NHD

Finite soluble groups with all *n*-maximal subgroups **F**-subnormal

Viktoria A. Kovaleva and Alexander N. Skiba

Communicated by Francesco de Giovanni

Abstract. We describe finite soluble groups in which every n-maximal subgroup is \mathcal{F} -sub-normal.

1 Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. We use $\mathfrak{U}, \mathfrak{N}$ and \mathfrak{N}^r to denote the class of all supersoluble groups, the class of all nilpotent groups and the class of all soluble groups of nilpotent length at most r $(r \ge 1)$. The symbol \mathbb{P} denotes the set of all primes, $\pi(G)$ denotes the set of prime divisors of the order of *G*. If *p* is a prime, then we use \mathfrak{G}_p to denote the class of all *p*-groups.

Let \mathfrak{F} be a class of groups. If $1 \in \mathfrak{F}$, then we write $G^{\mathfrak{F}}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathfrak{F}$. The class \mathfrak{F} is said to be a *formation* if either $\mathfrak{F} = \emptyset$ or $1 \in \mathfrak{F}$ and every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} for any group G. The formation \mathfrak{F} is said to be *saturated* if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$ for any group G, *hereditary* if $H \in \mathfrak{F}$ whenever $G \in \mathfrak{F}$ and H is a subgroup of G. A group G is called \mathfrak{F} -critical provided G does not belong to \mathfrak{F} but every proper subgroup of G belongs to \mathfrak{F} . The *Gaschütz product* $\mathfrak{M} \circ \mathfrak{S}$ of the formations \mathfrak{M} and \mathfrak{S} is the class of all groups G such that $G^{\mathfrak{S}} \in \mathfrak{M}$.

For any formation function $f : \mathbb{P} \to \{\text{group formation}\}$, the symbol LF(f) denotes the collection of all groups G such that one has either G = 1 or $G \neq 1$ and $G/C_G(H/K) \in f(p)$ for every chief factor H/K of G and every $p \in \pi(H/K)$. It is well known that for any non-empty saturated formation \mathfrak{F} , there is a unique formation function F such that $\mathfrak{F} = \text{LF}(F)$ and $F(p) = \mathfrak{G}_p \circ F(p) \subseteq \mathfrak{F}$ for all primes p (see [2, Chapter IV, Proposition 3.8]). The formation function F is called the *canonical local satellite* of \mathfrak{F}. A chief factor H/K of G is called \mathfrak{F} -*central* in G provided $G/C_G(H/K) \in F(p)$ for all primes p dividing |H/K|, otherwise it is called \mathfrak{F} -*eccentric*.

Fix some ordering ϕ of \mathbb{P} . The record $p\phi q$ means that p precedes q in ϕ and $p \neq q$. Recall that a group G of order $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ is called ϕ -dispersive whenever $p_1\phi p_2\phi \cdots \phi p_n$ and for every i there is a normal subgroup of G of order $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i}$. Furthermore, if ϕ is such that $p\phi q$ always implies p > q, then every ϕ -dispersive group is called *Ore dispersive*.

By definition, every formation is 0-multiply saturated and for $n \ge 1$ a formation \mathfrak{F} is called *n*-multiply saturated if $\mathfrak{F} = \mathrm{LF}(f)$, where every non-empty value of the function f is an (n-1)-multiply saturated formation (see [20,21]). In fact, almost saturated formations met in mathematical practice are *n*-multiply saturated for every natural *n*. For example, the formations of all soluble groups, all nilpotent groups, all *p*-soluble groups, all *p*-nilpotent groups, all *p*-closed groups, all *p*-decomposable groups, all Ore dispersive groups, all metanilpotent groups are *n*-multiply saturated for all $n \ge 1$. Nevertheless, the formations of all supersoluble groups and all *p*-supersoluble groups are saturated, but they are not 2-multiply saturated formations.

Recall that a subgroup H of G is called a 2-maximal (second maximal) subgroup of G whenever H is a maximal subgroup of some maximal subgroup Mof G. Similarly we can define 3-maximal subgroups, and so on.

The interesting and substantial direction in finite group theory consists in studying the relations between the structure of the group and its *n*-maximal subgroups. One of the earliest publication in this direction is the article of Huppert [9] who established the supersolubility of a group G whose all second maximal subgroups are normal. In the same article Huppert proved that if all 3-maximal subgroups of G are normal in G, then the commutator subgroup G' of G is nilpotent and the chief rank of G is at most 2. These two results were developed by many authors. Among the recent results on n-maximal subgroups we can mention [8], where the solubility of groups is established in which all 2-maximal subgroups enjoy the cover-avoidance property, and [5, 6, 14], where new characterizations of supersoluble groups in terms of 2-maximal subgroups were obtained. The classification of nonnilpotent groups whose all 2-maximal subgroups are TI-subgroups appeared in [13]. Description was obtained in [3] of groups whose every 3-maximal subgroup permutes with all maximal subgroups. The nonnilpotent groups are described in [4] in which every two 3-maximal subgroups are permutable. The groups are described in [15] whose all 3-maximal subgroups are S-quasinormal, that is, permute with all Sylow subgroups. Subsequently this result was strengthened in [16] to provide a description of the groups whose all 3-maximal subgroups are subnormal.

Despite of all these and many other known results about n-maximal subgroups, the fundamental work of Mann [17] still retains its value. It studied the structure of groups whose n-maximal subgroups are subnormal. Mann proved that if all

n-maximal subgroups of a soluble group *G* are subnormal and $|\pi(G)| \ge n + 1$, then *G* is nilpotent; but if $|\pi(G)| \ge n - 1$, then *G* is ϕ -dispersive for some ordering ϕ of \mathbb{P} . Finally, in the case $|\pi(G)| = n$ Mann described *G* completely.

Let \mathfrak{F} be a non-empty formation. Recall that a subgroup H of a group G is said to be \mathfrak{F} -subnormal in G if either H = G or there exists a chain of subgroups $H = H_0 < H_1 < \cdots < H_n = G$ such that H_{i-1} is a maximal subgroup of H_i and $H_i/(H_{i-1})_{H_i} \in \mathfrak{F}$, for $i = 1, \dots, n$.

The main goal of this article is to prove the following formation analogs of Mann's theorems.

Theorem A. Let \mathfrak{F} be an r-multiply saturated formation such that $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{N}^{r+1}$ for some $r \geq 0$. If every n-maximal subgroup of a soluble group G is \mathfrak{F} -subnormal in G and $|\pi(G)| \geq n + r + 1$, then $G \in \mathfrak{F}$.

Theorem B. Let $\mathfrak{F} = LF(F)$ be a saturated formation such that $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{U}$, where *F* is the canonical local satellite of \mathfrak{F} . Let *G* be a soluble group with $|\pi(G)| \ge n + 1$. Then all *n*-maximal subgroups of *G* are \mathfrak{F} -subnormal in *G* if and only if *G* is a group of one of the following types:

- (I) $G \in \mathfrak{F}$.
- (II) $G = A \rtimes B$, where $A = G^{\mathcal{F}}$ and B are Hall subgroups of G, while G is *Ore dispersive and satisfies the following:*
 - A is either of the form N₁ × ··· × N_t, where each N_i is a minimal normal subgroup of G, which is a Sylow subgroup of G, for i = 1, ..., t, or a Sylow p-subgroup of G of exponent p for some prime p and the commutator subgroup, the Frattini subgroup, and the center of A coincide, while A/Φ(A) is an F-eccentric chief factor of G,
 - (2) every *n*-maximal subgroup of G belongs to \mathcal{F} and induces on the Sylow *p*-subgroup of A an automorphism group which is contained in F(p) for every prime divisor p of |A|.

In the proof of Theorem B we often use Theorem A and the following useful

Theorem C. Let \mathcal{F} be a hereditary saturated formation such that every \mathcal{F} -critical group is soluble and it has a normal Sylow *p*-subgroup $G_p \neq 1$ for some prime *p*. Then every 2-maximal subgroup of *G* is \mathcal{F} -subnormal in *G* if and only if either $G \in \mathcal{F}$ or *G* is an \mathcal{F} -critical group and $G^{\mathcal{F}}$ is a minimal normal subgroup of *G*.

Theorem D. Let \mathcal{F} be a saturated formation such that $\mathfrak{N} \subseteq \mathcal{F} \subseteq \mathfrak{U}$. If every *n*-maximal subgroup of a soluble group G is \mathcal{F} -subnormal in G and $|\pi(G)| \ge n$, then G is ϕ -dispersive for some ordering ϕ of \mathbb{P} .

All unexplained notation and terminology are standard. The reader is referred to [2] or [1] if necessary.

2 Preliminary results

Let \mathfrak{F} be a non-empty formation. Recall that a maximal subgroup H of G is said to be \mathfrak{F} -normal in G if $G/H_G \in \mathfrak{F}$, otherwise it is said to be \mathfrak{F} -abnormal in G. We use the following results.

Lemma 2.1. Let \mathcal{F} be a formation and H an \mathcal{F} -subnormal subgroup of G.

- (1) If \mathfrak{F} is hereditary and $K \leq G$, then $H \cap K$ is an \mathfrak{F} -subnormal subgroup in K, *cf.* [1, Lemma 6.1.7 (2)].
- (2) If N is a normal subgroup in G, then HN/N is an *S*-subnormal subgroup in G/N, cf. [1, Lemma 6.1.6 (3)].
- (3) If K is a subgroup of G such that K is F-subnormal in H, then K is F-subnormal in G, cf. [1, Lemma 6.1.6(1)].
- (4) If \mathfrak{F} is hereditary and K is a subgroup of G such that $G^{\mathfrak{F}} \leq K$, then K is \mathfrak{F} -subnormal in G, cf. [1, Lemma 6.1.7 (1)].

The following lemma is evident.

Lemma 2.2. Let \mathcal{F} be a hereditary formation. If $G \in \mathcal{F}$, then every subgroup of G is \mathcal{F} -subnormal in G.

Lemma 2.3. Let \mathcal{F} be a hereditary saturated formation. If every n-maximal subgroup of G is \mathcal{F} -subnormal in G, then every (n - 1)-maximal subgroup of G belongs to \mathcal{F} and every (n + 1)-maximal subgroup of G is \mathcal{F} -subnormal in G.

Proof. We first show that every (n - 1)-maximal subgroup of G belongs to \mathfrak{F} . Let H be an (n - 1)-maximal subgroup of G and K a maximal subgroup of H. Then K is an n-maximal subgroup of G and so, by hypothesis, K is \mathfrak{F} -subnormal in G. Hence K is \mathfrak{F} -subnormal in H by Lemma 2.1 (1). Thus all maximal subgroups of H are \mathfrak{F} -normal in H. Therefore $H \in \mathfrak{F}$ since \mathfrak{F} is saturated.

Now, let *E* be an (n + 1)-maximal subgroup of *G*, and let E_1 and E_2 be an *n*-maximal and an (n - 1)-maximal subgroup of *G*, respectively, such that $E \le E_1 \le E_2$. Then, by the above, $E_2 \in \mathfrak{F}$, so $E_1 \in \mathfrak{F}$. Hence *E* is \mathfrak{F}-subnormal in E_1 by Lemma 2.2. By hypothesis, E_1 is \mathfrak{F}-subnormal in *G*. Therefore *E* is \mathfrak{F} -subnormal in *G* by Lemma 2.1(3). The lemma is proved. **Lemma 2.4** (see [19, Chapter VI, Theorem 24.2]). Let \mathcal{F} be a saturated formation and *G* a soluble group. If $G^{\mathcal{F}} \neq 1$ and every \mathcal{F} -abnormal maximal subgroup of *G* belongs to \mathcal{F} , then the following hold:

- (1) $G^{\mathfrak{F}}$ is a p-group for some prime p,
- (2) $G^{\mathfrak{F}}/\Phi(G^{\mathfrak{F}})$ is an \mathfrak{F} -eccentric chief factor of G,
- (3) if $G^{\mathfrak{F}}$ is a non-abelian group, then the commutator subgroup, the Frattini subgroup, and the center of G coincide and are of exponent p,
- (4) if $G^{\mathfrak{F}}$ is abelian, then $G^{\mathfrak{F}}$ is elementary,
- (5) if p > 2, then $G^{\mathfrak{F}}$ is of exponent p, for p = 2 the exponent of $G^{\mathfrak{F}}$ is at most 4,
- (6) every pair of \mathfrak{F} -abnormal maximal subgroups of G are conjugate in G.

Lemma 2.5 (see [19, Chapter VI, Theorem 24.5]). Let \mathcal{F} be a saturated formation. Let G be an \mathcal{F} -critical group and G has a normal Sylow p-subgroup $G_p \neq 1$ for some prime p. Then:

- (1) $G_p = G^{\mathfrak{F}}$,
- (2) $F(G) = G_p \Phi(G)$,
- (3) $G_{p'} \cap C_G(G_p/\Phi(G_p)) = \Phi(G) \cap G_{p'}$, where $G_{p'}$ is some complement of G_p in G.

Lemma 2.6 (see [19, Chapter VI, Theorems 26.3 and 26.5]). Let *G* be a \mathfrak{U} -critical group. Then:

- (1) G is soluble and $|\pi(G)| \leq 3$,
- (2) if G is not a Schmidt group, then G is Ore dispersive,
- (3) $G^{\mathfrak{U}}$ is the unique normal Sylow subgroup of G,
- (4) if S is a complement of $G^{\mathfrak{U}}$ in G, then $S/S \cap \Phi(G)$ is either a primary cyclic group or a Miller–Moreno group.

Let \mathfrak{F} be a class of groups. Recall that the product of all normal subgroups of a group *G* whose *G*-chief factors are \mathfrak{F} -central in *G* is called \mathfrak{F} -hypercentre of *G* and denoted by $Z_{\mathfrak{F}}(G)$, see [2, p. 389].

Lemma 2.7 (see [7, Lemma 2.14]). Let \mathfrak{F} be a saturated formation and F be the canonical local satellite of \mathfrak{F} . Let E be a normal p-subgroup of a group G. Then $E \leq Z_{\mathfrak{F}}(G)$ if and only if $G/C_G(E) \in F(p)$.

Lemma 2.8 (see [20, Corollary 7.14]). The Gaschütz product of any two n-multiply saturated formations is an n-multiply saturated formation for every $n \ge 0$.

We shall also need the following evident lemma.

Lemma 2.9. If G = AB, then $G = AB^x$ for all $x \in G$.

Let \mathfrak{F} be a class of groups and t be a natural number with $t \ge 2$. Recall that \mathfrak{F} is called Σ_t -closed if \mathfrak{F} contains every group G such that G has subgroups H_1, \ldots, H_t whose indices are pairwise coprime and $H_i \in \mathfrak{F}$, for $i = 1, \ldots, t$.

Lemma 2.10 (see [19, Chapter I, Lemma 4.11]). Every formation of nilpotent groups is Σ_3 -closed.

If $\mathfrak{F} = \mathrm{LF}(f)$ and $f(p) \subseteq \mathfrak{F}$ for all primes p, then f is called an *integrated local satellite* of \mathfrak{F}. Let \mathfrak{X} be a set of groups. The symbol l_n form \mathfrak{X} denotes the intersection of all *n*-multiply saturated formations \mathfrak{F} such that \mathfrak{X} \subseteq \mathfrak{F}. In view of [1, Remark 3.1.7], l_n form \mathfrak{X} is an *n*-multiply saturated formation.

Lemma 2.11 (see [20, Theorem 8.3]). Let \mathfrak{F} be an *n*-multiply saturated formation for some $n \ge 1$. Then \mathfrak{F} has an integrated local satellite f such that, for all primes p, $f(p) = l_{n-1} \operatorname{form}(G/O_{p',p}(G)|G \in \mathfrak{F})$.

Lemma 2.12 (see [22, Section 1.4]). Every *r*-multiply saturated formation contained in \Re^{r+1} is hereditary for any $r \ge 0$.

Lemma 2.13 (see [19, p. 35]). For any ordering ϕ of \mathbb{P} the class of all ϕ -dispersive groups is a saturated formation.

Lemma 2.14 (see [7, Corollary 1.6]). Let \mathfrak{F} be a saturated formation containing all nilpotent groups and E a normal subgroup of G. If $E/E \cap \Phi(G) \in \mathfrak{F}$, then $E \in \mathfrak{F}$.

Lemma 2.15 (see [19, Theorem 15.10]). Let \mathfrak{F} be a saturated formation and G be a group such that $G^{\mathfrak{F}}$ is nilpotent. Let H and M be subgroups of G, $H \in \mathfrak{F}$, $H \leq M$ and HF(G) = G. If H is \mathfrak{F} -subnormal in M, then $M \in \mathfrak{F}$.

Proof of Theorem A

First we give two proposition which may be independently interesting since they generalize some known results.

Proposition 3.1. Suppose that $G = A_1A_2 = A_2A_3 = A_1A_3$, where A_1 , A_2 and A_3 are soluble subgroups of G. If the three indices $|G : N_G(A'_1)|$, $|G : N_G(A'_2)|$ and $|G : N_G(A'_3)|$ are pairwise coprime, then G is soluble.

Proof. Suppose that this proposition is false and let G be a counterexample with |G| minimal.

(1) If N is a minimal normal subgroup of G, then G/N is soluble. Hence N is the unique minimal normal subgroup of G and $C_G(N) = 1$.

It is clear that $A'_i N/N = (A_i N)'N/N = (A_i N/N)'$, for i = 1, 2, 3. Hence $N_G(A'_i)N/N \le N_{G/N}(A_i N/N)'$. On the other hand, $A_i N/N \simeq A_i/A_i \cap N$ is soluble for all i = 1, 2, 3. Therefore the hypothesis holds for G/N, so G/N is soluble by the choice of G. Hence N is non-abelian and N is the unique minimal normal subgroup of G. Therefore, since $C_G(N)$ is normal in $G, C_G(N) = 1$.

(2) At least two of the subgroups A_1 , A_2 , A_3 are non-abelian. (This directly follows from Kegel–Wielandt's theorem on solubility of products of milpotent groups [10, Chapter VI, Hauptsatz 4.3] and the choice of G.)

(3) There are two pairs $i_1 \neq j_1$ and $i_2 \neq j_2$, where $j_1 = i_2$, such that the subgroup A_{i_a} has a minimal normal subgroup L_a such that $L_a^G \leq N_G(A'_{i_a})$.

Let L_1 be a minimal normal subgroup of A_1 . Then L_1 is a *p*-group for some prime *p* since A_1 is soluble by hypothesis. On the other hand, again by hypothesis, $|G : N_G(A'_2)|$ and $|G : N_G(A'_3)|$ are coprime, so at least one of the subgroups $N_G(A'_2)$ or $N_G(A'_3)$ contains a Sylow *p*-subgroup *P* of *G*. Without loss of generality we may assume that $P \le N_G(A'_2)$. Moreover, in view of Lemma 2.9 and Sylow's theorem we may assume that $L_1 \le P$. Hence

$$L_1^G = L_1^{A_1A_2} = L_1^{A_1N_G(A'_2)} \le N_G(A'_2).$$

Now let L_2 be a minimal normal subgroup of A_2 . Then, as above, we have either $L_2^G \leq N_G(A'_1)$ or $L_2^G \leq N_G(A'_3)$.

Final contradiction. In view of (3) we may assume that A_1 has a minimal normal subgroup L_1 such that $L_1^G \leq N_G(A'_2)$, and A_2 has a minimal normal subgroup L_2 such that $L_2^G \leq N_G(A'_i)$ for some *i*. In view of (2), at least one of the subgroups A_2 or A_i is not abelian. Without loss of generality we may suppose that $A'_2 \neq 1$. In view of (1), we have $N \leq N_G(A'_2)$. Let $H = A'_2 \cap N$. Suppose that $H \neq 1$. Then *H* is a normal non-identity subgroup of *N*. Hence *N* is soluble, contrary to (1). Finally, consider the case when H = 1. In this case we have $A'_2 \leq C_G(N) \leq N$, so $A'_2 = 1$ by (1). This contradiction completes the proof of the result.

Corollary 3.2. Suppose that $G = A_1A_2 = A_2A_3 = A_1A_3$, where A_1, A_2 and A_3 are soluble subgroups of G. If the three indices $|G : N_G(A_1)|$, $|G : N_G(A_2)|$ and $|G : N_G(A_3)|$ are pairwise coprime, then G is soluble.

Corollary 3.3 (H. Wielandt). If G has three soluble subgroups A_1 , A_2 and A_3 whose indices $|G : A_1|$, $|G : A_2|$, $|G : A_3|$ are pairwise coprime, then G is itself soluble.

Proposition 3.4. Let \mathfrak{M} be an *r*-multiply saturated formation and let, for some $r \geq 0, \mathfrak{N} \subseteq \mathfrak{M} \subseteq \mathfrak{M}^{r+1}$. Then, for any prime *p*, both formations \mathfrak{M} and $\mathfrak{G}_p \circ \mathfrak{M}$ are Σ_{r+3} -closed.

Proof. Let M be the canonical local satellite of the formation \mathfrak{M} . Let \mathfrak{F} be one of the formations \mathfrak{M} or $\mathfrak{G}_p \circ \mathfrak{M}$. Let G be any group such that for some subgroups H_1, \ldots, H_{r+3} of G whose indices $|G : H_1|, \ldots, |G : H_{r+3}|$ are pairwise coprime we have $H_1, \ldots, H_{r+3} \in \mathfrak{F}$. We shall prove that $G \in \mathfrak{F}$. Suppose that this is false and let G be a counterexample with r + |G| minimal. Let N be a minimal normal subgroup of G.

(1) $N = G^{\mathfrak{F}}$ is the only minimal normal subgroup of G and $N \leq O_q(G)$ for some prime q. Hence if $\mathfrak{F} = \mathfrak{G}_p \circ \mathfrak{M}$, then $q \neq p$.

It is clear that the hypothesis holds for G/N, so $G/N \in \mathfrak{F}$ by the choice of G. Hence $N = G^{\mathfrak{F}}$ since $G \notin \mathfrak{F}$. Moreover, N is a q-group for some prime q since G is soluble by Proposition 3.1. Finally, if $\mathfrak{F} = \mathfrak{S}_p \circ \mathfrak{M}$ and p = q, then

$$G \in \mathfrak{G}_p \circ (\mathfrak{G}_p \circ \mathfrak{M}) = \mathfrak{G}_p \circ \mathfrak{F} = \mathfrak{F},$$

a contradiction. Hence we have (1).

Since the indices $|G: H_1|, \ldots, |G|$ $H_{r+3}|$ are pairwise coprime, in view of (1) we may assume without loss of generality that $N \leq H_i$ for all $i = 2, \ldots, r+3$.

(2) $C_G(N) = N$.

First we show that $N \not\geq \Phi(G)$. Suppose that $N \leq \Phi(G)$. If r > 0, then \mathfrak{F} is saturated by Lemma 2.8, so $G \in \mathfrak{F}$. This contradiction shows that r = 0 and so $\mathfrak{F} = \mathfrak{S}_p \circ \mathfrak{M}$ by Lemma 2.10 and the choice of G. Hence $q \neq p$ by (1). Let $O/N = O_p(G/N)$ and P be a Sylow p-subgroup of O. Then

$$G = ON_G(P) = NPN_G(P) = NN_G(P) = N_G(P)$$

by the Frattini Argument since $N \leq \Phi(G)$. Hence in view of (1), $O_p(G/N) = 1$ and so $G/N \in \mathfrak{M}$ since $G/N \in \mathfrak{F} = \mathfrak{G}_p \circ \mathfrak{M}$. But then G is a p'-group. Hence $H_1, H_2, H_3 \in \mathfrak{M}$. Thus $G \in \mathfrak{M} \subseteq \mathfrak{F}$ by Lemma 2.10. This contradiction shows that $N \not\leq \Phi(G)$. But then $C_G(N) = N$ by (1) and [2, Chapter A, Theorem 15.2]. (3) r > 0.

Suppose that r = 0. Then $\mathfrak{F} = \mathfrak{G}_p \circ \mathfrak{M}$, where \mathfrak{M} is a formation of nilpotent groups. Since $N \leq H_2 \in \mathfrak{F}$ and, by (2), $C_G(N) = N$, $O_p(H_2) = 1$. Hence H_2 is a p'-group. Similarly, H_3 is a p'-group. Hence $G = H_1H_2$ is a p'-group. But then $H_1 \in \mathfrak{M}$, so $G \in \mathfrak{F}$ by Lemma 2.10. This contradiction shows that we have (3).

(4) $H_i/N \in M(q)$ for all i = 2, ..., r + 3.

Let $i \in \{2, ..., r + 3\}$. Then $H_i \in \mathfrak{M}$. Indeed, if $\mathfrak{F} = \mathfrak{G}_p \circ \mathfrak{M}$, then $q \neq p$ by (1). On the other hand, in view of (2), we get $C_G(N) = N$. Hence $O_p(H_i) = 1$, which implies that $H_i \in \mathfrak{M}$. But then, by claim (2) and Lemma 2.7, we conclude that $H_i/N = H_i/C_{H_i}(N) \in M(q)$.

(5) $G/N \in M(q)$.

By Lemma 2.11 and [2, Chapter IV, Proposition 3.8], $M(q) = \mathfrak{G}_q \circ \mathfrak{M}_0$, where $\mathfrak{M}_0 = l_{r-1}$ form $(G/O_{q',q}(G)|G \in \mathfrak{M})$. Since $\mathfrak{M} \subseteq \mathfrak{N}^{r+1}$, $G/O_{q',q}(G) \in \mathfrak{M}^r$, so $\mathfrak{M}_0 \subseteq \mathfrak{N}^r$ since \mathfrak{M}_0 is an (r-1)-multiply saturated formation. Therefore the minimality of r + |G| and claim (4) imply that $G/N \in M(q)$.

Final contradiction. Since *N* is a *q*-group by (1), from claim (5) it follows that $G \in \mathfrak{S}_q \circ M(q) = M(q) \subseteq \mathfrak{M} \subseteq \mathfrak{S}_p \circ \mathfrak{M}$. This contradiction completes the proof of the proposition.

Corollary 3.5 (see [12, Satz 1.3]). Every saturated formation contained in \mathfrak{N}^2 is Σ_4 -closed.

Corollary 3.6. The class of all soluble groups of nilpotent length at most $r \ (r \ge 2)$ is Σ_{r+2} -closed.

Proof. It is clear that \mathfrak{N}^r is a hereditary formation. Moreover, in view of Lemma 2.8, \mathfrak{N}^r is an (r-1)-multiply saturated formation. So \mathfrak{N}^r is Σ_{r+2} -closed by Proposition 3.4.

Proof of Theorem A. Suppose that the theorem is false and consider some counterexample *G* of minimal order. Take a maximal subgroup *M* of *G*. By hypothesis, all (n - 1)-maximal subgroups of *M* are \mathfrak{F} -subnormal in *G*, and so they are \mathfrak{F} -subnormal in *M* by Lemmas 2.1 (1) and 2.12. The solubility of *G* implies that either $|\pi(M)| = |\pi(G)|$ or $|\pi(M)| = |\pi(G)| - 1$, so $M \in \mathfrak{F}$ by the choice of *G*. Hence *G* is an \mathfrak{F} -critical group.

Since *G* is soluble, *G* has a maximal subgroup *T* with $|G : T| = p^a$ for any prime *p* dividing |G|. On the other hand, \mathfrak{F} is Σ_{r+3} -closed by Proposition3.4. Hence $|\pi(G)| \leq r+2$. Moreover, by hypothesis, $|\pi(G)| \geq n+r+1$. Therefore n = 1. Thus all maximal subgroups of *G* are \mathfrak{F} -normal, so $G/\Phi(G) \in \mathfrak{F}$. But \mathfrak{F} is a saturated formation and hence $G \in \mathfrak{F}$. This contradiction completes the proof of the result.

Corollary 3.7 (see [17, Theorem 6]). *If each n-maximal subgroup of a soluble group G is subnormal and* $|\pi(G)| \ge n + 1$, *then G is nilpotent.*

Corollary 3.8 (see [11, Theorem A]). *If every n-maximal subgroup of a soluble group G is* \mathfrak{U} *-subnormal in G and* $|\pi(G)| \ge n + 2$, *then G is supersoluble.*

Corollary 3.9. Let \mathfrak{F} be the class of all groups G with $G' \leq F(G)$. If every *n*-maximal subgroup of a soluble group G is \mathfrak{F} -subnormal in G and $|\pi(G)| \geq n + 2$, then $G \in \mathfrak{F}$.

Corollary 3.10. If every *n*-maximal subgroup of a soluble group G is \mathfrak{N}^r -subnormal in G $(r \ge 1)$ and $|\pi(G)| \ge n + r$, then $G \in \mathfrak{N}^r$.

4 Proofs of Theorems B, C, and D

Proof of Theorem C. First suppose that every 2-maximal subgroup of G is \mathfrak{F} -subnormal in G. Assume that $G \notin \mathfrak{F}$. We shall show that G is an \mathfrak{F} -critical group and $G^{\mathfrak{F}}$ is a minimal normal subgroup of G. Let M be a maximal subgroup of G and Tbe a maximal subgroup of M. By hypothesis, T is \mathfrak{F} -subnormal in G. Therefore Tis \mathfrak{F} -normal in M by Lemma 2.1 (1), so $M/T_M \in \mathfrak{F}$. Since T is arbitrary and \mathfrak{F} is saturated, $M \in \mathfrak{F}$. Consequently, all maximal subgroups of G belong to \mathfrak{F} . Hence G is an \mathfrak{F} -critical group. Then, by hypothesis, G is soluble and it has a normal Sylow p-subgroup $G_p \neq 1$ for some prime p. Thus $G_p = G^{\mathfrak{F}}$ by Lemma 2.5. On the other hand, by Lemma 2.4, $G_p/\Phi(G_p)$ is a chief factor of G.

Let M be an \mathfrak{F} -abnormal maximal subgroup of G. Then $G_p \not\leq M$ by Lemma 2.1 (4), so $G = G_p M$ and $M = (G_p \cap M)G_{p'} = \Phi(G_p)G_{p'}$, where $G_{p'}$ is a Hall p'-subgroup of G. Assume that $\Phi(G_p) \neq 1$. It is clear that $\Phi(G_p) \not\leq \Phi(M)$. Let T be a maximal subgroup of M such that $\Phi(G_p) \not\leq T$. Then $M = \Phi(G_p)T$. Since T is \mathfrak{F} -subnormal in G, there is a maximal subgroup L of G such that $T \leq L$ and $G/L_G \in \mathfrak{F}$. Then $G_p \leq L_G$, so

$$G = G_p M = G_p \Phi(G_p) T = G_p T \le L,$$

a contradiction. Hence $\Phi(G_p) = 1$. Therefore $G_p = G^{\mathfrak{F}}$ is a minimal normal subgroup of G.

Now suppose that G is an \mathfrak{F} -critical group and $G^{\mathfrak{F}}$ is a minimal normal subgroup of G. Let T be a 2-maximal subgroup of G and M be a maximal subgroup of G such that T is a maximal subgroup of M. Since $M \in \mathfrak{F}$, T is \mathfrak{F} -subnormal in M by Lemma 2.2. Therefore, if M is \mathfrak{F} -normal in G, then T is \mathfrak{F} -subnormal in G by Lemma 2.1 (3). Assume that M is \mathfrak{F} -abnormal in G. Then $G^{\mathfrak{F}} \not\leq M$ by Lemma 2.1 (4). Therefore, since $G^{\mathfrak{F}}$ is a maximal \mathfrak{F} -normal subgroup of G by hypothesis, $G = G^{\mathfrak{F}} \rtimes M$ and $G^{\mathfrak{F}}T$ is a maximal \mathfrak{F} -normal subgroup of G. Moreover, since G is an \mathfrak{F} -critical group, $G^{\mathfrak{F}}T \in \mathfrak{F}$ and hence T is \mathfrak{F} -subnormal in $G^{\mathfrak{F}}T$ by Lemma 2.2. Hence T is \mathfrak{F} -subnormal in G. The theorem is proved. \Box

From Theorem C and Lemma 2.6 we get

Corollary 4.1 (see [11, Theorem 3.1]). Every 2-maximal subgroup of G is \mathfrak{U} -subnormal in G if and only if G is a \mathfrak{U} -critical group and $G^{\mathfrak{U}}$ is a minimal normal subgroup of G.

Proof of Theorem B. First suppose that all *n*-maximal subgroups of *G* are \mathfrak{F} -subnormal in *G*. We shall show, in this case, that either $G \in \mathfrak{F}$ or *G* is a group of type II. Assume that this is false and consider a counterexample *G* for which |G| + n is minimal. Therefore $A = G^{\mathfrak{F}} \neq 1$. Then:

(a) The hypothesis holds for every maximal subgroup of G.

Let *M* be a maximal subgroup of *G*. By hypothesis, all (n - 1)-maximal subgroups of *M* are \mathscr{F} -subnormal in *G*, and so they are \mathscr{F} -subnormal in *M* by Lemmas 2.1 (1) and 2.12. Moreover, the solubility of *G* implies that one has either $|\pi(M)| = |\pi(G)|$ or $|\pi(M)| = |\pi(G)| - 1$.

(b) If M is a maximal subgroup of G and $|\pi(M)| = |\pi(G)|$, then $M \in \mathfrak{F}$.

In view of hypothesis and Lemmas 2.1 (1) and 2.12, all (n-1)-maximal subgroups of M are \mathfrak{F} -subnormal in M. Since $|\pi(M)| = |\pi(G)| \ge n+1 = n-1+2$, $M \in \mathfrak{F}$ by Theorem A.

(c) If W is a Hall q'-subgroup of G for some $q \in \pi(G)$, then either $W \in \mathcal{F}$ or W is a group of type II.

If W is not a maximal subgroup of G, then there is a maximal subgroup V of G such that $W \leq V$ and $|\pi(V)| = |\pi(G)|$. By (b), $V \in \mathfrak{F}$. Hence $W \in \mathfrak{F}$ by Lemma 2.12. Suppose that W is a maximal subgroup of G. Then, by (a), the hypothesis holds for W, so either $W \in \mathfrak{F}$ or W is a group of the type II by the choice of G.

(d) The hypothesis holds for G/N, where N is a minimal normal subgroup of G.

Arguing similarly as in the proof of necessity in [11, Theorem B], we see that in the case when N is not a Sylow subgroup of G the hypothesis holds for G/N. Consider the case when N is a Sylow p-subgroup of G. Let E be a Hall p'-subgroup of G. It is clear that $|\pi(E)| = |\pi(G)| - 1$ and E is a maximal subgroup of G. Let H/N be an (n-1)-maximal subgroup of G/N. Then H is an (n-1)-maximal subgroup of G and $H = H \cap NE = N(H \cap E)$. There is a chain of subgroups $H = H_0 < H_1 < \cdots < H_{n-1} = G$ of G, where H_{i-1} is a maximal subgroup of H_i $(i = 1, \ldots, n-1)$. Then $H_{i-1} \cap E$ is a maximal subgroup of $H_i \cap E$, for $i = 1, \ldots, n-1$. Indeed, suppose that for some i there is a subgroup K of $H_i \cap E$ such that $H_{i-1} \cap E \le K \le H_i \cap E$. Then $(H_{i-1} \cap E)N \le KN \le (H_i \cap E)N$, so $H_{i-1} = H_{i-1} \cap EN \le KN \le H_i \cap EN = H_i$. Whence either $KN = H_{i-1}$ or $KN = H_i$. If $KN = H_{i-1}$, then $H_{i-1} \cap E = KN \cap E = K(N \cap E) = K$. In the second case we have $H_i \cap E = KN \cap E = K(N \cap E) = K$. Therefore $H_{i-1} \cap E$ is a maximal subgroup of $H_i \cap E$, so $H \cap E$ is an (n-1)-maximal subgroup of E. Since E is a maximal subgroup of G, $H \cap E$ is an *n*-maximal subgroup of G. Hence $H \cap E$ is \mathfrak{F} -subnormal in G by hypothesis. Therefore $H/N = (H \cap E)N/N$ is \mathfrak{F} -subnormal in G/N by Lemma 2.1(2).

(e) $|\pi(G)| > 2$.

If $|\pi(G)| = 2$, then n = 1 and so all maximal subgroups of G are \mathcal{F} -normal in G by hypothesis. Hence $G \in \mathcal{F}$ since \mathcal{F} is a saturated formation, a contradiction.

(f) G is an Ore dispersive group (see Claim (a) in the proof of [11, Theorem B]).

(g) *A* is a nilpotent group.

Suppose that this is false. Let N be a minimal normal subgroup of G. Then by claim (d), $(G/N)^{\mathfrak{F}} = G^{\mathfrak{F}}N/N \simeq G^{\mathfrak{F}}/G^{\mathfrak{F}} \cap N$ is a nilpotent group. It is known that the class of all nilpotent groups is a saturated formation. Hence in the case when G has a minimal normal subgroup $R \neq N$ we have that the group $G^{\mathfrak{F}}/(G^{\mathfrak{F}} \cap N) \cap (G^{\mathfrak{F}} \cap R) \simeq G^{\mathfrak{F}}$ is nilpotent. Thus N is the unique minimal normal subgroup of G and $N \leq G^{\mathfrak{F}}$. If $N \leq \Phi(G)$, then $G^{\mathfrak{F}}/G^{\mathfrak{F}} \cap \Phi(G) \simeq$ $(G^{\mathfrak{F}}/N)/((G^{\mathfrak{F}} \cap \Phi(G))/N)$ is nilpotent, so $G^{\mathfrak{F}}$ is nilpotent by Lemma 2.14. Therefore $N \not\leq \Phi(G)$. Hence $\Phi(G) = 1$ and there is a maximal subgroup L of G such that $G = N \rtimes L$ and $L_G = 1$. Thus $C_G(N) = N$ by [2, A, Theorem 15.2] and $N \neq A$.

Case 1: $|\pi(G)| = 3$. By hypothesis, either all maximal subgroups of *G* or all its 2-maximal subgroups are \mathfrak{F} -subnormal in *G*. In the first case we infer that $G \in \mathfrak{F}$, which contradicts the choice of *G*. Hence all 2-maximal subgroups of *G* are \mathfrak{F} -subnormal. Since $\mathfrak{F} \subseteq \mathfrak{U}$, in view of Lemma 2.6, every \mathfrak{F} -critical group has a normal Sylow subgroup. Whence Theorem C and Lemma 2.12 imply that *G* is an \mathfrak{F} -critical group and $A = G^{\mathfrak{F}}$ is a minimal normal subgroup of *G*. Therefore A = N, a contradiction.

Case 2: $|\pi(G)| \ge 4$. Assume that N is a p-group, and take a Sylow subgroup P of G such that $N \le P$. Observe that if $N \ne P$, then $L \in \mathfrak{F}$ by (b), and so A = N, a contradiction. Hence N = P.

Case 2.1: $|\pi(G)| = 4$. (1) All 3-maximal subgroups of G are \mathcal{F} -subnormal in G and L is an \mathcal{F} -critical group.

Since $G \notin \mathfrak{F}$ and $|\pi(G)| = 4$, either all 2-maximal subgroups of G or all its 3maximal subgroups are \mathfrak{F} -subnormal in G. In the first case G is an \mathfrak{F} -critical group and $A = G^{\mathfrak{F}}$ is a minimal normal subgroup of G by Theorem C and Lemma 2.12. Hence we get A = N, a contradiction. Therefore all 3-maximal subgroups of G are \mathcal{F} -subnormal in G. Thus all second maximal subgroups of G belong to \mathcal{F} by Lemmas 2.3 and 2.12. Consequently, either $L \in \mathcal{F}$ or L is an \mathcal{F} -critical group. But in the first case N = A, a contradiction. Therefore L is an \mathcal{F} -critical group.

(2) $L = Q \rtimes (R \rtimes T)$, where Q, R, T are Sylow subgroups of $G, Q = L^{\mathfrak{F}}$ is a minimal normal subgroup of L, and $G^{\mathfrak{F}} = PQ$.

Since N = P is a Sylow *p*-subgroup of *G* and $|\pi(G)| = 4$, $|\pi(L)| = 3$. Hence in view of (f), $L = Q \rtimes (R \rtimes T)$, where Q, R, T are Sylow subgroups of *G*. Moreover, $Q = L^{\mathfrak{F}}$ by Lemma 2.5 and *Q* is a minimal normal subgroup of *L* by Theorem C and Lemma 2.12 since every 2-maximal subgroup of *L* is \mathfrak{F} -subnormal in *L* by (1) and Lemmas 2.1 (1) and 2.12. Finally, since $G/N \notin \mathfrak{F}$ and $G/PQ \simeq L/Q \in \mathfrak{F}$, we have $G^{\mathfrak{F}} = PQ$.

(3) V = PQR is not supersoluble. Hence $V \notin \mathfrak{F}$.

Assume that V is a supersoluble group. Since F(V) is a characteristic subgroup of V and V is a normal subgroup of G, F(V) is normal in G. Hence every Sylow subgroup of F(V) is normal in G. But N is the unique minimal normal subgroup of G. Therefore F(V) = N = P. Thus $V/P \simeq QR$ is an abelian group. Hence R is normal in L and so $R \leq F(L)$. In view of Lemma 2.5, $F(L) = Q\Phi(L)$. Whence $R \leq \Phi(L)$. This contradiction shows that V is not supersoluble. Thus $V \notin \mathfrak{F}$ since $\mathfrak{F} \subseteq \mathfrak{U}$ by hypothesis.

(4) V is a maximal subgroup of G. Hence |T| = t is a prime.

If V is not a maximal subgroup of G, then there is a maximal subgroup U of G such that $V \leq U$ and $|\pi(U)| = |\pi(G)|$. Hence $U \in \mathfrak{F}$ by (b), so $V \in \mathfrak{F}$ by Lemma 2.12, a contradiction. Therefore V is a normal maximal subgroup of G. Whence |T| is a prime.

(5) |Q| = q is a prime and $R = \langle x \rangle$ is a cyclic group.

Since V is a maximal subgroup of G by (4), all 2-maximal subgroups of V are \mathfrak{F} -subnormal in V by (1) and Lemmas 2.1 (1) and 2.12. Hence, in view of (3), V is an \mathfrak{F} -critical group by Theorem C and Lemma 2.12. Therefore, in fact, V is a \mathfrak{U} -critical group by (3) since $\mathfrak{F} \subseteq \mathfrak{U}$. Hence QR is supersoluble. Since V is normal in G and $\Phi(G) = 1$, $\Phi(V) = 1$. Therefore QR is a Schmidt group by Lemma 2.6. Hence R is cyclic and Q is a minimal normal subgroup of QR by Lemma 2.4. Whence |Q| is a prime.

(6) |R| = r is a prime and $C_L(Q) = Q$.

By (5), *L* is a supersoluble group. Suppose that $|R| = r^b$ is not a prime and let *M* be a maximal subgroup of *L* such that |L : M| = r. Let W = PM. Then $\pi(W) = \pi(G)$, so $W \in \mathfrak{F}$ by (b) and hence *W* is supersoluble. As $C_G(N) = N$, it follows that F(W) = P. Hence $W/P \simeq M$ is abelian. It is clear that $Q \leq M$, so $M \leq C_L(Q)$. Hence $T \leq F(L)$. On the other hand, we have $F(L) = Q\Phi(L)$ by Lemma 2.5. Therefore $T \not\leq F(L)$. This contradiction shows that |R| = r and so $C_L(Q) = Q$ by Lemma 2.5.

(7) $1 \neq C_G(x) \cap PQ = P_1 \leq P$.

Suppose that $C_G(x) \cap PQ = 1$. Then, by Thompson's theorem [18, Theorem 10.5.4], PQ is a nilpotent group, so $Q \leq C_G(P) = P$, a contradiction. Thus $C_G(x) \cap PQ \neq 1$. Suppose that q divides $|C_G(x) \cap PQ|$. Then, by (5), for some $a \in P$ we have $Q^a \leq C_G(x) \cap PQ$, so $\langle Q^a, RT \rangle \leq N_G(R)$. Hence if E is a Hall p'-subgroup of $N_G(R)$, then $E \simeq L$. Therefore L has a normal r-subgroup, so $C_L(Q) \neq Q$, a contradiction. Thus $C_G(x) \cap PQ = P_1 \leq P$.

Final contradiction for Case 2.1. Let $D = \langle P_1, RT \rangle$. Then $D \leq N_G(R)$. If q divides |D|, then, as above, we have $C_L(Q) \neq Q$. Thus $D \cap Q^a = 1$ for all $a \in P$. Moreover, if $P \leq D$, then $PR = P \times R$ and $R \leq C_G(P) = P$. Therefore $P \not\leq D$ and D is not a maximal subgroup of G. Hence D is a k-maximal subgroup of G for some $k \geq 2$. Then there is a 3-maximal subgroup S of G such that $RT \leq S \leq D$. By hypothesis, S is \mathfrak{F} -subnormal in G. Hence at least one of the maximal subgroups L or PRT is \mathfrak{F} -normal in G, contrary to (2).

Case 2.2: $|\pi(G)| > 4$. If $\pi(L) = \{p_1, \ldots, p_t\}$, then t > 3. Let E_i be a Hall p'_i -subgroup of L and $X_i = PE_i$. We shall show that $E_i \in \mathfrak{F}$ for all $i = 1, \ldots, t$. By (c), either $X_i \in \mathfrak{F}$ or X_i is a group of type II, for $i = 1, \ldots, t$. In the former case we have $E_i \simeq X_i / P \in \mathfrak{F}$. Assume that X_i is a group of type II. Then $X_i^{\mathfrak{F}}$ is nilpotent, so $X_i^{\mathfrak{F}} \leq F(X_i)$. But since P is normal in X_i and $C_G(P) = P$, $F(X_i) = P$. Hence $X_i^{\mathfrak{F}} = P$, so $E_i \in \mathfrak{F}$. Since t > 3, Proposition 3.4 implies that $L \in \mathfrak{F}$. Therefore A = N, a contradiction. Hence we have (g).

(h) A is a Hall subgroup of G.

Suppose that this is false. Since G is Ore dispersive by (f), for the greatest prime divisor p of [G] the Sylow p-subgroup P is normal in G. Assume that P is not a minimal normal subgroup of G. Then there is a maximal subgroup M of G such that G = PM and $P \cap M \neq 1$. Since $|\pi(M)| = |\pi(G)|$, $M \in \mathfrak{F}$ by (b). Hence $G/P \simeq M/M \cap P \in \mathfrak{F}$, so $A = G^{\mathfrak{F}} \leq P$. Suppose that $\Phi(P) \neq 1$. Let N be a minimal normal subgroup of G such that $N \leq \Phi(P)$. By (d), the hypothesis holds for G/N, so either $G/N \in \mathfrak{F}$ or G/N is a group of type II by the choice of G. If $G/N \in \mathfrak{F}$, then $A = N \leq \Phi(P)$. Since P is normal in G, $\Phi(P) \leq \Phi(G)$. Thus $A \leq \Phi(G)$ and so $G \in \mathfrak{F}$, a contradiction. Hence G/N is a group of type II. Therefore $AN/N = G^{\mathfrak{F}}N/N = (G/N)^{\mathfrak{F}}$ is a Hall subgroup of G/N. Consequently, AN = P. Hence $A\Phi(P) = P$, so A = P, a contradiction. Thus $\Phi(P) = 1$. By Maschke's theorem, $P = N_1 \times \cdots \times N_k$ is the direct product of some minimal normal subgroups of G. If $N_1 \neq P$, then $G/N_1 \in \mathfrak{F}$ and $G/N_2 \in \mathfrak{F}$ by Theorem A. Consequently, so is G. This contradiction shows that P is a minimal normal subgroup of G.

By (d), the hypothesis holds for G/P, so either $G/P \in \mathfrak{F}$ or G/P is a group of type II by the choice of G. If $G/P \in \mathfrak{F}$, then A = P, a contradiction. Hence G/P is a group of type II. Therefore $AP/P = G^{\mathfrak{F}}P/P = (G/P)^{\mathfrak{F}}$ is a Hall subgroup of G/P. If $P \leq A$, then $A = P \rtimes A_{p'}$, where $A_{p'}$ is a Hall p'-subgroup of A. But since $A_{p'} \simeq A/P$ and A/P is a Hall subgroup of G/P, A is a Hall subgroup of G. Therefore $P \cap A = 1$, so A is a Hall subgroup of G since $AP/P \simeq A/A \cap P \simeq A$.

(i) A is either of the form $N_1 \times \cdots \times N_t$, where each N_i is a minimal normal subgroup of G, which is a Sylow subgroup of G, for i = 1, ..., t, or a Sylow p-subgroup of G of exponent p for some prime p and the commutator subgroup, the Frattini subgroup, and the center of A coincide, while $A/\Phi(A)$ is an \mathfrak{F} -eccentric chief factor of G.

If A is not a minimal normal subgroup of G, then arguing similarly as in the proof of claim (c) in [11, Theorem B], we have (i).

(j) Every n-maximal subgroup of G belongs to \mathfrak{F} and induces on the Sylow p-subgroup of A the automorphism group which is contained in F(p) for every prime divisor p of |A|.

Let *H* be any *n*-maximal subgroup of *G*. Suppose that *H* is a maximal subgroup of *V*, where *V* is an (n - 1)-maximal subgroup of *G*. Since $V \in \mathfrak{F}$ by Lemmas 2.3 and 2.12, $H \in \mathfrak{F}$.

Let E = AH. Since A is normal in E and A is nilpotent by (g), $A \le F(E)$. Whence E = F(E)H. Since H is \mathfrak{F} -subnormal in G, H is \mathfrak{F} -subnormal in E by Lemmas 2.1 (1) and 2.12. Therefore $E \in \mathfrak{F}$ by Lemma 2.15. Let P be a Sylow p-subgroup of A and K/L a chief factor of E such that $1 \le L < K \le P$. Since $E \in \mathfrak{F}, E/C_E(K/L) \in F(p)$. Hence $P \le Z_{\mathfrak{F}}(E)$, so $E/C_E(P) \in F(p)$ by Lemma 2.7. Then

$$H/C_H(P) = H/C_E(P) \cap H \simeq HC_E(P)/C_E(P) \in F(p).$$

Now suppose that either $G \in \mathfrak{F}$ or G is a group of type II. If $G \in \mathfrak{F}$, then every subgroup of G is \mathfrak{F} -subnormal in G by Lemmas 2.2 and 2.12. Let G be a group of type II. Take an *n*-maximal subgroup H of G. Put $E = G^{\mathfrak{F}}H$. Let P be a Sylow p-subgroup of $G^{\mathfrak{F}}$ and K/L a chief factor of E such that $1 \le L < K \le P$. By hypothesis, $H/C_H(P) \in F(p)$, so

$$H/C_H(K/L) \simeq (H/C_H(P))/(C_H(K/L)/C_H(P)) \in F(p).$$

Since $G^{\mathfrak{F}}$ is normal in *E* and $G^{\mathfrak{F}}$ is nilpotent,

$$G^{\mathfrak{F}} \leq F(E) \leq C_E(K/L).$$

Hence

$$E/C_E(K/L) = E/C_E(K/L) \cap E$$

= $E/C_E(K/L) \cap G^{\mathfrak{F}}H$
= $E/G^{\mathfrak{F}}(C_E(K/L) \cap H)$
= $G^{\mathfrak{F}}H/G^{\mathfrak{F}}C_H(K/L)$
 $\simeq H/G^{\mathfrak{F}}C_H(K/L) \cap H$
= $H/C_H(K/L)(G^{\mathfrak{F}} \cap H)$
= $H/C_H(K/L),$

KOPMH

so $E/C_E(K/L) \in F(p)$ since F(p) is hereditary by Lemma 2.12 and [1, Proposition 3.1.40]. Then $P \leq Z_{\mathfrak{F}}(E)$, whence $G^{\mathfrak{F}} \leq Z_{\mathfrak{F}}(E)$. Thus $E/Z_{\mathfrak{F}}(G) \in \mathfrak{F}$. Hence $E \in \mathfrak{F}$, so H is an \mathfrak{F} -subnormal subgroup of $G^{\mathfrak{F}}H = E$ by Lemmas 2.2 and 2.12. Since $G^{\mathfrak{F}} \leq G^{\mathfrak{F}}H$, $G^{\mathfrak{F}}H$ is \mathfrak{F} -subnormal in G by Lemmas 2.1(4) and 2.12. Consequently, in view of Lemma 2.1(3), H is \mathfrak{F} -subnormal in G. The theorem is proved.

Corollary 4.2 (see [11, Theorem B]). Given a soluble group G with the property that $|\pi(G)| \ge n + 1$, all n-maximal subgroups of G are \mathfrak{U} -subnormal in G if and only if G is a group of one of the following types:

- (I) G is supersoluble.
- (II) $G = A \rtimes B$, where $A = G^{\mathfrak{U}}$ and B are Hall subgroups of G, while G is Ore dispersive and satisfies the following:
 - (1) A is either of the form $N_1 \times \cdots \times N_t$, where each N_i is a minimal normal subgroup of G, which is a Sylow subgroup of G, for i = 1, ..., t, or a Sylow p-subgroup of G of exponent p for some prime p and the commutator subgroup, the Frattini subgroup, and the center of A coincide, every chief factor of G below $\Phi(G)$ is cyclic, while $A/\Phi(A)$ is a noncyclic chief factor of G,
 - (2) for every prime divisor p of the order of A every n-maximal subgroup H of G is supersoluble and induces on the Sylow p-subgroup of A an automorphism group which is an extension of some p-group by abelian group of exponent dividing p 1.

For a proof of Theorem D see the proof of [11, Theorem C].

Finally, note that there are examples which show that the restrictions on $|\pi(G)|$ in Theorems A, B, and D cannot be weakened.

Bibliography

- A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups*, Springer-Verlag, Dordrecht, 2006.
- [2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
- [3] W. Guo, H. V. Legchekova and A. N. Skiba, Finite groups in which every 3-maximal subgroup permutes with all maximal subgroups, *Math. Notes* 86 (2009), no. 3, 325– 332.
- [4] W. Guo, Y. V. Lutsenko and A. N. Skiba, On nonnilpotent groups with every two 3-maximal subgroups permutable, *Sib. Math. J.* 50 (2009), no. 6, 988–997.
- [5] W. Guo, K. P. Shum and A. N. Skiba, X-semipermutable subgroups of finite groups, J. Algebra 315 (2007), 31–41.
- [6] W. Guo and A. N. Skiba, Finite groups with given *s*-embedded and *n*-embedded subgroups, *J. Algebra* **321** (2009), 2843–2860.
- [7] W. Guo and A. N. Skiba, On δΦ*-hypercentral subgroups of finite groups, J. Algebra 372 (2012), 275–292.
- [8] X. Y. Guo and K. P. Shum, Cover-avoidance properties and the structure of finite groups, J. Pure Appl. Algebra 181 (2003), 297–308.
- [9] B. Huppert, Normalteiler and maximal Untergruppen endlicher Gruppen, *Math. Z.* 60 (1954), 409–434.
- [10] B. Huppert, Endliche Gruppen, vol. 1, Springer-Verlag, Berlin, 1967.
- [11] V. A. Kovaleva and A. N. Skiba, Finite solvable groups with all *n*-maximal subgroups U-subnormal, *Sib. Math. J.* 54 (2013), no. 1, 65–73.
- [12] O.-U. Kramer, Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes, Math. Z. 139 (1974), no. 1, 63–68.
- [13] S. Li, Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups, *Math. Proc. R. Ir. Acad.* **100A** (2000), no. 1, 65–71.
- [14] B. Li and A.N. Skiba, New characterizations of finite supersoluble groups, *Sci. China Ser. A* 50 (2008), no. 1, 827–841.
- [15] Y.V. Lutsenko and A.N. Skiba, Structure of finite groups with *S*-quasinormal third maximal subgroups, *Ukrainian Math. J.* **61** (2009), no. 12, 1915–1922.
- [16] Y. V. Lutsenko and A. N. Skiba, Finite groups with subnormal second and third maximal subgroups, *Math. Notes* 91 (2012), no. 5, 680–688.
- [17] A. Mann, Finite groups whose *n*-maximal subgroups are subnormal, *Trans. Amer. Math. Soc.* **132** (1968), 395–409.
- [18] D.J.S. Robinson, *A Course in the Theory of Groups*, Springer-Verlag, New York, 1982.

- [19] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moskow, 1978.
- [20] L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems, Nauka, Moskow, 1989.
- s. MILLING. [21] A.N. Skiba, A characterization of finite soluble groups of given nilpotent length, Probl. Algebra 3 (1987), 21–31.
- [22] A. N. Skiba, Algebra of Formation, Belaruskaya Navuka, Minsk, 1997.

Received May 13, 2013.

Author information

Viktoria A. Kovaleva, Department of Mathematics, Francisk Skorina Gomel State University, Sovetskava str. 104, Gomel 246019, Belarus. E-mail: vika.kovalyova@rambler.ru

Alexander N. Skiba, Department of Mathematics, Francisk Skorina Gomel State University, Sovetskava str. 104, Gomel 246019, Belarus. . con E-mail: alexander.skiba490gmail.com