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particular, generalizations of a series of known results on (partial) CAP-subgroups are obtained.
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1. INTRODUCTION

All groups under consideration are finite. Denote.by the symbol & the class of all supersolvable
groups. Recall that by the/-coradical of a group G'weimean the intersection of all normal subgroups N
of G for which G/N € U; the U-coradical of a'group G is denoted by the symbol G¥. We use the
terminology adopted in[1] and [2].

Let A, K, and H be subgroups of a gfoup G and K < H. Then we say that A covers the pair (K, H)
if AH = AK and isolates the pair{ K,H) if AN H = An K. Note that the relation AH = AK is
equivalent to H < K(ANH), and AR H = AN K is equivalent to AN H < K. A subgroup A of a
group G is said to be quasinormat,[3] or permutable ([2], [4]) in G if AE = EA for all subgroups FE
of G. Quasinormal subgroups have many interesting properties. In particular, if A is a quasinormal
subgroup of G, then, for any maximal pair (K, H) in G (i.e., a pair of the form (K, H), where K is a
maximal subgroup of HY), the'subgroup A either covers or isolates (K, H).

The following example, shows that, even if some subgroup of a group G covers or isolates every
maximal pair (K H) in &, this subgroup can be not quasinormal.

Example. Let'p and g be primes, where ¢ divides p — 1. Let A = (a) be a cyclic group of order p? and
B be a group of order q. Let G = A1 B = [K]B, where K = Ay x Ay x --- x A, is the base of the

regular.wreath product G. Let L = (aP)®. Then G/L ~ (a?) 1 B and L < ®(G). Hence the group G is
supérsolvable. Let R be a subgroup of order p of the group A;. Suppose that R is quasinormal in G.
SincewR‘is a Sylow p-subgroup of RB, it follows that B < Ng(R), and therefore R is normal in G; a
eontradiction. Hence R is not quasinormal in G. On the other hand, since the group G is supersolvable
and R is subnormal in G, it follows that R covers or isolates every maximal pair in G (see Corollary 4.3
below).
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118 LIU et al.

[t should be noted that the theory of covering and isolating maximal pairs has an immediate
relationship to the theory of CAP-subgroups. Recall that a subgroup A of a group G is said to be a CAP-
subgroup of G [2, A, Definition 10.8] if A either covers or isolates every pair (K, H), where H/K is a
principal factor in G. A subgroup A is said to be a partial CAP-subgroup of G ([5],[6]) if A either covers
or isolates every pair (K, H), where H/K is a factor of some chosen principal series in G. Obviously,
every CAP-subgroup of a group G either covers or isolates every maximal pair (K, H) in G such that
L < K < H <T,whereT/Lis a principal factor in G. On the other hand, every partial CAP-subgroup
of G either covers or isolates every maximal pair (K, H) in G such that G;_1 < K < H < G, for some i,
where 1 = Gy < Gy < --- < G,, = G is a chosen principal series in G.

In the present paper, we study groups in which some subgroups cover or isolate distinguished
systems of maximal pairs of these groups. In particular, generalizations of a series of known resuits
concerning (partial) CAP-subgroups are obtained.

2. PRELIMINARY RESULTS

The following results are used in the present paper.

Lemma 2.1. Let N be a normal subgroup of a group G and (K, H) a maximal pair in G. If N
isolates (K, H), then (KN, HN) is a maximal pair in G and |HN : KN| ="1H+" K|.
Proof. Let R be a subgroup of G such that KN < R < HN. Then
R=N(RNH) and K < RNH H.

Henceeither RN H=KorRNH =H.I{ RN H = K, then

R=RNHN =N(RAH)=KN.
I[f RNH = H, then

R=RNHN<=N(RNH)=HN.

Therefore, (KN, HN) is a maximal pairin G.'Since N isolates (K, H), it follows that HN N = K N N,
and therefore [HN : KN| = |H : K|. O

Lemma 2.2. Let M be a subgroupef a group G and (K, H) a maximal pairin G. If H <V <G
and M either covers or isolates (K, H), then M NV either covers or isolates (K, H).

Proof. Since H <V, itfollowsthat M N HNV = M N H. If M covers the pair (K, H), then
H=KMnH)=KMnVnNH),

i.e., M NV covers (K, H). If M isolates (K, H), then
MnNH<K, (MNV)NH<K,

i.e., M ‘¥ isolates (K, H). O

The next lemma is well known.

Lemma 2.3. Let A and B be proper subgroups of a group G such that G = AB. Then G = AB*
and G # AA” Jorany x € G.

Lemma 2.4. Let G be a group and p a prime divisor of the order of G. Let a subgroup E of G either
covers or isolates every maximal pair (K, H) in G such that H is not p-solvable. Then G contains
a chain of subgroups E = Ey < Fh < --- < E,_1 < E, = G such that either E;_1 is normal in F;
or E;/(E;i_1)E, is p-solvable fori=1,... ,n.
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CRITERIA FOR p-SOLVABILITY AND p-SUPERSOLVABILITY 119

Proof. Let M be a maximal subgroup of G such that E < M. Suppose that G is not p-solvable.
Since M* is maximal in G for any z € G, it follows that E either covers orisolates the pair (M*,G). I E
covers (M?*, @) for some x, then EM® = G, and therefore M M* = G, which contradicts Lemma 2.3.
Hence E isolates (M*, Q) for any = € G, and therefore E' < M. We see by induction that there is a
chain of subgroups

E=Fy<FE <---<F1<FE=Mg

such that either E;_; is normal in E; or E;/(E;_1)g, is p-solvable fori = 1,...,¢. Since M¢ is normal
in G, this completes the proof of the lemma. O

A subgroup H of a group G is said to be primitive [7] or N-indecomposable |8]in G if H differs from
the intersection of all subgroups of G in which H is contained properly.

Lemma 2.5 ([8, c. 133]). /] K is a subgroup of a group G and E is a N-indecomposable'subgroup
of K, then G admits a N-indecomposable subgroup X such that E = K N X.

Lemma 2.6. Let G = M N, where N is a minimal normal subgroup of a group G. I\ < NN M
and E is subnormal in G, then E < Mg.

Proof. Since E is subnormal in G, then N < Ng(FE) by [2, A, Theorem 14.5], and therefore
EY = E"M = pM < M.
Thus, E < Mg. O

Lemma 2.7 ([9, Lemma 2.8]). Let G be a p-supersolvable, group. I} Oy (G) =1, then G is
supersolvable.

Lemma2.8([10, Lemma 2.8]). Let G = [N]|M, where N.is/a minimal normal subgroup of a group G
and M is a solvable maximal subgroup of G. Then Nuis'an Abelian group.

Lemma 2.9 ([11, Lemma 1]). If N is a normal subgroup of a group G and V' is a CAP-subgroup
in G, then NV is a CAP-subgroup of G.

Lemma 2.10. Let E be a solvable normalsubgroup of G. Suppose that every maximal subgroup
of every Sylow subgroup of E is a CAP=subgroup of G. If M is a maximal subgroup of G such that
EM =G and V is a maximal subgroupof some Sylow subgroup in E, then there is an element
x € G such that 'V covers or isolates the pair (M”,QG).

Proof. Let |G : M| = ¢%, andietV be a maximal subgroup of a Sylow p-subgroup P of G. Suppose
that V- £ M* for any z eG\Then ¢ = p. We claim that VM = G. By Lemma 2.9, without any loss of
generality of the proof, wesmay assume that Mg = 1, and therefore G = [N]M for some minimal normal
subgroup N in G contained in E. Suppose that N £ V. Then VNN =1, and, since V is a maximal
subgroup of P, we obtain V' = 1. Thus, N <V, and therefore G = V M. O

3+, CRITERIA FOR THE p-SOLVABILITY AND SOLVABILITY OF A GROUP

Inthis section, using the theory of covering and isolating maximal pairs, we give new criteria for the
p-solvability and solvability of a group.

Letp be a prime. We say that a subgroup A of a group G is a weak CAP,-subgroup of G if G admits
a‘composition series

1=Go<G1 < <G, =0
such that A either covers or isolates every maximal pair (K, H) in G such that G;_1 < K < H < G| for
some i, where p divides |G;/G;—1| and H is not a p-solvable group.

Recall that by the nilpotent coradical of a group G one means the intersection of all normal
subgroups N in G such that G/N is nilpotent.
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120 LIU et al.

Theorem 3.1. Let G be a group and p a prime. The following assertions are equivalent:
(1) Gis p-solvable;
(2) every subgroup in G is a weak CAPy-subgroup of G;
(3) every maximal subgroup of G is a weak CAPy-subgroup of G;
(4) every 2-maximal subgroup of G is a weak CAPy-subgroup of G;
(5) every Sylow p-subgroup of G is a weak CAPy-subgroup of G;

(6) either G is a primary group, i.e., a group whose order is a power of some primenor G
contains two p-solvable maximal subgroups My and Ms such that
(IG: Mi|,|G : Mo|) = r°¢"

for some prime numbers r and q and some a,b € {0} UN and M, and My are’weak CAP,-
subgroups of G,

(7) every nonsupersolvable Schmidt subgroup in G is a weak CAP,-subgroup of G.

Proof. (1)=(2) Since the group G is p-solvable, it follows that every subgroup of G is also p-solvable,
and therefore every subgroup of G is a weak CAPp-subgroup by definitiom.
The implications (2) = (3)—(5) and (2) = (7) are obvious.

(3),(4) = (1) Suppose that every 2-maximal (every ‘méximal) subgroup M of G is a weak
CAP,-subgroup of G. We claim that G is p-solvable.{Suppose that this is not the case, and let G
be a counterexample of minimal order. Let us show firstthat &/N is p-solvable, where N is an arbitrary
minimal normal subgroup of G. If IV is a maximal of2-=maximal subgroup of G, then this is clear. Let N
be a subgroup of G that is not maximal (in Case (3)). 0t not 2-maximal (in Case (4)). Let us prove that
the condition of the theorem holds for G/N., Leb M /N be a maximal (2-maximal) subgroup of G/N.
Then M is a maximal (2-maximal) subgroup.of G. Therefore, by the condition of the theorem, M is a
weak CAP,-subgroup of G, and thus thefe is'a composition series 1 = Gy < G; < --- < G, =G inG
such that M either covers or isolates evety maximal pair (@, R) in G suchthat G;_; < Q < R < G, for
some 4, where p divides |G;/G;_1| and\R is not p-solvable.

Consider the series

1=GyN/N < G;N/N < ---<G,N/N = G/N.
By the isomorphisms
GZ‘N/GZ‘_lN ~ GZ‘NGi_l/GZ‘_lN ~ Gz/Gz NG;_1N = Gz/Gz—l(Gz N N),

without any loss@f generality of the proof, we may assume that this series is a composition series in G/N,
where

|Gl . Gi71| = |GZN/N : Gz;lN/N|.
Let (4N, H/N) be a maximal pairin G/N and
G;_1N/N < K/N < H/N < G;N/N

for some ¢, where p divides |G;N/N : G;_1N/N| and H/N is not a p-solvable group. We claim that
M/N covers or isolates the pair (K/N, H/N).

Note that G;_1N < K < H < G;N and (K, H) is a maximal pairin G. Since K = N(K N G;) and
H = N(HNG,), it iollows that

\H : K| = (|HNGi||N|/|G; " HNNJ|) : (K NGs||N|/|G: N K NN|)
= (|H N Gi||N|/|GiNN|) : (IK N Gi|[N|/|Gi " N|) = |[HNG; : KNGyl
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CRITERIA FOR p-SOLVABILITY AND p-SUPERSOLVABILITY 121

Hence K N G; # H N G;. We claim that (K N G;, H N G;) is a maximal pair in G. Since K # H, it
follows that N(K NG;) # N(H NG;), i.e., N does not cover the pair (K N G;, HNG;). Therefore,
there is a maximal pair (L, T) in G such that

KNG, <L<T<HNG,,
and N does not cover (L, T'). Indeed, if N covers every maximal pair (U, W) such that

KNnG; <U<W < HNG;,

then N covers obviously the pair (K N G;, H N G;); a contradiction. Since N is normal in G, it follows
that IV either covers or isolates every maximal pair in G. Therefore, N isolates the pair (L, T). In this
case, by Lemma 2.1, (LN, T'N) is a maximal pairin G and [T'N : LN| = |T : L|. However,

K=NKNG;)<NL<NT<NHNG;)=H.

Hence KN G; = Land HNG; = T. Therefore, (K N G;, H N G;) is a maximal pair in G, At'can readily
be seen here that

Gio1<KNnG;, < HNnG; <G;.

Since H/N is not a p-solvable group, it follows that H N G; is not p-solvable either, because

H/N = (HNG;)N/N ~HNG;/HNG; N N.
Therefore, by the assumption of the theorem, M either covers or isolatesd( K N.G;, H N G;). If M covers
(KNG;, HNG;),then

MH = MN(G; N H) = MN(G; N#) =MK,
i.e., M covers (K, H). Then

(M/N)(H/N) = MH/N = MEN =(M/N)(K/N),
i.e., M/N covers (K/N,H/N). If M isolates (K N G4, H ™ G;), then
MNH=MNONG,NH)=NMnNG,NH)=NMnNKNG;)
=MNNKNG;)=MNK,
i.e., M isolates (K, H). Thus,
(M/N) N (H/N) =(M ("H)/N = (M N K)/N = (M/N) 0 (K/N),

i.e., M/N isolates (K/N, H/N,). Hence the assumption of the theorem holds for G/N, and therefore, by
the choice of the group G, thelguotient group G/N is p-solvable. Since the class of all p-solvable groups
is a saturated formation, it follows that N is a unique minimal normal subgroup of G, N is not Abelian,
p divides |N|, and N £@(&)."Thus, Ca(N) = 1.

Let N = Ny x Ny Xy x Ny be a direct product of isomorphic simple groups. We claim that the
group G has a maximalsubgroup V such that p does not divide |G : V|, NV = G,and N; #V NN; # 1
forany i =1,.0. %

Let N, € P,"where N, is a Sylow p-subgroup of N and P is a Sylow p-subgroup of G. Then
N NP £ Ny s normal in P, and therefore P < Ng(N,). Hence G contains a maximal subgroup V
suchsthat N (N,) < V. Then G = NNg(N,) = NV, and therefore Viz = 1. Since Ng(N,) <V, it
follows that P < V. Let P; be a Sylow p-subgroup of N;. Then P; < P* for some x € G. Since
G =NV, it follows that x = vn, where n € N and v € V. Therefore, P, < (P")", where P < V.
Hence (H)"_1 < V. Since N; is normal in N, it follows that (PZ-)"_1 < N;. Therefore, VA N; #1
foranyi=1,...,t. If N; <V for some i, then N; < Vo =1 by Lemma 2.6; a contradiction. Hence
V N N; # N, for any i.

Let D = V N Ny, and let M; be a maximal subgroup of V' such that D < M; (in Case(4))or M; =V
(in Case (3)). By the assumption of the theorem, the group G admits a composition series

1=Go<Gi1 < <G, =G
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122 LIU et al.

such that M either covers orisolates every maximal pair (K, H) in G suchthat G,y < K < H < G, for
some ¢, where p divides |G;/G;-1| and H is not p-solvable. Since G is a minimal subnormal subgroup
of G, it follows that N < Ng(Gy) by [2, A, Theorem 14.5]. Hence G; < N, because, otherwise, we
would have NG; = N x Gy, and therefore G; < C(N) = 1, which is impossible. Therefore, without
loss of generality of the proof we may assume that G; = N;. Then M; either covers or isolates every
maximal pair (K, H) in Ny such that H is not a p-solvable group. Hence, by Lemma 2.2, we see that
D = My N Ny either covers or isolates every maximal pair (U, W) in Ny such that W is not p-solvable.
Therefore, by Lemma 2.4, there is a chain of subgroups

D=MNN1=Dy<D1 < <Dy 1 <D =N

in Ny such that either D;_ is normal in D; or D;/(D;_1)p, is p-solvable, i = 1,...,t. Since N1 =G¥
and 1 # D # Ny, it follows that D;_; is not a normal subgroup of Ny. Thus, N1 /(D¢-1)n, is p-solvable
and (D¢—1)n, = 1, because G is a simple group. Hence Nj is p-solvable. The contradiction, thus
obtained completes the proof of the implications (3) = (1) and (4) = (1).

(5) = (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let P be a
Sylow p-subgroup of G, and let

1=Go<Gi < <G, =G

be a composition series in G such that P either covers or isolates every maximal pair (K, H) in G such
that G,_1 < K < H < G, for some i, where p divides |G;/G;—_1| and H is not p-selvable. Since G is not
p-solvable, there is an index 7 such that G; /G;_ is a simple non-Abeliangroup and p divides |G;/G;—1].
Without loss of generality of the proof, we may assume that i = 1. Then PN G; # G;. By Lemma 2.2,
P N Gy either covers or isolates every maximal pair (U, W) in Gy such that W is not p-solvable. Then,
by Lemma 2.4, there is a chain of subgroups

PNGi=FPR <P <---<PYWS<PB=0G

in Gy such that either P, is normal in P; or P;/(P;_1) p,‘isp-solvable, i = 1,...,t. Since Gy is a simple
group and P N Gy # Gy, it follows that P,_; is not normal’in G;. Thus, G1/(Pi—1)g, is p-solvable.
However, since (P,—1)g, = 1, it follows that G s alse p-solvable. The contradiction thus obtained
completes the proof of the implication (5) = (1)

(1) = (6) Let G fail to be a primary group. Then G contains two maximal subgroups M; and My
such that |G : M| = p® for some a € N and“p does not divide |G : Ms|. Then (|G : M|, |G : Ms|) = 1.
By (2), the group M, is a weak CAP,-stthgroup of G. Therefore, (1) = (6).

(6) = (1) Let the group G contain two p-solvable maximal subgroups M; and Ms such that
(|G : M|, |G : Ms|) = r%q for some primes r and ¢ and some a,b € {0} UN, and M, and M, are weak
CAP,-subgroups of G. We claim that G is p-solvable. Suppose that this is not the case. Let G be a
counterexample of minimalhorden

Let N be a minimalknormal subgroup of G. Suppose that N < M; N Ms. Then M;/N and My/N
are p-solvable maximahsubgroups of G/N and

(I6/N : My /N|,|G/N : My/N|) = (|G : M|, |G : Ma|) = rq".

Moreover, My /N and My/N are weak CAP,-subgroups of G/N (see the proof of the implication (3) =
(1)). Thus; the condition of the theorem is satisfied for G/N. Therefore, by the choice of the group G,
the quotient group G/N is p-solvable. On the other hand, if N £ M; N Moy, for example, N £ Mj, then
G/N = MiN/N ~ M;/M; N N is p-solvable. Therefore, N is a unique minimal normal subgroup of G,
N & ®(G), N is non-Abelian, and p divides | N].

Let m = {p1,p2,...,p:} be the set of prime divisors of the order of N. Since N is not p-solvable,
itfollows that ¢ > 2 and G = NM; = NM,. On the other hand, since (|G : M|, |G : My|) = r%q® for
some primes r and g and ¢ > 2, it follows that thereis a p; € mand a Sylow p;-subgroup P; in G such that
either P, < Mj or P; < M>. Let P, < My, and let L be a minimal subnormal subgroup of G such that M;
either covers orisolates every maximal pair (K, H) such that K < H < L and H is not p-solvable. As in
the proof of the implication (3) = (1), one can show that 1 # M; N L # L, which leads to a contradiction
by Lemma 2.4.
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(7) = (1) Suppose that this is not the case. Let G be a counterexample of minimal order. We claim
that the condition of the theorem is satisfied for the subgroups of G. Let V' be an arbitrary subgroup of G
and M a nonsupersolvable Schmidt subgroup of V. Then, by the assumption of the theorem, M is a
weak CAPy,-subgroup of G. Thus, there is a composition series

1=Go<G1 < <G, =G

of G such that M either covers or isolates every maximal pair (K7, Hy) of G such that
Gi-1 <Ky <H <G;
for some 7, where p divides |G;/G;—1| and H; is not p-solvable. Consider the series
1=GonNV<GNV<--- <G, NV=V.

Let (K, H) be a maximal pair such that

Gi1NV<SK<H<G; NV,
where p divides |(G; N V) /(Gi—1 N V)| and H is not p-solvable. Then KG,;_1 # HG;_; (0therwise

H=HNHG,-1=HNKG,_.1=KHNG;—1) <KVNG;i—1) <K,

which contradicts the choice of the pair (K, H)). Thus, G;_; does not cover the pair (K7H ). However,
since G;_1 is a normal subgroup of Gy, it follows that G;_; isolates (K, H). Hefice (G;_1K,G;,—1H) is
a maximal pair of G; by Lemma 2.1. Moreover,

Gi-1 <G 1K <Gi1H <G
Since

G; N V/Gl'fl NV ~ (GZ N V) Gz;l/GrL;l,

it follows that p divides |G;/G;—1| and, since H is not p-solvableyitfollows that G;_1 H is not p-solvable
either. Hence, by the assumption of the theorem, M either'eovers or isolates (G,—1 K,G;—1H). If M
isolates (G;—1 K,G;—1H),then M N G;—1 K = M N G;_4 H; and therefore

MNK=MnNKVNGi-1) =MQVNG,_1K
=MnNnVNG_1H=MNHVNG,_1)=MnNH,
i.e., M isolates (K, H). If M covers (G;—1 K, G;—yH ), we have MG;_1 K = MG,;_1H, and therefore
MH=M{VNG_1H)=VNMGH4H=VINMG_1K=MG_1KNV)=MK,

i.e., M covers (K, H). Thus, the condition of the theorem holds for the subgroups of G. Hence, by the
choice of the group G, all proper subgroups of G' are p-solvable. It is clear that G is not g-nilpotent,
where ¢ stands for the least primie divisor of |G|, and therefore, by [12, 1V, Theorem 5.4], G contains
a g-closed Schmidt subgroup H.| Let @ be the nilpotent coradical of H. By [1, Theorem 26.1], Q is a
normal Sylow g-subgroup of Hyand Q/®(Q) is a noncentral principal factorin H. If H is supersolvable,
then |Q/®(Q)| = q, andlH /Cr (Q/P(Q))| divides ¢ — 1. Hence Cx(Q/®(Q)) = H; a contradiction.
Therefore, H is not supefsolvable. Suppose that the group G is simple. Then G admits a unique
composition series 1 < &."By the assumption of Theorem (7), H either covers or isolates every maximal
pair (U, W) in G{sueh.that W is not p-solvable, which leads to a contradiction by Lemma 2.4. Hence
the group G is.not'simple.

Let M be amaximal normal subgroup of G such that G/M is non-Abelian and p divides |G/M]|. Let
L be a pfoper'subnormal subgroup of G. Then L < M. Indeed, if L £ M, then G = ML is p-solvable,
which eentradicts the choice of the group G. Suppose that M # ®(G). Then G contains a maximal
subgroup E such that EM = G. However, since the subgroups E and M are p-solvable, it follows
that\G'is also p-solvable. This contradiction shows that M = ®(G).

Let H < E, where F is a maximal subgroup of G. Since M = ®(G), it follows from the assumption
of the theorem that H either covers or isolates (E*, Q) for any x € G. If H covers (E*,G) for some z,
then HE”® = G, and therefore EE® = G, which contradicts Lemma 2.3. Hence H isolates the pair
(E*,G)forany x € G, i.e., H < E*forany z € G. Since M = ®(G) < F and E¢ is a maximal normal
subgroup of G contained in E, it follows that Eq¢ = M. Thus, H < Eg = M = ®(G), and hence H is
nilpotent, which contradicts the choice of the subgroup H. Therefore, (7) = (1). This completes the
proof of the theorem. U
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We say that a subgroup A of G is a weak CAP-subgroup of G if it is a weak CAP,-subgroup of G for
any prime divisor p of the order of G.

Corollary 3.2. Let G be a group. The [ollowing assertions are equivalent:

1) Gis solvable;

2) every subgroup of G is a weak CAP-subgroup of G,

3) every maximal subgroup of G is a weak CAP-subgroup of G;
4) every 2-maximal subgroup of G is a weak CAP-subgroup of G;
5) every Sylow subgroup of G is a weak CAP-subgroup of G;

(
(
(
(
(
(6) thereis a solvable maximal subgroup M of G such that M is a weak CAP-subgroupof G,
(

7) every nonsupersolvable Schmidt subgroup of G is a weak CAP-subgroup of G,
(8) every maximal subgroup of every Sylow subgroup of G is a weak CAP-subgroup of G.

Prooi. By Theorem 3.1, it suffices to prove the implications (6) = (1) and (8)=- (1) only. Suppose
that the implication (6) = (1) fails to hold. Let G be a counterexample-of minimal order. Let N be a
minimal normal subgroup of G. If N &£ M, then G = NM, and therefote G/N = NM /N ~ M/M NN
is solvable. Let N < M. Then M/N is a solvable maximal subgtoup of G/N. As in the proof of the
implication (3) = (1) of Theorem 3.1, one can prove that M/N lis'a weak CAP-subgroup of G/N.
Hence the assumption of the corollary holds for G/N, andtherefore, by the choice of G, the quotient
group G/N is solvable. Thus, N is a unique minimal nermalsubgroup of G, N is non-Abelian, and
G=NM. lf NN M =1, then G = [N]M, and therefore N+is an Abelian group by Lemma 2.8. In
this case, G is solvable, which contradicts the choice of\G:, The contradiction thus obtained shows that
M N N # 1, which leads to a contradiction by Lemima,2:4 (as in the proof of the implication (3) = (1) in
Theorem 3.1).

(8) = (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let P
be a Sylow p-subgroup of G, where p standsor the least prime divisor of |G|, and let V' be a maximal
subgroup of P. Let

1=Go<Gi < <Gy =G

be a composition series in G such that V' either covers or isolates every maximal pair (K, H) in G such
that G;_1 < K < H < G; for'some ¢ and H is not solvable. We assume first that Gy is not Abelian.
Then p divides |G| and, Jor 'a, Sylow p-subgroup W of G, we have W # G;. Without loss of generality
of the proof, we may assume that VN Gy <W. If VNW =1, then |W| = p because V' is maximal
in P,. Therefore, GG1 iSyp=nilpotent by [12, V, Theorem 2.8], which contradicts the minimality of G;.
Hence V. N W #41,which leads to a contradiction by Lemmas 2.2 and 2.4. Thus, G is a g-group for
some prime ¢. Hence O, (G) # 1 by [13]. If N is a minimal normal subgroup of G contained in O4(G),
then, as in the proof of the implication (7) = (1) in Theorem 3.1, one can prove that the assumption of
the theopem is satisfied for G/N. Therefore, G/N is solvable by the choice of G. Then the group G is
also solvable. The contradiction thus obtained completes the proof of the implication (8) = (1). O

Gorollary 3.3 (Guo, Shum [10]). A group G is solvable if and only if every maximal subgroup of G
is a CAP-subgroup of G.

Corollary 3.4 (Fan, Guo, Shum [14]). A group G is solvable if and only if every maximal subgroup
of G is a partial CAP-subgroup of G.

Let H be a subgroup of a group G; H is said to be c-normal[15]in G if there is a normal subgroup N

of G for which G = HN and H N N < Hg. It can readily be seen that every c-normal subgroup of G is
a partial CAP-subgroup of G.
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Corollary 3.5 (Wang [15]). A group G is solvable if and only if every maximal subgroup of G is
c-normal in G.

Corollary 3.6 (Guo, Shum [10]). /] every 2-maximal subgroup of a group G is a CAP-subgroup
of G, then G is solvable.

Corollary 3.7 (Fan, Guo, Shum|[14]). If every 2-maximal subgroup of G is a partial CAP-subgroup
of G, then G is solvable.

Corollary 3.8 (Guo, Shum [10]). A group G is solvable if and only if G admits a maxinal
subgroup M such that M is a solvable CAP-subgroup of G.

Corollary 3.9 (Wang [15]). A group G is solvable if and only if G admits a maximal subgrowp M
such that M is a solvable c-normal subgroup of G.

Corollary 3.10 (Guo, Shum [10]). A group G is solvable if and only if every Sylow subgroup of G
is a CAP-subgroup of G.

Corollary 3.11 (Fan, Guo, Shum [14]). A group G is solvable if and only if every Sylow subgroup
of G is a partial CAP-subgroup of G.

4. p-SUPERSOLVABILITY AND SUPERSOLVABILITY,CRIFTERIA FOR A GROUP

Let A, K, and H be subgroups of a group G and K < H.«We say that A conditionally covers or
isolates the pair (K, H) if there is an element h € H such that A ¢overs or isolates the pair (K", H).
Ezquerro [11]obtained characterizations of p-supersolyable'groups in terms of CAP-subgroups. In

the present section, we give new characterizations of p=supérsolvable, p-nilpotent, and supersolvable
groups in terms of conditional covering and isolating:maximal pairs.

Theorem 4.1. Let G be a group and p a primexThe following assertions are equivalent:
(1) Gis p-supersolvable;

(2) every subgroup of G conditionally covers or isolates every maximal pair (K, H) in G such
that p divides |H : K|,

(3) G is p-solvable and every subnormal subgroup of G covers or isolates every maximal pair
(K, H) in G suchthatp divides |Hp3 : p2K|;

(4) G isp-solvable and every N-indecomposable subgroup in G conditionally covers orisolates
every maximal pair (K, H) in G such that p divides |H : K|.

Proof. (1= (2) Suppose that this is not the case. Let G be a counterexample of minimal order.
Let A be"asubgroup of G, and let (K, H) be a maximal pair in G such that p divides |H : K|. Then
|H : K{=p. I H< G, then, by the choice of G, the subgroup AN H conditionally covers or isolates
(K, H), ile., there is an h € H such that AN H covers or isolates (K", H). It AN H covers (K", H),
them K"(ANH) = H(AN H) = H, whence K"A = HA; i.e., A covers (K" H). 1If An H isolates
(K" H),then (AN H)NH = (AN H)N K" and therefore AN H = AN K";i.e., Aisolates (K", H).
Therefore, we may assume that H = G and K is a maximal subgroup of G.

Assume first that Ko = 1. Then G is a primitive group. Let N be a minimal normal subgroup
of G. Then NK = G, and therefore |G : K| = p divides |N|. Since G is p-supersolvable, it follows
that |N| = p. Moreover, Cq(N) = N by|[2, A, Theorem 15.2]. Hence

K ~NK/N =G/N =G/Cg(N) < Aut(N),
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where |[Aut(N)| = p — 1. Hence p does not divide |K|. Therefore, K is a p’-Hall subgroup of G. If p
divides | AJ, then

[AK| = [AlIK[/[AN K| > [K|p = |G].
Hence AK = G, i.e., Acovers (K, G). If p does not divide | A, then, by the Hall-Chunikhin theorem [12,
VI, Theorem 1.7], there is an element g € G such that A < K9 i.e., A conditionally isolates (K, G).

Suppose now that K¢ # 1. In this case, by the choice of G, AKqg/K¢ conditionally covers or
isolates (K/Kq,G/K¢g). Hence there is a ¢Kg € G/K¢g such that AKq/Kqg covers or isolates
(K/Kg)9%e G/Kg). I AKg/Kg covers ((K/Kg)9%¢,G/Kg), then

(AKg/Ka)(K/Ka)*™ e = G/Kq.
Consequently, AKg K9 = AKY = G, and therefore A covers (K9,G). If AKq /K¢ isolates
((K/Kg)?"9,G/Kg),
then
(AKg/Kg) N (K/Kg)?"¢ = AKq/Kg.

Hence AN K9 = A, i.e., Aisolates (K9,G). This shows that every subgroup ofxG'conditionally covers
or isolates every maximal pair (K, H) in G such that p divides |H : K|, whi¢ch contradicts the choice
of G. Thus, (1) = (2).

(2) = (1) Suppose that this is not the case. Let G be a counterexamplesof minimal order. Let us
show first that the condition of the theorem is inherited by the quotient'groups of G. Indeed, let N
be an arbitrary minimal normal subgroup of G, let A/N be an arbitrary subgroup in G/N, and let
(K/N,H/N) be a maximal pair in G/N such that p divides§d/N : K/N| = |H : K|. In this case,
by assumption, A conditionally covers or isolates pair (K, H)si.e., there is an € H such that either
AK® = AH or AN K* = AN H. In the first case, we have

(A/N)(E/N)™ = (A/N)(HNY (N € H/N),
i.e., A/N covers the pair ((K/N)*N, H/N). In the other case, we obtain
(A/N) N (E/N)™ M= (A/N) N (H/N),

i.e., A/N isolates the pair ((K/N)*N, H/N). Hence there is a unique minimal normal subgroup N of G,
where N £ ®(G) and N is a noncyglic psgroup. Consequently, there is a maximal subgroup M of G
such that G = [N]M. Let L be a subgroup of order p in N. Then it is clear that L does not isolate the
maximal pair (M?*, Q) for anyz €'G. Since p divides |G : M|, there is an element = € G such that L
covers the pair (M*, G), and therefore LM?* = G. Hence

G : M?| = |G : M| = |L| = [N| = p.
This contradiction complétes the proof of the implication (2) = (1).

(1)=(3) Let ¥ be an arbitrary subnormal subgroup of G and (K, H) a maximal pair in G such that p
divides |H : K| Then |H : K| = p,and V N H is subnormal in H. Hence, without loss of generality of

the proof, we miay assume that H = G. Then K is a maximal subgroup of G. Suppose that V' £ K. I
Kg # 1 thenV Kg/K¢g covers (K/K¢q,G/Kg) by induction. Therefore,

(KcV/Kg)(K/Kg) = G/Kg,

and henee VK = G, i.e., V covers (K,G). Suppose now that K = 1. Then G is a primitive group.
Let N be a minimal normal subgroup of G. Since K¢ =1, it follows that G = NK. Since G is p-
supersolvable and p divides |N|, it follows that |[N| = p. Since G is primitive, we have Cg(NN) = N.
Hence G = [N]K, and K ~ G/Cg(N) is an Abelian group whose exponent divides p — 1. Therefore,
K is a p’-Hall subgroup of G, and |G : K| = p. I p does not divide |V, then V' C O,/ (G), and therefore
Oy (G) € K. Then G = KO,(G), and hence |G : K| # p; a contradiction. Therefore, p divides |V/|.
Thus,

VK[ = [VIIK|/[V N K| > |K|]p =G|,
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and hence VK = G, i.e., V covers (K, G). Thus, (1)=(3).

(3) = (1) Suppose that this is not the case. Let G be a counterexample of minimal order. It is clear
that condition (3) is preserved for every quotient group of G (see the proof of the implication (2) = (1)).
Therefore, the group G admits a unique minimal normal subgroup N, N £ ®(G), and N is a noncyclic
p-group. Hence G = [N]M for some maximal subgroup M in G and N = Cg(N) = O,(G). Let L be
a minimal normal subgroup in N. Then L # N and L covers or isolates (M, G) by the condition of the
theorem. Since N N M =1, L does not isolate (M, G). Therefore, L covers (M,G). Hence ML = G,
and therefore |[N| = |G : M| < |L| < |N|; a contradiction. Hence G is p-supersolvable.

(4) = (1) Suppose that this is not the case. Let G be a counterexample of minimal order. Let E
be a subgroup of G and V' a N-indecomposable subgroup of E. Then, by Lemma 2.5, there is a, <
indecomposable subgroup X in G such that V' = EN X. Let (K, H) be a maximal pair in E suchithat'p
divides |H : K|. Then there is an element h € H for which X covers orisolates (K", H). If X coversithe
pair (K", H), then X K" = X H, and therefore

K'"W =KMENX)=EnNnXK'=EnNnXH=HENX)=HY,
i.e., V covers (K", H). If X isolates the pair (K", H),i.e., X N H < K", then
VAH=XNENH=XnNH<K",

i.e., Visolates (K", H). Thus, the condition of the theorem holds for every proper subgroup of G. Hence
all maximal subgroups of G are p-supersolvable by the choice of G.

Let N be an arbitrary minimal normal subgroup of G. It can readily be'seen that the condition of the
theorem is preserved for G/N. Hence G/N is p-supersolvable by thechoice of G. Since the class of all
p-supersolvable groups is a saturated formation, it follows that"iV is a unique minimal normal subgroup
of G, N £ ®(G), and N is a noncyclic p-group. Let M be a mdximal subgroup of G such that N £ M.
Then G = [N]M and Mg = 1. Hence N = Cq(N) by [2; A Theorem 15.2], and M is p-supersolvable.

(a) N is a maximal subgroup of a Sylow p-subgroup\P.of G.

Let us show first that IV # P. Suppose that'N =P and V is a maximal subgroup of N. Then
V is a N-indecomposable subgroup of N, and therefore, by Lemma 2.5, there is a N-indecomposable
subgroup X in G such that V.= X N N. In this case, N £ X. By the condition of the theorem, there is
an element x € G such that X covers opdsolates (M*,G). If X covers (M*,G), i.e., X M* = G, then
XM = G by Lemma 2.3. Since N =P, it iollows that M is a p’-group, and therefore P = N < X.
The contradiction thus obtained shows that X isolates the pair (M*, G), i.e., X < M*. Thus, V < M?*.
Then V' =1, and thus N is a cyclic group. The contradiction thus obtained shows that N # P. Hence
p divides |M|. Since M is p-supetsolvable, it follows that M contains a maximal subgroup E such that
|M : E| =p. Since G = [N|Mf, we clearly have EN # G. Hence EN is p-supersolvable. Moreover,
Oy (EN) =1 because Gg(N) = N. By Lemma 2.7, the group EN is supersolvable. Hence, since
N = Cg(N), every Sylow'p-subgroup P in EN is normal in EN. It is also clear that P; is a maximal
subgroup of some Sylow p-subgroup in G. Hence P; is normal in G, because PE = G = P*E for
any x € G by Lemma 2:3. However, since Cq(N) = N and |O,(G/N)| = |0,(M)| = 1, it follows that
N = P is a maximal subgroup of P.

(b) Everyamaximal subgroup V' of N is normal in some Sylow p-subgroup of G.

Let X beya N-indecomposable subgroup of G such that V"= X N N. In this case, by assumption,
therg’is an“element = € G such that X covers or isolates (M*,G). If X covers (M*,G), then X M* =
G'='XM by Lemma 2.3. By (a), we have |M,| = p, where M, is a Sylow p-subgroup of M. Hence
everywSylow p-subgroup of X is a maximal subgroup of some Sylow p-subgroup of G. Let V' < X,
where X, is a Sylow p-subgroup of X. Then X, is a maximal subgroup of some Sylow p-subgroup G,
in G. Hence X, is normal in G),. Therefore, V.= N N X = N N X,, is normal in G),. Finally, note that,
since V # 1land V < X, X cannot isolate the pair (M?, G).

(¢) Concluding contradiction.

Let E be a p’-Hall subgroup of M. Then S = NE < G is p-supersolvable. Since N = Cg(N), we
have O,/ (S) = 1. Hence EN is supersolvable by Lemma 2.7. Therefore, some maximal subgroup V'
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in N is normal in S. Moreover, by (b), there is a Sylow p-subgroup G, in G such that G, < Ng(V).
Hence G = SG), < Ng(V), which contradicts the minimality of N. This completes the proof of the
theorem. O

Corollary 4.2. Let G be a group, and let p be the least prime divisor of |G|. The group G is p-
nilpotent if and only if every subgroup of G conditionally covers or isolates every maximal pair
(K, H) in G such that p divides |H : K|.

Proof. Since pis the least prime divisor of |G|, it follows that the group G is p-nilpotent if and only if G
is p-supersolvable. Hence the assertion of the corollary follows immediately from Theorem 4.1. O

Corollary 4.3. Let G be a group. The [ollowing assertions are equivalent:

(1) Gissupersolvable;
(2) every subgroup of G conditionally covers or isolates every maximal pair inG;,

(3) everyN-indecomposable subgroup of G conditionally covers or isolates évery.maximal pair
in G,

(4) every cyclic subgroup of prime order or of order 4 in G conditionallyeouvers or isolates every
maximal pair in G;

(5) G is solvable and every subnormal subgroup in G covers omisolates every maximal pair
in G.
Proof. By Theorem 4.1, it suffices to prove only the implications(3) = (1) and (4) = (1).

(3) = (1) By induction, every maximal subgroup of G#is supersolvable. Therefore, by [1, Theo-
rem 26.3], the group G is solvable. Then, by Theorem 4.1, the’group G is supersolvable.

(4) = (1) Suppose that this is not the case, “I:et G be a counterexample of minimal order.
Obviously, the assumption of the theorem is satisfied, for every subgroup of G. Hence G is a minimal
nonsupersolvable group. Therefore, by [1, Theorem 26.3] the following assertions hold:

(a) G issolvable;

(b) G is a Sylow p-subgroup,of G¥or some prime p dividing |G/;

(c) GY/®(GY) is a noncyelicvprincipal factor in G;

(d) if p > 2, then G¥4s a group of exponent p and, if p = 2, then the exponent of G divides 4.
Let P = GY, and let X/®(P) be a subgroup of P/®(P) of order p. Let z € X\ ®(P) and L = (z). Then
either |L| = p of |L| =4. In this case, by assumption (4), we see that L conditionally covers or isolates
every maximal'pairtin G. Since U is a saturated formation and G/GY is supersolvable, it follows that
P £ ®(G), 'Let M be a maximal subgroup of G such that PM = G. Then L conditionally covers or

isolates the pair (M, G). Hence there is an element h € G such that L either covers orisolates (M", G).
By [2, A, Theorem 9.2(e)], ®(P) < ®(G). Hence ®(P) < M". In this case,

G/®(P) = [P/2(P)|(M"/®(P)).

Since L £ ®(P), it follows that L £ M". This shows that L does not isolate (M",G). Hence
LM" = LM = G. Then |P/®(P)| = |G : M| = p, which contradicts the condition that P/®(P) is a
noncyclic factor. Thus, (4) = (1). O

Following [16], we use the symbol Zy;4(G) to denote the product of all normal subgroups of G all of
whose non-Frattini G-principal factors are cyclic.
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Theorem 4.4. Let X < E be a solvable normal subgroup of G. Suppose that every maximal
subgroup of every Sylow subgroup in X conditionally covers or isolates every maximal pair
(M,G), where MX =G. If X = Eor X = F(E), then E < Zys(G).

Proof. Assume first that X = E. Suppose that the theorem fails to hold in this case. Let (G, E) be
a counterexample with the minimal product |G||E|. We claim first that E/N < Zy4(G/N) for every
minimal normal subgroup N of G contained in E. Indeed, by the choice of the group (G, E), we are only
to prove that the condition of the theorem remains valid for (G/N, E/N). Let N be a p-group, let Q/N
be a Sylow g-subgroup of E/N, and let V/N be a maximal subgroup of Q/N. Let T'/N be a maximal
subgroup of G/N such that (T'/N)(E/N) = G/N. Then TE = G. Suppose that ¢ # p. In this case;
V = NM and Q = NP, where M is a Sylow g-subgroup of V and P is a Sylow g-subgroup of Qwhich
contains M. Then P is a Sylow g-subgroup of E, and therefore there is as element = € G such that, M
covers or isolates the pair (7%, G). If M < T7, then

V/N = NM/N < T%/N = (T/N)*V.

Otherwise MT* = G, which yields (M/N)(T/N)*N = G/N. If ¢ = p, then one car similarly prove that
V/N conditionally covers or isolates every maximal pair (M/N,G/N), where (M/NYE/N) = G/N.
Therefore, E/N < Zys(G/N) for every minimal normal subgroup N of Glcontained in E. Hence
N £ ®(G), and |[N| > p by the choice of (G, E).

Let M be a maximal subgroup of G such that N £ M. Then G = [N]M and E = [N](E N M). Let
W be a Sylow p-subgroup in £ N M and V' a maximal subgroup of NW/containing W. Then, by the

assumption of the theorem, V' conditionally covers or isolates thepair (M, G). 1If VM* = G for some
z € G, then VM = G by Lemma 2.3, and therefore

|G| = [VM[ = [V[[]M]: [V.0 M| = |V[]M} W] < [N[[M] = |G],
which is impossible. Hence V < M¥® for any =z € G. Thds, V < Mg, and therefore VN = 1.
Consequently, |[N| = p; a contradiction. This contradiction shows that the theorem is true for X = E.
Assume now that X = F(F). Suppose that the'theorem fails to hold in this case, and let (G, E) be

a counterexample with the minimal product |G[}E|. Let F' = F(FE) and P a Sylow p-subgroup in F,
where p divides | F|.

(1) P < Zys(G) and E/P &£ Zys(GY/P).

Since P is a characteristic subgroup of # and F'is a characteristic subgroup of E, it follows that P is

normal in G. Hence, as in the case of X\= E, we see that P < Zy¢(G). Therefore, E/P £ Zyo(G/P),
because otherwise we have E < Z,5(G), which contradicts the choice of (G, E).

(2) If L is a minimal normal subgroup of G and L < P, then |L| > p.

Suppose that |L| ='p.) Let Cyp = Cg(L). Then the condition of the theorem is satisfied for
(G/L,Cy/L). Indeed, since F < Cy and L < Z(F), it follows that F(Cy/L) = F/L. Moreover,
as in the case of X =F, one can prove that, if M/N is a maximal subgroup of G/L such that
(F/L)(M/L) =G /L, Q/L is a Sylow g-subgroup of F//L, and V/L is a maximal subgroup of Q/L,
then V/L conditionally covers or isolates (M/L,G/L). Hence Cy/L < Zye(G/L) by the choice of
(G, E), and therefore, by the G-isomorphism Cq(L)E/Cq(L) ~ E/Cy, we see that E < Zy(G). The
contradiction thus obtained shows that (2) holds.

B)e(G)NP #1.

Suppose that (G) N P = 1. Let L be a minimal normal subgroup of G contained in P. Let M be a
maximal subgroup of G such that G = [L]M. Let P, = PN M. Then P = LP; and |P : P;| = |N|. Let
V> be a maximal subgroup of P containing P;. Then L £ V, and V conditionally covers or isolates

(M,G) by assumption. If V< M?* for any = € G, then VNN =1, and therefore |L| = p, which
contradicts (2). Hence G = VM¥ forany x € G, and therefore G = VM by Lemma 2.3. In this case,

LI =G : M= [V||M]: [Pr[[M] < |L].
The contradiction shows that ®(G) N P # 1.
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Concluding contradiction. By (3), G admits a minimal normal subgroup L such that L < ®(G) N P.
Then F(E/L) = F/L by |2, A, Theorem 9.3(c)]. Therefore, the condition of the theorem is satisfied for
(G/L,E/L), and hence E/L < Zy;6(G/L) by the choice of G. Then E < Z4(G) because L < &(G).
This contradiction completes the proof of the theorem. O

Corollary 4.5. Let E be a solvable normal subgroup of a group G such that G/E is supersolvable.
If every maximal subgroup of every Sylow subgroup in E conditionally covers or isolates every
maximal pair (M,G), where ME = G, then G is supersolvable.

Corollary 4.6 (Ezquerro [11]). Let E be a solvable normal subgroup of a group G such that G/FE is
supersolvable. If every maximal subgroup of every Sylow subgroup of E is a CAP-subgroup of E;
then G is supersolvable.

Proof. The proof follows from Corollary 4.5 and Lemma 2.10. O

Corollary 4.7. Let E be a solvable normal subgroup of G such that G/E is supersolvable. If
every maximal subgroup of every Sylow subgroup in F(E) conditionally coverslor isolates every
maximal pair (M,G), where MF(E) = G, then G is supersolvable.

Corollary 4.8 (Ezquerro [11]). Let E be a solvable normal subgroup eof Gisuch that G/E is
supersolvable. If every maximal subgroup of every Sylow subgroup in F(EY) is a CAP-subgroup
of E, then G is supersolvable.
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