N by Lemma 2.1(2).

(e) j�.G/j > 2.
If j�.G/j D 2, then n D 1 and so all maximal subgroups of G are F-normal

inG by hypothesis. HenceG 2 F since F is a saturated formation, a contradiction.

(f)G is an Ore dispersive group (see Claim (a) in the proof of [11, Theorem B]).

(g) A is a nilpotent group.
Suppose that this is false. Let N be a minimal normal subgroup of G. Then

by claim (d), .G=N/F D GFN=N ' GF=GF \N is a nilpotent group. It is
known that the class of all nilpotent groups is a saturated formation. Hence in
the case when G has a minimal normal subgroup R ¤ N we have that the group
GF=.GF \N/ \ .GF \R/ ' GF is nilpotent. Thus N is the unique minimal
normal subgroup of G and N � GF. If N � ˆ.G/, then GF=GF \ˆ.G/ '

.GF=N/=..GF \ ˆ.G//=N / is nilpotent, so GF is nilpotent by Lemma 2.14.
Therefore N — ˆ.G/. Hence ˆ.G/ D 1 and there is a maximal subgroup L of G
such that G D N Ì L and LG D 1. Thus CG.N / D N by [2, A, Theorem 15.2]
and N ¤ A.

Case 1: j�.G/j D 3. By hypothesis, either all maximal subgroups of G or all
its 2-maximal subgroups are F-subnormal in G. In the first case we infer that
G 2 F, which contradicts the choice of G. Hence all 2-maximal subgroups of G
are F-subnormal. Since F � U, in view of Lemma 2.6, every F-critical group has
a normal Sylow subgroup. Whence Theorem C and Lemma 2.12 imply that G is
an F-critical group and A D GF is a minimal normal subgroup of G. Therefore
A D N , a contradiction.

Case 2: j�.G/j � 4. Assume thatN is a p-group, and take a Sylow subgroup P
ofG such thatN � P . Observe that ifN ¤ P , thenL 2 F by (b), and soA D N ,
a contradiction. Hence N D P .

Case 2.1: j�.G/j D 4. (1) All 3-maximal subgroups ofG are F-subnormal inG
and L is an F-critical group.

Since G 62 F and j�.G/j D 4, either all 2-maximal subgroups of G or all its 3-
maximal subgroups are F-subnormal inG. In the first caseG is an F-critical group
and A D GF is a minimal normal subgroup ofG by Theorem C and Lemma 2.12.
Hence we get A D N , a contradiction. Therefore all 3-maximal subgroups of G
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are F-subnormal in G. Thus all second maximal subgroups of G belong to F by
Lemmas 2.3 and 2.12. Consequently, eitherL 2 F orL is an F-critical group. But
in the first case N D A, a contradiction. Therefore L is an F-critical group.

(2) L D Q Ì .R Ì T /, where Q;R; T are Sylow subgroups of G, Q D LF is
a minimal normal subgroup of L, and GF D PQ.

SinceN D P is a Sylow p-subgroup ofG and j�.G/j D 4, j�.L/j D 3. Hence
in view of (f), L D Q Ì .R Ì T /, where Q;R; T are Sylow subgroups of G.
Moreover, Q D LF by Lemma 2.5 and Q is a minimal normal subgroup of L
by Theorem C and Lemma 2.12 since every 2-maximal subgroup of L is F-sub-
normal in L by (1) and Lemmas 2.1 (1) and 2.12. Finally, since G=N 62 F and
G=PQ ' L=Q 2 F, we have GF D PQ.

(3) V D PQR is not supersoluble. Hence V 62 F.
Assume that V is a supersoluble group. Since F.V / is a characteristic subgroup

of V and V is a normal subgroup of G, F.V / is normal in G. Hence every Sylow
subgroup of F.V / is normal in G. But N is the unique minimal normal subgroup
of G. Therefore F.V / D N D P . Thus V=P ' QR is an abelian group. Hence
R is normal in L and so R � F.L/. In view of Lemma 2.5, F.L/ D Qˆ.L/.
Whence R � ˆ.L/. This contradiction shows that V is not supersoluble. Thus
V 62 F since F � U by hypothesis.

(4) V is a maximal subgroup of G. Hence jT j D t is a prime.
If V is not a maximal subgroup of G, then there is a maximal subgroup U

of G such that V � U and j�.U /j D j�.G/j. Hence U 2 F by (b), so V 2 F by
Lemma 2.12, a contradiction. Therefore V is a normal maximal subgroup of G.
Whence jT j is a prime.

(5) jQj D q is a prime and R D hxi is a cyclic group.
Since V is a maximal subgroup of G by (4), all 2-maximal subgroups of V are

F-subnormal in V by (1) and Lemmas 2.1 (1) and 2.12. Hence, in view of (3),
V is an F-critical group by Theorem C and Lemma 2.12. Therefore, in fact, V is
a U-critical group by (3) since F � U. Hence QR is supersoluble. Since V is
normal in G and ˆ.G/ D 1, ˆ.V / D 1. Therefore QR is a Schmidt group by
Lemma 2.6. Hence R is cyclic and Q is a minimal normal subgroup of QR by
Lemma 2.4. Whence jQj is a prime.

(6) jRj D r is a prime and CL.Q/ D Q.
By (5), L is a supersoluble group. Suppose that jRj D rb is not a prime and

let M be a maximal subgroup of L such that jL WM j D r . Let W D PM . Then
�.W / D �.G/, so W 2 F by (b) and hence W is supersoluble. As CG.N / D N ,
it follows that F.W / D P . Hence W=P 'M is abelian. It is clear that Q �M ,
so M � CL.Q/. Hence T � F.L/. On the other hand, we have F.L/ D Qˆ.L/
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by Lemma 2.5. Therefore T — F.L/. This contradiction shows that jRj D r and
so CL.Q/ D Q by Lemma 2.5.

(7) 1 ¤ CG.x/ \ PQ D P1 � P .
Suppose that CG.x/ \ PQ D 1. Then, by Thompson’s theorem [18, Theo-

rem 10.5.4], PQ is a nilpotent group, so Q � CG.P / D P , a contradiction. Thus
CG.x/ \ PQ ¤ 1. Suppose that q divides jCG.x/ \ PQj. Then, by (5), for some
a 2 P we haveQa � CG.x/ \ PQ, so hQa; RT i � NG.R/. Hence ifE is a Hall
p0-subgroup of NG.R/, then E ' L. Therefore L has a normal r-subgroup, so
CL.Q/ ¤ Q, a contradiction. Thus CG.x/ \ PQ D P1 � P .

Final contradiction for Case 2.1. Let D D hP1; RT i. Then D � NG.R/. If q
divides jDj, then, as above, we have CL.Q/ ¤ Q. Thus D \Qa D 1 for all
a 2 P . Moreover, if P � D, then PR D P �R and R � CG.P / D P . There-
fore P — D and D is not a maximal subgroup of G. Hence D is a k-maximal
subgroup of G for some k � 2. Then there is a 3-maximal subgroup S of G such
that RT � S � D. By hypothesis, S is F-subnormal in G. Hence at least one of
the maximal subgroups L or PRT is F-normal in G, contrary to (2).

Case 2.2: j�.G/j > 4. If �.L/ D ¹p1; : : : ; ptº, then t > 3. Let Ei be a Hall
p0i -subgroup of L and Xi D PEi . We shall show that Ei 2 F for all i D 1; : : : ; t .
By (c), either Xi 2 F or Xi is a group of type II, for i D 1; : : : ; t . In the for-
mer case we have Ei ' Xi=P 2 F. Assume that Xi is a group of type II. Then
X

F
i is nilpotent, so XF

i � F.Xi /. But since P is normal in Xi and CG.P / D P ,
F.Xi / D P . Hence XF

i D P , so Ei 2 F. Since t > 3, Proposition 3.4 implies
that L 2 F. Therefore A D N , a contradiction. Hence we have (g).

(h) A is a Hall subgroup of G.
Suppose that this is false. SinceG is Ore dispersive by (f), for the greatest prime

divisor p of jGj the Sylow p-subgroup P is normal in G. Assume that P is not
a minimal normal subgroup of G. Then there is a maximal subgroup M of G
such that G D PM and P \M ¤ 1. Since j�.M/j D j�.G/j, M 2 F by (b).
Hence G=P 'M=M \ P 2 F, so A D GF � P . Suppose that ˆ.P / ¤ 1. Let
N be a minimal normal subgroup of G such that N � ˆ.P /. By (d), the hy-
pothesis holds for G=N , so either G=N 2 F or G=N is a group of type II by
the choice of G. If G=N 2 F, then A D N � ˆ.P /. Since P is normal in G,
ˆ.P / � ˆ.G/. Thus A � ˆ.G/ and so G 2 F, a contradiction. Hence G=N is
a group of type II. Therefore AN=N D GFN=N D .G=N/F is a Hall subgroup
of G=N . Consequently, AN D P . Hence Aˆ.P / D P , so A D P , a contradic-
tion. Thus ˆ.P / D 1. By Maschke’s theorem, P D N1 � � � � �Nk is the direct
product of some minimal normal subgroups of G. If N1 ¤ P , then G=N1 2 F
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and G=N2 2 F by Theorem A. Consequently, so is G. This contradiction shows
that P is a minimal normal subgroup of G.

By (d), the hypothesis holds for G=P , so either G=P 2 F or G=P is a group of
type II by the choice ofG. IfG=P 2 F, then A D P , a contradiction. HenceG=P
is a group of type II. Therefore AP=P D GFP=P D .G=P /F is a Hall subgroup
of G=P . If P � A, then A D P Ì Ap0 , where Ap0 is a Hall p0-subgroup of A. But
sinceAp0 ' A=P andA=P is a Hall subgroup ofG=P ,A is a Hall subgroup ofG.
Therefore P\A D 1, so A is a Hall subgroup ofG since AP=P ' A=A\P ' A.

(i) A is either of the form N1 � � � � �Nt , where each Ni is a minimal normal
subgroup of G, which is a Sylow subgroup of G, for i D 1; : : : ; t , or a Sylow
p-subgroup of G of exponent p for some prime p and the commutator subgroup,
the Frattini subgroup, and the center of A coincide, while A=ˆ.A/ is an F-eccen-
tric chief factor of G.

If A is not a minimal normal subgroup of G, then arguing similarly as in the
proof of claim (c) in [11, Theorem B], we have (i).

(j) Every n-maximal subgroup of G belongs to F and induces on the Sylow
p-subgroup of A the automorphism group which is contained in F.p/ for every
prime divisor p of jAj.

LetH be any n-maximal subgroup ofG. Suppose thatH is a maximal subgroup
of V , where V is an .n � 1/-maximal subgroup ofG. Since V 2 F by Lemmas 2.3
and 2.12, H 2 F.

Let E D AH . Since A is normal in E and A is nilpotent by (g), A � F.E/.
Whence E D F.E/H . Since H is F-subnormal in G, H is F-subnormal in E
by Lemmas 2.1 (1) and 2.12. Therefore E 2 F by Lemma 2.15. Let P be a Sy-
low p-subgroup of A and K=L a chief factor of E such that 1 � L < K � P .
Since E 2 F, E=CE .K=L/ 2 F.p/. Hence P � ZF.E/, so E=CE .P / 2 F.p/
by Lemma 2.7. Then

H=CH .P / D H=CE .P / \H ' HCE .P /=CE .P / 2 F.p/:

Now suppose that either G 2 F or G is a group of type II. If G 2 F, then every
subgroup ofG is F-subnormal inG by Lemmas 2.2 and 2.12. LetG be a group of
type II. Take an n-maximal subgroup H of G. Put E D GFH . Let P be a Sylow
p-subgroup of GF and K=L a chief factor of E such that 1 � L < K � P . By
hypothesis, H=CH .P / 2 F.p/, so

H=CH .K=L/ ' .H=CH .P //=.CH .K=L/=CH .P // 2 F.p/:

Since GF is normal in E and GF is nilpotent,

GF
� F.E/ � CE .K=L/:
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Hence

E=CE .K=L/ D E=CE .K=L/ \E

D E=CE .K=L/ \G
FH

D E=GF.CE .K=L/ \H/

D GFH=GFCH .K=L/

' H=GFCH .K=L/ \H

D H=CH .K=L/.G
F
\H/

D H=CH .K=L/;

so E=CE .K=L/ 2 F.p/ since F.p/ is hereditary by Lemma 2.12 and [1, Propo-
sition 3.1.40]. Then P � ZF.E/, whence GF � ZF.E/. Thus E=ZF.G/ 2 F.
Hence E 2 F, so H is an F-subnormal subgroup of GFH D E by Lemmas 2.2
and 2.12. Since GF � GFH , GFH is F-subnormal in G by Lemmas 2.1 (4)
and 2.12. Consequently, in view of Lemma 2.1 (3), H is F-subnormal in G. The
theorem is proved.

Corollary 4.2 (see [11, Theorem B]). Given a soluble group G with the property
that j�.G/j � nC 1, all n-maximal subgroups of G are U-subnormal in G if and
only if G is a group of one of the following types:

(I) G is supersoluble.

(II) G D A Ì B , where A D GU and B are Hall subgroups of G, while G is
Ore dispersive and satisfies the following:

(1) A is either of the form N1 � � � � �Nt , where each Ni is a minimal nor-
mal subgroup of G, which is a Sylow subgroup of G, for i D 1; : : : ; t ,
or a Sylow p-subgroup of G of exponent p for some prime p and the
commutator subgroup, the Frattini subgroup, and the center of A co-
incide, every chief factor of G below ˆ.G/ is cyclic, while A=ˆ.A/ is
a noncyclic chief factor of G,

(2) for every prime divisor p of the order ofA every n-maximal subgroupH
of G is supersoluble and induces on the Sylow p-subgroup of A an
automorphism group which is an extension of some p-group by abelian
group of exponent dividing p � 1.

For a proof of Theorem D see the proof of [11, Theorem C].
Finally, note that there are examples which show that the restrictions on j�.G/j

in Theorems A, B, and D cannot be weakened.
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