Е.Ю. Кузьменкова

Беларусь, Гомель, ГГУ имени Ф. Скорины

СВОЙСТВО ИНДЕКСА ПРОИЗВЕДЕНИЯ ХАРАКТЕРОВ

Пусть X – группа характеров, G – компактная связная абелева группа.

Если в группе X имеется наименьший положительный элемент χ_1 , то через X^i будем обозначать (бесконечную циклическую) подгруппу группы X, порожденную

этим элементом. Пусть X_+ – положительный конус. $X_- = X \setminus X_+ = X_+^{-1} \setminus \{1\}$. Тогда X может быть представлена в следующем виде: $X = (X_+ \setminus X^i) \coprod X^i \coprod (X_- \setminus X^i)$.

Введем следующие определения.

Пусть X линейно упорядочена. Из [1, теорема 2] следует, что если существует наименьший положительный характер χ_1 , то $X^i = \{\chi_1^n : n \in Z\}$ и $ind\chi_1^n = n$. Расширим данное определение для всей X.

Определение 1.

- 1) если $\chi \in X_+ \setminus X^i$, тогда $ind\chi := +\infty$.
- 2) в случае, когда $\chi \in X_- \setminus X^i$, $ind\chi := -\infty$.

Определение 2. Пусть S — абелева полугруппа, $S \neq \emptyset$. Подгруппа $I \subset S$ называется идеалом, если $I \cdot S \subset I$.

Были сформулированы и доказаны следующие леммы:

Лемма 1. Пусть в группе X имеется наименьший положительный элемент χ_1 , тогда:

- 1) множество X_+ X^i есть идеал полугруппы X_+ ,
- 2) для любого $k \in Z$ справедливо равенство $\chi_i^k(X_+ \setminus X^i) = X_+ \setminus X^i$.

Лемма 2. $\forall \xi \in X$ справедливо следующее равенство: $ind \xi^{-1} = -ind \xi$.

Была сформулирована и доказана следующая теорема:

Теорема 1. Справедливо следующее равенство $ind(\xi_1\xi_2) = ind\xi_1 + ind\xi_2$, если правая часть имеет смысл.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Миротин, А. Р. Фредгольмовы и спектральные свойства тёплицевых операторов в пространсвах H^p над упорядоченными группами / А. Р. Миротин // Мат. сб. – 2011. - T. 202, № 5. - C. 101-116.