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particular, generalizations of a series of known results on (partial) CAP-subgroups are obtained.
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1. INTRODUCTION {ssec1:u4
All groups under consideration are finite. Denote by the symbol U the class of all supersolvable

groups. Recall that by theU-coradical of a group G we mean the intersection of all normal subgroups N
of G for which G/N ∈ U ; the U-coradical of a group G is denoted by the symbol GU . We use the
terminology adopted in [1] and [2].

Let A, K, and H be subgroups of a group G and K ≤ H . Then we say that A covers the pair (K,H)
if AH = AK and isolates the pair (K,H) if A ∩ H = A ∩ K. Note that the relation AH = AK is
equivalent to H ≤ K(A ∩ H), and A ∩ H = A ∩ K is equivalent to A ∩ H ≤ K. A subgroup A of a
group G is said to be quasinormal [3] or permutable ([2], [4]) in G if AE = EA for all subgroups E
of G. Quasinormal subgroups have many interesting properties. In particular, if A is a quasinormal
subgroup of G, then, for any maximal pair (K,H) in G (i.e., a pair of the form (K,H), where K is a
maximal subgroup of H), the subgroup A either covers or isolates (K,H).

The following example shows that, even if some subgroup of a group G covers or isolates every
maximal pair (K,H) in G, this subgroup can be not quasinormal.

Example. Let p and q be primes, where q divides p − 1. Let A = 〈a〉 be a cyclic group of order p2 and
B be a group of order q. Let G = A � B = [K]B, where K = A1 × A2 × · · · × Aq is the base of the
regular wreath product G. Let L = 〈ap〉�. Then G/L � 〈ap〉 � B and L ≤ Φ(G). Hence the group G is
supersolvable. Let R be a subgroup of order p of the group A1. Suppose that R is quasinormal in G.
Since R is a Sylow p-subgroup of RB, it follows that B ≤ NG(R), and therefore R is normal in G; a
contradiction. Hence R is not quasinormal in G. On the other hand, since the group G is supersolvable
and R is subnormal in G, it follows that R covers or isolates every maximal pair in G (see Corollary 4.3
below).
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118 LIU et al.

It should be noted that the theory of covering and isolating maximal pairs has an immediate
relationship to the theory of CAP-subgroups. Recall that a subgroup A of a group G is said to be a CAP-
subgroup of G [2, A, Definition 10.8] if A either covers or isolates every pair (K,H), where H/K is a
principal factor in G. A subgroup A is said to be a partial CAP-subgroup of G ([5], [6]) if A either covers
or isolates every pair (K,H), where H/K is a factor of some chosen principal series in G. Obviously,
every CAP-subgroup of a group G either covers or isolates every maximal pair (K,H) in G such that
L ≤ K < H ≤ T , where T/L is a principal factor in G. On the other hand, every partial CAP-subgroup
of G either covers or isolates every maximal pair (K,H) in G such that Gi−1 ≤ K < H ≤ Gi for some i,
where 1 = G0 < G1 < · · · < Gn = G is a chosen principal series in G.

In the present paper, we study groups in which some subgroups cover or isolate distinguished
systems of maximal pairs of these groups. In particular, generalizations of a series of known results
concerning (partial) CAP-subgroups are obtained.

2. PRELIMINARY RESULTS
{ssec2:u4

The following results are used in the present paper.
{lem2.1:u

Lemma 2.1. Let N be a normal subgroup of a group G and (K,H) a maximal pair in G. If N
isolates (K,H), then (KN,HN) is a maximal pair in G and |HN : KN | = |H : K|.

Proof. Let R be a subgroup of G such that KN ≤ R ≤ HN . Then

R = N(R ∩ H) and K ≤ R ∩ H ≤ H .

Hence either R ∩ H = K or R ∩ H = H . If R ∩ H = K, then

R = R ∩ HN = N(R ∩ H) = KN.

If R ∩ H = H , then

R = R ∩ HN = N(R ∩ H) = HN.

Therefore, (KN,HN) is a maximal pair in G. Since N isolates (K,H), it follows that H ∩ N = K ∩ N ,
and therefore |HN : KN | = |H : K|.

{lem2.2:u
Lemma 2.2. Let M be a subgroup of a group G and (K,H) a maximal pair in G. If H ≤ V ≤ G
and M either covers or isolates (K,H), then M ∩ V either covers or isolates (K,H).

Proof. Since H ≤ V , it follows that M ∩ H ∩ V = M ∩ H . If M covers the pair (K,H), then

H = K(M ∩ H) = K(M ∩ V ∩ H),

i.e., M ∩ V covers (K,H). If M isolates (K,H), then

M ∩ H ≤ K, (M ∩ V ) ∩ H ≤ K,

i.e., M ∩ V isolates (K,H).

The next lemma is well known.
{lem2.3:u

Lemma 2.3. Let A and B be proper subgroups of a group G such that G = AB. Then G = ABx

and G �= AAx for any x ∈ G.
{lem2.4:u

Lemma 2.4. Let G be a group and p a prime divisor of the order of G. Let a subgroup E of G either
covers or isolates every maximal pair (K,H) in G such that H is not p-solvable. Then G contains
a chain of subgroups E = E0 ≤ E1 ≤ · · · ≤ En−1 ≤ En = G such that either Ei−1 is normal in Ei

or Ei/(Ei−1)Ei is p-solvable for i = 1, . . . , n.

MATHEMATICAL NOTES Vol. 94 No. 3 2013

РЕПОЗИТОРИЙ ГГ
У И

МЕНИ Ф
. С

КО
РИНЫ 



CRITERIA FOR p-SOLVABILITY AND p-SUPERSOLVABILITY 119

Proof. Let M be a maximal subgroup of G such that E ≤ M . Suppose that G is not p-solvable.
Since Mx is maximal in G for any x ∈ G, it follows that E either covers or isolates the pair (Mx, G). If E
covers (Mx, G) for some x, then EMx = G, and therefore MMx = G, which contradicts Lemma 2.3.
Hence E isolates (Mx, G) for any x ∈ G, and therefore E ≤ MG. We see by induction that there is a
chain of subgroups

E = E0 ≤ E1 ≤ · · · ≤ Et−1 ≤ Et = MG

such that either Ei−1 is normal in Ei or Ei/(Ei−1)Ei is p-solvable for i = 1, . . . , t. Since MG is normal
in G, this completes the proof of the lemma.

A subgroup H of a group G is said to be primitive [7] or ∩-indecomposable [8] in G if H differs from
the intersection of all subgroups of G in which H is contained properly.

{lem2.5:u
Lemma 2.5 ([8, c. 133]). If K is a subgroup of a group G and E is a ∩-indecomposable subgroup
of K, then G admits a ∩-indecomposable subgroup X such that E = K ∩ X.

{lem2.6:u
Lemma 2.6. Let G = MN , where N is a minimal normal subgroup of a group G. If E ≤ N ∩ M
and E is subnormal in G, then E ≤ MG.

Proof. Since E is subnormal in G, then N ≤ NG(E) by [2, A, Theorem 14.5], and therefore

EG = ENM = EM ≤ M .

Thus, E ≤ MG.
{lem2.7:u

Lemma 2.7 ([9, Lemma 2.8]). Let G be a p-supersolvable group. If Op′(G) = 1, then G is
supersolvable.

{lem2.8:u
Lemma 2.8 ([10, Lemma 2.8]). Let G = [N ]M , where N is a minimal normal subgroup of a group G
and M is a solvable maximal subgroup of G. Then N is an Abelian group.

{lem2.9:u
Lemma 2.9 ([11, Lemma 1]). If N is a normal subgroup of a group G and V is a CAP-subgroup
in G, then NV is a CAP-subgroup of G.

{lem2.10:
Lemma 2.10. Let E be a solvable normal subgroup of G. Suppose that every maximal subgroup
of every Sylow subgroup of E is a CAP-subgroup of G. If M is a maximal subgroup of G such that
EM = G and V is a maximal subgroup of some Sylow subgroup in E, then there is an element
x ∈ G such that V covers or isolates the pair (Mx, G).

Proof. Let |G : M | = qa, and let V be a maximal subgroup of a Sylow p-subgroup P of G. Suppose
that V � Mx for any x ∈ G. Then q = p. We claim that V M = G. By Lemma 2.9, without any loss of
generality of the proof, we may assume that MG = 1, and therefore G = [N ]M for some minimal normal
subgroup N in G contained in E. Suppose that N � V . Then V ∩ N = 1, and, since V is a maximal
subgroup of P , we obtain V = 1. Thus, N ≤ V , and therefore G = V M .

3. CRITERIA FOR THE p-SOLVABILITY AND SOLVABILITY OF A GROUP
{ssec3:u4

In this section, using the theory of covering and isolating maximal pairs, we give new criteria for the
p-solvability and solvability of a group.

Let p be a prime. We say that a subgroup A of a group G is a weak CAPp-subgroup of G if G admits
a composition series

1 = G0 < G1 < · · · < Gn = G

such that A either covers or isolates every maximal pair (K,H) in G such that Gi−1 ≤ K < H ≤ Gi for
some i, where p divides |Gi/Gi−1| and H is not a p-solvable group.

Recall that by the nilpotent coradical of a group G one means the intersection of all normal
subgroups N in G such that G/N is nilpotent.
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120 LIU et al.

{th3.1:u4
Theorem 3.1. Let G be a group and p a prime. The following assertions are equivalent:

(1) G is p-solvable;

(2) every subgroup in G is a weak CAPp-subgroup of G;

(3) every maximal subgroup of G is a weak CAPp-subgroup of G;

(4) every 2-maximal subgroup of G is a weak CAPp-subgroup of G;

(5) every Sylow p-subgroup of G is a weak CAPp-subgroup of G;

(6) either G is a primary group, i.e., a group whose order is a power of some prime, or G
contains two p-solvable maximal subgroups M1 and M2 such that

(|G : M1|, |G : M2|) = raqb

for some prime numbers r and q and some a, b ∈ {0} ∪ N and M1 and M2 are weak CAPp-
subgroups of G;

(7) every nonsupersolvable Schmidt subgroup in G is a weak CAPp-subgroup of G.

Proof. (1) ⇒ (2) Since the group G is p-solvable, it follows that every subgroup of G is also p-solvable,
and therefore every subgroup of G is a weak CAPp-subgroup by definition.

The implications (2) ⇒ (3)–(5) and (2) ⇒ (7) are obvious.

(3),(4) ⇒ (1) Suppose that every 2-maximal (every maximal) subgroup M of G is a weak
CAPp-subgroup of G. We claim that G is p-solvable. Suppose that this is not the case, and let G
be a counterexample of minimal order. Let us show first that G/N is p-solvable, where N is an arbitrary
minimal normal subgroup of G. If N is a maximal or 2-maximal subgroup of G, then this is clear. Let N
be a subgroup of G that is not maximal (in Case (3)) or not 2-maximal (in Case (4)). Let us prove that
the condition of the theorem holds for G/N . Let M/N be a maximal (2-maximal) subgroup of G/N .
Then M is a maximal (2-maximal) subgroup of G. Therefore, by the condition of the theorem, M is a
weak CAPp-subgroup of G, and thus there is a composition series 1 = G0 < G1 < · · · < Gn = G in G
such that M either covers or isolates every maximal pair (Q,R) in G such that Gi−1 ≤ Q < R ≤ Gi for
some i, where p divides |Gi/Gi−1| and R is not p-solvable.

Consider the series

1 = G0N/N < G1N/N < · · · < GnN/N = G/N.

By the isomorphisms

GiN/Gi−1N � GiNGi−1/Gi−1N � Gi/Gi ∩ Gi−1N = Gi/Gi−1(Gi ∩ N),

without any loss of generality of the proof, we may assume that this series is a composition series in G/N ,
where

|Gi : Gi−1| = |GiN/N : Gi−1N/N |.
Let (K/N,H/N) be a maximal pair in G/N and

Gi−1N/N ≤ K/N < H/N ≤ GiN/N

for some i, where p divides |GiN/N : Gi−1N/N | and H/N is not a p-solvable group. We claim that
M/N covers or isolates the pair (K/N,H/N).

Note that Gi−1N ≤ K < H ≤ GiN and (K,H) is a maximal pair in G. Since K = N(K ∩ Gi) and
H = N(H ∩ Gi), it follows that

|H : K| = (|H ∩ Gi||N |/|Gi ∩ H ∩ N |) : (|K ∩ Gi||N |/|Gi ∩ K ∩ N |)
= (|H ∩ Gi||N |/|Gi ∩ N |) : (|K ∩ Gi||N |/|Gi ∩ N |) = |H ∩ Gi : K ∩ Gi|.
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CRITERIA FOR p-SOLVABILITY AND p-SUPERSOLVABILITY 121

Hence K ∩ Gi �= H ∩ Gi. We claim that (K ∩ Gi,H ∩ Gi) is a maximal pair in G. Since K �= H , it
follows that N(K ∩ Gi) �= N(H ∩ Gi), i.e., N does not cover the pair (K ∩ Gi,H ∩ Gi). Therefore,
there is a maximal pair (L, T ) in G such that

K ∩ Gi ≤ L < T ≤ H ∩ Gi,

and N does not cover (L, T ). Indeed, if N covers every maximal pair (U,W ) such that

K ∩ Gi ≤ U < W ≤ H ∩ Gi,

then N covers obviously the pair (K ∩ Gi,H ∩ Gi); a contradiction. Since N is normal in G, it follows
that N either covers or isolates every maximal pair in G. Therefore, N isolates the pair (L, T ). In this
case, by Lemma 2.1, (LN,TN) is a maximal pair in G and |TN : LN | = |T : L|. However,

K = N(K ∩ Gi) ≤ NL < NT ≤ N(H ∩ Gi) = H.

Hence K ∩ Gi = L and H ∩ Gi = T . Therefore, (K ∩ Gi,H ∩ Gi) is a maximal pair in G. It can readily
be seen here that

Gi−1 ≤ K ∩ Gi < H ∩ Gi ≤ Gi.

Since H/N is not a p-solvable group, it follows that H ∩ Gi is not p-solvable either, because

H/N = (H ∩ Gi)N/N � H ∩ Gi/H ∩ Gi ∩ N.

Therefore, by the assumption of the theorem, M either covers or isolates (K ∩ Gi,H ∩ Gi). If M covers
(K ∩ Gi,H ∩ Gi), then

MH = MN(Gi ∩ H) = MN(Gi ∩ K) = MK,

i.e., M covers (K,H). Then

(M/N)(H/N) = MH/N = MK/N = (M/N)(K/N),

i.e., M/N covers (K/N,H/N). If M isolates (K ∩ Gi,H ∩ Gi), then

M ∩ H = M ∩ N(Gi ∩ H) = N(M ∩ Gi ∩ H) = N(M ∩ K ∩ Gi)
= M ∩ N(K ∩ Gi) = M ∩ K,

i.e., M isolates (K,H). Thus,

(M/N) ∩ (H/N) = (M ∩ H)/N = (M ∩ K)/N = (M/N) ∩ (K/N),

i.e., M/N isolates (K/N,H/N). Hence the assumption of the theorem holds for G/N , and therefore, by
the choice of the group G, the quotient group G/N is p-solvable. Since the class of all p-solvable groups
is a saturated formation, it follows that N is a unique minimal normal subgroup of G, N is not Abelian,
p divides |N |, and N � Φ(G). Thus, CG(N) = 1.

Let N = N1 × N2 × · · · × Nt be a direct product of isomorphic simple groups. We claim that the
group G has a maximal subgroup V such that p does not divide |G : V |, NV = G, and Ni �= V ∩Ni �= 1
for any i = 1, . . . , t.

Let Np ≤ P , where Np is a Sylow p-subgroup of N and P is a Sylow p-subgroup of G. Then
N ∩ P = Np is normal in P , and therefore P ≤ NG(Np). Hence G contains a maximal subgroup V
such that NG(Np) ≤ V . Then G = NNG(Np) = NV , and therefore VG = 1. Since NG(Np) ≤ V , it
follows that P ≤ V . Let Pi be a Sylow p-subgroup of Ni. Then Pi ≤ P x for some x ∈ G. Since
G = NV , it follows that x = vn, where n ∈ N and v ∈ V . Therefore, Pi ≤ (P v)n, where P v ≤ V .
Hence (Pi)n

−1 ≤ V . Since Ni is normal in N , it follows that (Pi)n
−1 ≤ Ni. Therefore, V ∩ Ni �= 1

for any i = 1, . . . , t. If Ni ≤ V for some i, then Ni ≤ VG = 1 by Lemma 2.6; a contradiction. Hence
V ∩ Ni �= Ni for any i.

Let D = V ∩N1, and let M1 be a maximal subgroup of V such that D ≤ M1 (in Case (4)) or M1 = V
(in Case (3)). By the assumption of the theorem, the group G admits a composition series

1 = G0 < G1 < · · · < Gn = G
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122 LIU et al.

such that M1 either covers or isolates every maximal pair (K,H) in G such that Gi−1 ≤ K < H ≤ Gi for
some i, where p divides |Gi/Gi−1| and H is not p-solvable. Since G1 is a minimal subnormal subgroup
of G, it follows that N ≤ NG(G1) by [2, A, Theorem 14.5]. Hence G1 ≤ N , because, otherwise, we
would have NG1 = N × G1, and therefore G1 ≤ CG(N) = 1, which is impossible. Therefore, without
loss of generality of the proof we may assume that G1 = N1. Then M1 either covers or isolates every
maximal pair (K,H) in N1 such that H is not a p-solvable group. Hence, by Lemma 2.2, we see that
D = M1 ∩ N1 either covers or isolates every maximal pair (U,W ) in N1 such that W is not p-solvable.
Therefore, by Lemma 2.4, there is a chain of subgroups

D = M1 ∩ N1 = D0 ≤ D1 ≤ · · · ≤ Dt−1 ≤ Dt = N1

in N1 such that either Di−1 is normal in Di or Di/(Di−1)Di is p-solvable, i = 1, . . . , t. Since N1 = G1

and 1 �= D �= N1, it follows that Dt−1 is not a normal subgroup of N1. Thus, N1/(Dt−1)N1 is p-solvable
and (Dt−1)N1 = 1, because G1 is a simple group. Hence N1 is p-solvable. The contradiction thus
obtained completes the proof of the implications (3) ⇒ (1) and (4) ⇒ (1).

(5) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let P be a
Sylow p-subgroup of G, and let

1 = G0 < G1 < · · · < Gn = G

be a composition series in G such that P either covers or isolates every maximal pair (K,H) in G such
that Gi−1 ≤ K < H ≤ Gi for some i, where p divides |Gi/Gi−1| and H is not p-solvable. Since G is not
p-solvable, there is an index i such that Gi/Gi−1 is a simple non-Abelian group and p divides |Gi/Gi−1|.
Without loss of generality of the proof, we may assume that i = 1. Then P ∩ G1 �= G1. By Lemma 2.2,
P ∩ G1 either covers or isolates every maximal pair (U,W ) in G1 such that W is not p-solvable. Then,
by Lemma 2.4, there is a chain of subgroups

P ∩ G1 = P0 ≤ P1 ≤ · · · ≤ Pt−1 ≤ Pt = G1

in G1 such that either Pi−1 is normal in Pi or Pi/(Pi−1)Pi is p-solvable, i = 1, . . . , t. Since G1 is a simple
group and P ∩ G1 �= G1, it follows that Pt−1 is not normal in G1. Thus, G1/(Pt−1)G1 is p-solvable.
However, since (Pt−1)G1 = 1, it follows that G1 is also p-solvable. The contradiction thus obtained
completes the proof of the implication (5) ⇒ (1).

(1) ⇒ (6) Let G fail to be a primary group. Then G contains two maximal subgroups M1 and M2

such that |G : M1| = pa for some a ∈ N and p does not divide |G : M2|. Then (|G : M1|, |G : M2|) = 1.
By (2), the group Mi is a weak CAPp-subgroup of G. Therefore, (1) ⇒ (6).

(6) ⇒ (1) Let the group G contain two p-solvable maximal subgroups M1 and M2 such that
(|G : M1|, |G : M2|) = raqb for some primes r and q and some a, b ∈ {0} ∪ N, and M1 and M2 are weak
CAPp-subgroups of G. We claim that G is p-solvable. Suppose that this is not the case. Let G be a
counterexample of minimal order.

Let N be a minimal normal subgroup of G. Suppose that N ≤ M1 ∩ M2. Then M1/N and M2/N
are p-solvable maximal subgroups of G/N and

(|G/N : M1/N |, |G/N : M2/N |) = (|G : M1|, |G : M2|) = raqb.

Moreover, M1/N and M2/N are weak CAPp-subgroups of G/N (see the proof of the implication (3) ⇒
(1)). Thus, the condition of the theorem is satisfied for G/N . Therefore, by the choice of the group G,
the quotient group G/N is p-solvable. On the other hand, if N � M1 ∩ M2, for example, N � M1, then
G/N = M1N/N � M1/M1 ∩N is p-solvable. Therefore, N is a unique minimal normal subgroup of G,
N � Φ(G), N is non-Abelian, and p divides |N |.

Let π = {p1, p2, . . . , pt} be the set of prime divisors of the order of N . Since N is not p-solvable,
it follows that t > 2 and G = NM1 = NM2. On the other hand, since (|G : M1|, |G : M2|) = raqb for
some primes r and q and t > 2, it follows that there is a pi ∈ π and a Sylow pi-subgroup Pi in G such that
either Pi ≤ M1 or Pi ≤ M2. Let Pi ≤ M1, and let L be a minimal subnormal subgroup of G such that M1

either covers or isolates every maximal pair (K,H) such that K < H ≤ L and H is not p-solvable. As in
the proof of the implication (3) ⇒ (1), one can show that 1 �= M1 ∩L �= L, which leads to a contradiction
by Lemma 2.4.
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(7) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order. We claim
that the condition of the theorem is satisfied for the subgroups of G. Let V be an arbitrary subgroup of G
and M a nonsupersolvable Schmidt subgroup of V . Then, by the assumption of the theorem, M is a
weak CAPp-subgroup of G. Thus, there is a composition series

1 = G0 < G1 < · · · < Gn = G

of G such that M either covers or isolates every maximal pair (K1,H1) of G such that

Gi−1 ≤ K1 < H1 ≤ Gi

for some i, where p divides |Gi/Gi−1| and H1 is not p-solvable. Consider the series

1 = G0 ∩ V ≤ G1 ∩ V ≤ · · · ≤ Gn ∩ V = V.

Let (K,H) be a maximal pair such that

Gi−1 ∩ V ≤ K < H ≤ Gi ∩ V,

where p divides |(Gi ∩ V )/(Gi−1 ∩ V )| and H is not p-solvable. Then KGi−1 �= HGi−1 (otherwise

H = H ∩ HGi−1 = H ∩ KGi−1 = K(H ∩ Gi−1) ≤ K(V ∩ Gi−1) ≤ K,

which contradicts the choice of the pair (K,H)). Thus, Gi−1 does not cover the pair (K,H). However,
since Gi−1 is a normal subgroup of Gi, it follows that Gi−1 isolates (K,H). Hence (Gi−1K,Gi−1H) is
a maximal pair of Gi by Lemma 2.1. Moreover,

Gi−1 ≤ Gi−1K < Gi−1H ≤ Gi.

Since

Gi ∩ V/Gi−1 ∩ V � (Gi ∩ V )Gi−1/Gi−1,

it follows that p divides |Gi/Gi−1| and, since H is not p-solvable, it follows that Gi−1H is not p-solvable
either. Hence, by the assumption of the theorem, M either covers or isolates (Gi−1K,Gi−1H). If M
isolates (Gi−1K,Gi−1H), then M ∩ Gi−1K = M ∩ Gi−1H , and therefore

M ∩ K = M ∩ K(V ∩ Gi−1) = M ∩ V ∩ Gi−1K

= M ∩ V ∩ Gi−1H = M ∩ H(V ∩ Gi−1) = M ∩ H,

i.e., M isolates (K,H). If M covers (Gi−1K,Gi−1H), we have MGi−1K = MGi−1H , and therefore

MH = M(V ∩ Gi−1H) = V ∩ MGi−1H = V ∩ MGi−1K = M(Gi−1K ∩ V ) = MK,

i.e., M covers (K,H). Thus, the condition of the theorem holds for the subgroups of G. Hence, by the
choice of the group G, all proper subgroups of G are p-solvable. It is clear that G is not q-nilpotent,
where q stands for the least prime divisor of |G|, and therefore, by [12, IV, Theorem 5.4], G contains
a q-closed Schmidt subgroup H . Let Q be the nilpotent coradical of H . By [1, Theorem 26.1], Q is a
normal Sylow q-subgroup of H , and Q/Φ(Q) is a noncentral principal factor in H . If H is supersolvable,
then |Q/Φ(Q)| = q, and |H/CH(Q/Φ(Q))| divides q − 1. Hence CH(Q/Φ(Q)) = H ; a contradiction.
Therefore, H is not supersolvable. Suppose that the group G is simple. Then G admits a unique
composition series 1 < G. By the assumption of Theorem (7), H either covers or isolates every maximal
pair (U,W ) in G such that W is not p-solvable, which leads to a contradiction by Lemma 2.4. Hence
the group G is not simple.

Let M be a maximal normal subgroup of G such that G/M is non-Abelian and p divides |G/M |. Let
L be a proper subnormal subgroup of G. Then L ≤ M . Indeed, if L � M , then G = ML is p-solvable,
which contradicts the choice of the group G. Suppose that M �= Φ(G). Then G contains a maximal
subgroup E such that EM = G. However, since the subgroups E and M are p-solvable, it follows
that G is also p-solvable. This contradiction shows that M = Φ(G).

Let H ≤ E, where E is a maximal subgroup of G. Since M = Φ(G), it follows from the assumption
of the theorem that H either covers or isolates (Ex, G) for any x ∈ G. If H covers (Ex, G) for some x,
then HEx = G, and therefore EEx = G, which contradicts Lemma 2.3. Hence H isolates the pair
(Ex, G) for any x ∈ G, i.e., H ≤ Ex for any x ∈ G. Since M = Φ(G) ≤ E and EG is a maximal normal
subgroup of G contained in E, it follows that EG = M . Thus, H ≤ EG = M = Φ(G), and hence H is
nilpotent, which contradicts the choice of the subgroup H . Therefore, (7) ⇒ (1). This completes the
proof of the theorem.
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We say that a subgroup A of G is a weak CAP-subgroup of G if it is a weak CAPp-subgroup of G for
any prime divisor p of the order of G.

{cor3.2:u
Corollary 3.2. Let G be a group. The following assertions are equivalent:

(1) G is solvable;

(2) every subgroup of G is a weak CAP-subgroup of G;

(3) every maximal subgroup of G is a weak CAP-subgroup of G;

(4) every 2-maximal subgroup of G is a weak CAP-subgroup of G;

(5) every Sylow subgroup of G is a weak CAP-subgroup of G;

(6) there is a solvable maximal subgroup M of G such that M is a weak CAP-subgroup of G;

(7) every nonsupersolvable Schmidt subgroup of G is a weak CAP-subgroup of G;

(8) every maximal subgroup of every Sylow subgroup of G is a weak CAP-subgroup of G.

Proof. By Theorem 3.1, it suffices to prove the implications (6) ⇒ (1) and (8) ⇒ (1) only. Suppose
that the implication (6) ⇒ (1) fails to hold. Let G be a counterexample of minimal order. Let N be a
minimal normal subgroup of G. If N � M , then G = NM , and therefore G/N = NM/N � M/M ∩ N
is solvable. Let N ≤ M . Then M/N is a solvable maximal subgroup of G/N . As in the proof of the
implication (3) ⇒ (1) of Theorem 3.1, one can prove that M/N is a weak CAP-subgroup of G/N .
Hence the assumption of the corollary holds for G/N , and therefore, by the choice of G, the quotient
group G/N is solvable. Thus, N is a unique minimal normal subgroup of G, N is non-Abelian, and
G = NM . If N ∩ M = 1, then G = [N ]M , and therefore N is an Abelian group by Lemma 2.8. In
this case, G is solvable, which contradicts the choice of G. The contradiction thus obtained shows that
M ∩ N �= 1, which leads to a contradiction by Lemma 2.4 (as in the proof of the implication (3) ⇒ (1) in
Theorem 3.1).

(8) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let P
be a Sylow p-subgroup of G, where p stands for the least prime divisor of |G|, and let V be a maximal
subgroup of P . Let

1 = G0 < G1 < · · · < Gn = G

be a composition series in G such that V either covers or isolates every maximal pair (K,H) in G such
that Gi−1 ≤ K < H ≤ Gi for some i and H is not solvable. We assume first that G1 is not Abelian.
Then p divides |G1| and, for a Sylow p-subgroup W of G1, we have W �= G1. Without loss of generality
of the proof, we may assume that V ∩ G1 ≤ W . If V ∩ W = 1, then |W | = p because V is maximal
in P ,. Therefore, G1 is p-nilpotent by [12, V, Theorem 2.8], which contradicts the minimality of G1.
Hence V ∩ W �= 1, which leads to a contradiction by Lemmas 2.2 and 2.4. Thus, G1 is a q-group for
some prime q. Hence Oq(G) �= 1 by [13]. If N is a minimal normal subgroup of G contained in Oq(G),
then, as in the proof of the implication (7) ⇒ (1) in Theorem 3.1, one can prove that the assumption of
the theorem is satisfied for G/N . Therefore, G/N is solvable by the choice of G. Then the group G is
also solvable. The contradiction thus obtained completes the proof of the implication (8) ⇒ (1).

{cor3.3:u
Corollary 3.3 (Guo, Shum [10]). A group G is solvable if and only if every maximal subgroup of G
is a CAP-subgroup of G.

{cor3.4:u
Corollary 3.4 (Fan, Guo, Shum [14]). A group G is solvable if and only if every maximal subgroup
of G is a partial CAP-subgroup of G.

Let H be a subgroup of a group G; H is said to be c-normal [15] in G if there is a normal subgroup N
of G for which G = HN and H ∩ N ≤ HG. It can readily be seen that every c-normal subgroup of G is
a partial CAP-subgroup of G.
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{cor3.5:u
Corollary 3.5 (Wang [15]). A group G is solvable if and only if every maximal subgroup of G is
c-normal in G.

{cor3.6:u
Corollary 3.6 (Guo, Shum [10]). If every 2-maximal subgroup of a group G is a CAP-subgroup
of G, then G is solvable.

{cor3.7:u
Corollary 3.7 (Fan, Guo, Shum [14]). If every 2-maximal subgroup of G is a partial CAP-subgroup
of G, then G is solvable.

{cor3.8:u
Corollary 3.8 (Guo, Shum [10]). A group G is solvable if and only if G admits a maximal
subgroup M such that M is a solvable CAP-subgroup of G.

{cor3.9:u
Corollary 3.9 (Wang [15]). A group G is solvable if and only if G admits a maximal subgroup M
such that M is a solvable c-normal subgroup of G.

{cor3.10:
Corollary 3.10 (Guo, Shum [10]). A group G is solvable if and only if every Sylow subgroup of G
is a CAP-subgroup of G.

{cor3.11:
Corollary 3.11 (Fan, Guo, Shum [14]). A group G is solvable if and only if every Sylow subgroup
of G is a partial CAP-subgroup of G.

4. p-SUPERSOLVABILITY AND SUPERSOLVABILITY CRITERIA FOR A GROUP
{ssec4:u4

Let A, K, and H be subgroups of a group G and K ≤ H . We say that A conditionally covers or
isolates the pair (K,H) if there is an element h ∈ H such that A covers or isolates the pair (Kh,H).

Ezquerro [11] obtained characterizations of p-supersolvable groups in terms of CAP-subgroups. In
the present section, we give new characterizations of p-supersolvable, p-nilpotent, and supersolvable
groups in terms of conditional covering and isolating maximal pairs.

{th4.1:u4
Theorem 4.1. Let G be a group and p a prime. The following assertions are equivalent:

(1) G is p-supersolvable;

(2) every subgroup of G conditionally covers or isolates every maximal pair (K,H) in G such
that p divides |H : K|;

(3) G is p-solvable and every subnormal subgroup of G covers or isolates every maximal pair
(K,H) in G such that p divides |Hp3 : p2K|;

(4) G is p-solvable and every ∩-indecomposable subgroup in G conditionally covers or isolates
every maximal pair (K,H) in G such that p divides |H : K|.

Proof. (1) ⇒ (2) Suppose that this is not the case. Let G be a counterexample of minimal order.
Let A be a subgroup of G, and let (K,H) be a maximal pair in G such that p divides |H : K|. Then
|H : K| = p. If H < G, then, by the choice of G, the subgroup A ∩ H conditionally covers or isolates
(K,H), i.e., there is an h ∈ H such that A ∩ H covers or isolates (Kh,H). If A ∩ H covers (Kh,H),
then Kh(A ∩ H) = H(A ∩ H) = H , whence KhA = HA; i.e., A covers (Kh,H). If A ∩ H isolates
(Kh,H), then (A ∩ H) ∩ H = (A ∩ H) ∩ Kh, and therefore A ∩ H = A ∩ Kh; i.e., A isolates (Kh,H).
Therefore, we may assume that H = G and K is a maximal subgroup of G.

Assume first that KG = 1. Then G is a primitive group. Let N be a minimal normal subgroup
of G. Then NK = G, and therefore |G : K| = p divides |N |. Since G is p-supersolvable, it follows
that |N | = p. Moreover, CG(N) = N by [2, A, Theorem 15.2]. Hence

K � NK/N = G/N = G/CG(N) ≤ Aut(N),
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where |Aut(N)| = p − 1. Hence p does not divide |K|. Therefore, K is a p′-Hall subgroup of G. If p
divides |A|, then

|AK| = |A||K|/|A ∩ K| ≥ |K|p = |G|.
Hence AK = G, i.e., A covers (K,G). If p does not divide |A|, then, by the Hall-Chunikhin theorem [12,
VI, Theorem 1.7], there is an element g ∈ G such that A ≤ Kg, i.e., A conditionally isolates (K,G).

Suppose now that KG �= 1. In this case, by the choice of G, AKG/KG conditionally covers or
isolates (K/KG, G/KG). Hence there is a gKG ∈ G/KG such that AKG/KG covers or isolates
((K/KG)gKG , G/KG). If AKG/KG covers ((K/KG)gKG , G/KG), then

(AKG/KG)(K/KG)gKG = G/KG.

Consequently, AKGKg = AKg = G, and therefore A covers (Kg, G). If AKG/KG isolates

((K/KG)gKG , G/KG),

then

(AKG/KG) ∩ (K/KG)gKG = AKG/KG.

Hence A ∩ Kg = A, i.e., A isolates (Kg, G). This shows that every subgroup of G conditionally covers
or isolates every maximal pair (K,H) in G such that p divides |H : K|, which contradicts the choice
of G. Thus, (1) ⇒ (2).

(2) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let us
show first that the condition of the theorem is inherited by the quotient groups of G. Indeed, let N
be an arbitrary minimal normal subgroup of G, let A/N be an arbitrary subgroup in G/N , and let
(K/N,H/N) be a maximal pair in G/N such that p divides |H/N : K/N | = |H : K|. In this case,
by assumption, A conditionally covers or isolates pair (K,H), i.e., there is an x ∈ H such that either
AKx = AH or A ∩ Kx = A ∩ H . In the first case, we have

(A/N)(K/N)xN = (A/N)(H/N) (xN ∈ H/N),

i.e., A/N covers the pair ((K/N)xN ,H/N). In the other case, we obtain

(A/N) ∩ (K/N)xN = (A/N) ∩ (H/N),

i.e., A/N isolates the pair ((K/N)xN ,H/N). Hence there is a unique minimal normal subgroup N of G,
where N � Φ(G) and N is a noncyclic p-group. Consequently, there is a maximal subgroup M of G
such that G = [N ]M . Let L be a subgroup of order p in N . Then it is clear that L does not isolate the
maximal pair (Mx, G) for any x ∈ G. Since p divides |G : M |, there is an element x ∈ G such that L
covers the pair (Mx, G), and therefore LMx = G. Hence

|G : Mx| = |G : M | = |L| = |N | = p.

This contradiction completes the proof of the implication (2) ⇒ (1).

(1) ⇒ (3) Let V be an arbitrary subnormal subgroup of G and (K,H) a maximal pair in G such that p
divides |H : K|. Then |H : K| = p, and V ∩ H is subnormal in H . Hence, without loss of generality of
the proof, we may assume that H = G. Then K is a maximal subgroup of G. Suppose that V � K. If
KG �= 1, then V KG/KG covers (K/KG, G/KG) by induction. Therefore,

(KGV/KG)(K/KG) = G/KG,

and hence V K = G, i.e., V covers (K,G). Suppose now that KG = 1. Then G is a primitive group.
Let N be a minimal normal subgroup of G. Since KG = 1, it follows that G = NK. Since G is p-
supersolvable and p divides |N |, it follows that |N | = p. Since G is primitive, we have CG(N) = N .
Hence G = [N ]K, and K � G/CG(N) is an Abelian group whose exponent divides p − 1. Therefore,
K is a p′-Hall subgroup of G, and |G : K| = p. If p does not divide |V |, then V ⊆ Op′(G), and therefore
Op′(G) �⊆ K. Then G = KOp′(G), and hence |G : K| �= p; a contradiction. Therefore, p divides |V |.
Thus,

|V K| = |V ||K|/|V ∩ K| ≥ |K|p = |G|,
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and hence V K = G, i.e., V covers (K,G). Thus, (1) ⇒ (3).

(3) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order. It is clear
that condition (3) is preserved for every quotient group of G (see the proof of the implication (2) ⇒ (1)).
Therefore, the group G admits a unique minimal normal subgroup N , N � Φ(G), and N is a noncyclic
p-group. Hence G = [N ]M for some maximal subgroup M in G and N = CG(N) = Op(G). Let L be
a minimal normal subgroup in N . Then L �= N and L covers or isolates (M,G) by the condition of the
theorem. Since N ∩ M = 1, L does not isolate (M,G). Therefore, L covers (M,G). Hence ML = G,
and therefore |N | = |G : M | ≤ |L| < |N |; a contradiction. Hence G is p-supersolvable.

(4) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let E
be a subgroup of G and V a ∩-indecomposable subgroup of E. Then, by Lemma 2.5, there is a ∩-
indecomposable subgroup X in G such that V = E ∩ X. Let (K,H) be a maximal pair in E such that p

divides |H : K|. Then there is an element h ∈ H for which X covers or isolates (Kh,H). If X covers the
pair (Kh,H), then XKh = XH , and therefore

KhV = Kh(E ∩ X) = E ∩ XKh = E ∩ XH = H(E ∩ X) = HV,

i.e., V covers (Kh,H). If X isolates the pair (Kh,H), i.e., X ∩ H ≤ Kh, then

V ∩ H = X ∩ E ∩ H = X ∩ H ≤ Kh,

i.e., V isolates (Kh,H). Thus, the condition of the theorem holds for every proper subgroup of G. Hence
all maximal subgroups of G are p-supersolvable by the choice of G.

Let N be an arbitrary minimal normal subgroup of G. It can readily be seen that the condition of the
theorem is preserved for G/N . Hence G/N is p-supersolvable by the choice of G. Since the class of all
p-supersolvable groups is a saturated formation, it follows that N is a unique minimal normal subgroup
of G, N � Φ(G), and N is a noncyclic p-group. Let M be a maximal subgroup of G such that N � M .
Then G = [N ]M and MG = 1. Hence N = CG(N) by [2, A, Theorem 15.2], and M is p-supersolvable.

(a) N is a maximal subgroup of a Sylow p-subgroup P of G.
Let us show first that N �= P . Suppose that N = P and V is a maximal subgroup of N . Then

V is a ∩-indecomposable subgroup of N , and therefore, by Lemma 2.5, there is a ∩-indecomposable
subgroup X in G such that V = X ∩ N . In this case, N � X. By the condition of the theorem, there is
an element x ∈ G such that X covers or isolates (Mx, G). If X covers (Mx, G), i.e., XMx = G, then
XM = G by Lemma 2.3. Since N = P , it follows that M is a p′-group, and therefore P = N ≤ X.
The contradiction thus obtained shows that X isolates the pair (Mx, G), i.e., X ≤ Mx. Thus, V ≤ Mx.
Then V = 1, and thus N is a cyclic group. The contradiction thus obtained shows that N �= P . Hence
p divides |M |. Since M is p-supersolvable, it follows that M contains a maximal subgroup E such that
|M : E| = p. Since G = [N ]M , we clearly have EN �= G. Hence EN is p-supersolvable. Moreover,
Op′(EN) = 1 because CG(N) = N . By Lemma 2.7, the group EN is supersolvable. Hence, since
N = CG(N), every Sylow p-subgroup P1 in EN is normal in EN . It is also clear that P1 is a maximal
subgroup of some Sylow p-subgroup in G. Hence P1 is normal in G, because PE = G = P xE for
any x ∈ G by Lemma 2.3. However, since CG(N) = N and |Op(G/N)| = |Op(M)| = 1, it follows that
N = P1 is a maximal subgroup of P .

(b) Every maximal subgroup V of N is normal in some Sylow p-subgroup of G.
Let X be a ∩-indecomposable subgroup of G such that V = X ∩ N . In this case, by assumption,

there is an element x ∈ G such that X covers or isolates (Mx, G). If X covers (Mx, G), then XMx =
G = XM by Lemma 2.3. By (a), we have |Mp| = p, where Mp is a Sylow p-subgroup of M . Hence
every Sylow p-subgroup of X is a maximal subgroup of some Sylow p-subgroup of G. Let V ≤ Xp,
where Xp is a Sylow p-subgroup of X. Then Xp is a maximal subgroup of some Sylow p-subgroup Gp

in G. Hence Xp is normal in Gp. Therefore, V = N ∩ X = N ∩ Xp is normal in Gp. Finally, note that,
since V �= 1 and V ≤ X, X cannot isolate the pair (Mx, G).

(c) Concluding contradiction.
Let E be a p′-Hall subgroup of M . Then S = NE < G is p-supersolvable. Since N = CG(N), we

have Op′(S) = 1. Hence EN is supersolvable by Lemma 2.7. Therefore, some maximal subgroup V
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in N is normal in S. Moreover, by (b), there is a Sylow p-subgroup Gp in G such that Gp ≤ NG(V ).
Hence G = SGp ≤ NG(V ), which contradicts the minimality of N . This completes the proof of the
theorem.

{cor4.2:u
Corollary 4.2. Let G be a group, and let p be the least prime divisor of |G|. The group G is p-
nilpotent if and only if every subgroup of G conditionally covers or isolates every maximal pair
(K,H) in G such that p divides |H : K|.

Proof. Since p is the least prime divisor of |G|, it follows that the group G is p-nilpotent if and only if G
is p-supersolvable. Hence the assertion of the corollary follows immediately from Theorem 4.1.

{cor4.3:u
Corollary 4.3. Let G be a group. The following assertions are equivalent:

(1) G is supersolvable;

(2) every subgroup of G conditionally covers or isolates every maximal pair in G;

(3) every ∩-indecomposable subgroup of G conditionally covers or isolates every maximal pair
in G;

(4) every cyclic subgroup of prime order or of order 4 in G conditionally covers or isolates every
maximal pair in G;

(5) G is solvable and every subnormal subgroup in G covers or isolates every maximal pair
in G.

Proof. By Theorem 4.1, it suffices to prove only the implications (3) ⇒ (1) and (4) ⇒ (1).

(3) ⇒ (1) By induction, every maximal subgroup of G is supersolvable. Therefore, by [1, Theo-
rem 26.3], the group G is solvable. Then, by Theorem 4.1, the group G is supersolvable.

(4) ⇒ (1) Suppose that this is not the case. Let G be a counterexample of minimal order.
Obviously, the assumption of the theorem is satisfied for every subgroup of G. Hence G is a minimal
nonsupersolvable group. Therefore, by [1, Theorem 26.3] the following assertions hold:

(a) G is solvable;

(b) GU is a Sylow p-subgroup of G for some prime p dividing |G|;

(c) GU/Φ(GU ) is a noncyclic principal factor in G;

(d) if p > 2, then GU is a group of exponent p and, if p = 2, then the exponent of GU divides 4.

Let P = GU , and let X/Φ(P ) be a subgroup of P/Φ(P ) of order p. Let x ∈ X�Φ(P ) and L = 〈x〉. Then
either |L| = p or |L| = 4. In this case, by assumption (4), we see that L conditionally covers or isolates
every maximal pair in G. Since U is a saturated formation and G/GU is supersolvable, it follows that
P � Φ(G). Let M be a maximal subgroup of G such that PM = G. Then L conditionally covers or
isolates the pair (M,G). Hence there is an element h ∈ G such that L either covers or isolates (Mh, G).
By [2, A, Theorem 9.2(e)], Φ(P ) ≤ Φ(G). Hence Φ(P ) ≤ Mh. In this case,

G/Φ(P ) = [P/Φ(P )](Mh/Φ(P )).

Since L � Φ(P ), it follows that L � Mh. This shows that L does not isolate (Mh, G). Hence
LMh = LM = G. Then |P/Φ(P )| = |G : M | = p, which contradicts the condition that P/Φ(P ) is a
noncyclic factor. Thus, (4) ⇒ (1).

Following [16], we use the symbol ZUΦ(G) to denote the product of all normal subgroups of G all of
whose non-Frattini G-principal factors are cyclic.
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{th4.4:u4
Theorem 4.4. Let X ≤ E be a solvable normal subgroup of G. Suppose that every maximal
subgroup of every Sylow subgroup in X conditionally covers or isolates every maximal pair
(M,G), where MX = G. If X = E or X = F (E), then E ≤ ZUΦ(G).

Proof. Assume first that X = E. Suppose that the theorem fails to hold in this case. Let (G,E) be
a counterexample with the minimal product |G||E|. We claim first that E/N ≤ ZUΦ(G/N) for every
minimal normal subgroup N of G contained in E. Indeed, by the choice of the group (G,E), we are only
to prove that the condition of the theorem remains valid for (G/N,E/N). Let N be a p-group, let Q/N
be a Sylow q-subgroup of E/N , and let V/N be a maximal subgroup of Q/N . Let T/N be a maximal
subgroup of G/N such that (T/N)(E/N) = G/N . Then TE = G. Suppose that q �= p. In this case,
V = NM and Q = NP , where M is a Sylow q-subgroup of V and P is a Sylow q-subgroup of Q which
contains M . Then P is a Sylow q-subgroup of E, and therefore there is as element x ∈ G such that M
covers or isolates the pair (T x, G). If M ≤ T x, then

V/N = NM/N ≤ T x/N = (T/N)xN .

Otherwise MT x = G, which yields (M/N)(T/N)xN = G/N . If q = p, then one can similarly prove that
V/N conditionally covers or isolates every maximal pair (M/N,G/N), where (M/N)(E/N) = G/N .
Therefore, E/N ≤ ZUΦ(G/N) for every minimal normal subgroup N of G contained in E. Hence
N � Φ(G), and |N | > p by the choice of (G,E).

Let M be a maximal subgroup of G such that N � M . Then G = [N ]M and E = [N ](E ∩ M). Let
W be a Sylow p-subgroup in E ∩ M and V a maximal subgroup of NW containing W . Then, by the
assumption of the theorem, V conditionally covers or isolates the pair (M,G). If V Mx = G for some
x ∈ G, then V M = G by Lemma 2.3, and therefore

|G| = |V M | = |V ||M | : |V ∩ M | = |V ||M | : |W | < |N ||M | = |G|,
which is impossible. Hence V ≤ Mx for any x ∈ G. Thus, V ≤ MG, and therefore V ∩ N = 1.
Consequently, |N | = p; a contradiction. This contradiction shows that the theorem is true for X = E.

Assume now that X = F (E). Suppose that the theorem fails to hold in this case, and let (G,E) be
a counterexample with the minimal product |G||E|. Let F = F (E) and P a Sylow p-subgroup in F ,
where p divides |F |.

(1) P ≤ ZUΦ(G) and E/P � ZUΦ(G/P ).
Since P is a characteristic subgroup of F and F is a characteristic subgroup of E, it follows that P is

normal in G. Hence, as in the case of X = E, we see that P ≤ ZUΦ(G). Therefore, E/P � ZUΦ(G/P ),
because otherwise we have E ≤ ZUΦ(G), which contradicts the choice of (G,E).

(2) If L is a minimal normal subgroup of G and L ≤ P , then |L| > p.
Suppose that |L| = p. Let C0 = CE(L). Then the condition of the theorem is satisfied for

(G/L,C0/L). Indeed, since F ≤ C0 and L ≤ Z(F ), it follows that F (C0/L) = F/L. Moreover,
as in the case of X = E, one can prove that, if M/N is a maximal subgroup of G/L such that
(F/L)(M/L) = G/L, Q/L is a Sylow q-subgroup of F/L, and V/L is a maximal subgroup of Q/L,
then V/L conditionally covers or isolates (M/L,G/L). Hence C0/L ≤ ZUΦ(G/L) by the choice of
(G,E), and therefore, by the G-isomorphism CG(L)E/CG(L) � E/C0, we see that E ≤ ZUΦ(G). The
contradiction thus obtained shows that (2) holds.

(3) Φ(G) ∩ P �= 1.
Suppose that Φ(G) ∩ P = 1. Let L be a minimal normal subgroup of G contained in P . Let M be a

maximal subgroup of G such that G = [L]M . Let P1 = P ∩ M . Then P = LP1 and |P : P1| = |N |. Let
V be a maximal subgroup of P containing P1. Then L � V , and V conditionally covers or isolates
(M,G) by assumption. If V ≤ Mx for any x ∈ G, then V ∩ N = 1, and therefore |L| = p, which
contradicts (2). Hence G = V Mx for any x ∈ G, and therefore G = V M by Lemma 2.3. In this case,

|L| = |G : M | = |V ||M | : |P1||M | < |L|.
The contradiction shows that Φ(G) ∩ P �= 1.
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Concluding contradiction. By (3), G admits a minimal normal subgroup L such that L ≤ Φ(G) ∩ P .
Then F (E/L) = F/L by [2, A, Theorem 9.3(c)]. Therefore, the condition of the theorem is satisfied for
(G/L,E/L), and hence E/L ≤ ZUΦ(G/L) by the choice of G. Then E ≤ ZUΦ(G) because L ≤ Φ(G).
This contradiction completes the proof of the theorem.

{cor4.5:u
Corollary 4.5. Let E be a solvable normal subgroup of a group G such that G/E is supersolvable.
If every maximal subgroup of every Sylow subgroup in E conditionally covers or isolates every
maximal pair (M,G), where ME = G, then G is supersolvable.

{cor4.6:u
Corollary 4.6 (Ezquerro [11]). Let E be a solvable normal subgroup of a group G such that G/E is
supersolvable. If every maximal subgroup of every Sylow subgroup of E is a CAP-subgroup of E,
then G is supersolvable.

Proof. The proof follows from Corollary 4.5 and Lemma 2.10.
{cor4.7:u

Corollary 4.7. Let E be a solvable normal subgroup of G such that G/E is supersolvable. If
every maximal subgroup of every Sylow subgroup in F (E) conditionally covers or isolates every
maximal pair (M,G), where MF (E) = G, then G is supersolvable.

{cor4.8:u
Corollary 4.8 (Ezquerro [11]). Let E be a solvable normal subgroup of G such that G/E is
supersolvable. If every maximal subgroup of every Sylow subgroup in F (E) is a CAP-subgroup
of E, then G is supersolvable.
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