Finite groups with \mathbb{P}-subnormal 2-maximal subgroups
 V. N. Kniahina and V. S. Monakhov

June 15, 2018

Abstract

A subgroup H of a group G is called \mathbb{P}-sabnormal in G if either $H=G$ or there is a chain of subgroups $H=H_{0} \subset H_{1} \subset \subset H_{n}=G$ such that $\left|H_{i}: H_{i-1}\right|$ is prime for $1 \leq i \leq n$. In this paper we study the groups all of whose 2-maximal subgroups are \mathbb{P}-subnormal.

Keywords: finite group, \mathbb{P}-subnormal subgroup, 2-maximal subgroup.
MSC2010 20D20, 20E34

1 Introductiôn

We consider finite groups only. A subgroup K of a group G is called 2-maximal in G if K is a maximal subgroup of some maximal subgroup M of G.

Let H be a subgroup of a group G and n is a positive integer. If there is a chain of subgrôups

$$
H=H_{0} \subset H_{1} \subset \ldots \subset H_{n-1} \subset H_{n}=G
$$

such that H_{i} is a maximal subgroup of $H_{i+1}, i=0,1, \ldots, n-1$, then H is called n-maximal in G.

For example, in the symmetric group S_{4} the subgroup I of order 2 from S_{3} is 2-maximal in the chain of subgroups $I \subset S_{3} \subset S_{4}$ and 3-maximal in the chain of subgroups $I \subset Z_{4} \subset D_{8} \subset$ S_{4}. Here, Z_{4} is the cyclic group of order 4 and D_{8} is the dihedral group of order 8 . For any $n \geq 3$, there exists a group in which some 2-maximal subgroup is n-maximal, see Example 1 below.
A.F. Vasilyev, T.I. Vasilyeva and V.N. Tyutyanov in [1] introduced the following definition. Let \mathbb{P} be the set of all prime numbers. A subgroup H of a group G is called \mathbb{P}-subnormal in G if either $H=G$ or there is a chain

$$
H=H_{0} \subset H_{1} \subset \ldots \subset H_{n}=G
$$

of subgroups such that $\left|H_{i}: H_{i-1}\right|$ is prime for $1 \leq i \leq n$. In [1], 2] studied groups with \mathbb{P}-subnormal Sylow subgroups.

In [1] proposed the following problem:
Describe the groups in which all 2-maximal subgroups are \mathbb{P}-subnormal.
This problem is solved in the article. The following theorem is proved.
Theorem. Every 2-maximal subgroup of a group G is \mathbb{P}-subnormal in G if and only if $\Phi\left(G^{\mathfrak{U}}\right)=1$ and every proper subgroup of G is supersolvable.

Here, $G^{\mathfrak{d}}$ is the smallest normal subgroup of G such that the corresponding quotent group is supersolvable, $\Phi\left(G^{\mathfrak{U}}\right)$ is the Frattini subgroup of $G^{\mathfrak{U}}$.

2 Preliminary results

We use the standart notation of 3]. The set of prime divisors of $|G|$ is denoted $\pi(G)$. We write $[A] B$ for a semidirect product with a normal subgroup A. If H is a subgroup of a group G, then $\bigcap_{x \in G} x^{-1} H x$ is called the core of H in G, denoted H_{G}. If a group G contains a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator. We will use the following notation: S_{n} and A_{n} are the symmetric and alternating groups of degree $n, E_{p^{t}}$ is the elementary abelian group of order p^{t}, Z_{m} is the cyclic group of order m. Let $|G|=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, where $p_{1}>p_{2}>\ldots>p_{k}$. We say that G has an ordered Sylow tower of supersolvable type if there exist normal subgroups G_{i} with

$$
1=G_{0} \leq G_{1} \leq G_{2} \leq \ldots \leq G_{k-1} \leq G_{k}=G
$$

and, where each factor G_{i} / G_{i-1} is isomorphic to a Sylow p_{i}-subgroup of G for all $i=1,2, \ldots, k$.
Lemma 1. 4, Theorem IX.8.3] Let a, n be integers greater than 1. Then except in the cases $n=2, a=2^{b}-1$ and $n=6, a=2$, there is a prime q with the following properties:

1) q divides $a^{n}-1$;
2) q does not divide $a^{i}-1$ whenever $0<i<n$;
3) q does not divide n.

Example 1. For every $n \geq 3$ there exists a group in which some 2-maximal subgroup is n-maximal. Let $n=3$. In the symmetric group S_{4} the subgroup I of order 2 from S_{3} is 2-maximal in the chain of subgroups $I \subset S_{3} \subset S_{4}$ and 3-maximal in the chain of subgroups $I \subset E_{4} \subset D_{8} \subset S_{4}$. Now let $n>3$ and $a=5$. By Lemma 1, there exists a prime q such that q divides $5^{n-1}-1$ and q does not divide $5^{i}-1$ for all $i \in\{1,2, \ldots, n-2\}$. Hence
$G L(n-1,5)$ contains a subgroup Z of order q which acts irreducibly on the elementary abelian group $E_{5^{n-1}}$ of order 5^{n-1}. In the group $X=\left[E_{5^{n-1}}\right] Z$ the identity subgroup 1 is 2-maximal in the chain of subgroups $1 \subset Z \subset X$ and n-maximal in the chain of subgroups $1 \subset E_{5} \subset E_{5^{2}} \subset \ldots \subset E_{5^{n-1}} \subset X$.

Recall that a Schmidt group is a finite non-nilpotent group in which every proper subgroup is nilpotent.

Example 2. Let $S=[P] Q$ be a Schmidt group of order $2^{11} 11, A=\Phi(P),|A|=2$. Then $A \times Q$ is maximal in S, A is 2-maximal in S, and A is 10-maximal in S because $A=A_{0} \subset A_{1} \subset \ldots \subset A_{9}=P \subset S,\left|A_{i}: A_{i-1}\right|=2,1 \leq i \leq 9,|S: P|=11$.

Lemma 2. [1, Lemma 2.1] Let N be a normal subgroup of a group G, H an arbitrary subgroup of G. Then the following hold:

1) if H is \mathbb{P}-subnormal in G, then $(H \cap N)$ is \mathbb{P}-subnormal in N, and $H N / N$ is \mathbb{P}-subnormal in G / N;
2) if $N \subseteq H$ and H / N is \mathbb{P}-subnormal in G / N, then H is \mathbb{P}-subnormal in G;
3) if H is \mathbb{P}-subnormal in K, K is \mathbb{P}-subnormal in G, then $H \mathbb{P}$-subnormal in G;
4) if H is \mathbb{P}-subnormal in G, then H^{g} is \mathbb{P}-subnormal in G for each element $g \in G$.

Example 3. In the alternating group $G=A_{5}$ the subgroup $H=A_{4}$ is \mathbb{P}-subnormal. If $x \in G \backslash H$, then H^{x} is \mathbb{P}-subnormal in G. The subgroup $D=H \cap H^{x}$ is a Sylow 3-subgroup of the group G and D is not \mathbb{P}-subnormal in H. Therefore an intersection of two \mathbb{P}-subnormal subgroups is not \mathbb{P}-subnormal. Moreover, if a subgroup H is \mathbb{P}-subnormal in a group G and K is an arbitrary subgroup of G, in general, their intersection $H \cap K$ is not \mathbb{P}-subnormal in K.

Lemma 3. Let H be a subgroup of a solvable group G, and assume that $|G: H|$ is a prime number. Then G / H_{G} is supersolvale.

Proof. By hypothesis, $|G: H|=p$, where p is a prime number. If $H=H_{G}$, then G / H is cyclic of prime order p, and thus G / H_{G} is supersolvable, as required. Assume now that $H \neq H_{G}$, i. e. H is not normal in G. Then G / H_{G} contains a maximal subgroup H / H_{G} with trivial core. Therefore G / H_{G} is primitive and its Fitting subgroup F / H_{G} has prime order p. Since $F / H_{G}=C_{G / H_{G}}\left(F / H_{G}\right)$, it follows that $\left(G / H_{G}\right) /\left(F / H_{G}\right) \simeq H / H_{G}$ is isomorphic to a cyclic group of order dividing $p-1$. Thus G / H_{G} is supersolvable.

Lemma 4. Let p be the largest prime divisor of $|G|$, and suppose that P is a Sylow p-subgroup of G. Assume that P is not normal in G, and that $H, K \subseteq G$ are subgroups with $N_{G}(P) \subseteq K \subseteq H$. Then $|H: K|$ is not prime.

Proof. It is clear that $N_{G}(P)=N_{K}(P)=N_{H}(P)$, and P is a Sylow p-subgroup of K
and of H. By the lemma on indexes, we have

$$
\left|H: N_{H}(P)\right|=|H: K|\left|K: N_{K}(P)\right|,
$$

and, by the Sylow theorem,

$$
\left|H: N_{H}(P)\right|=1+h p,\left|K: N_{K}(P)\right|=1+k p, h, k \in \mathbb{N} \cup\{0\}
$$

Let $|H: K|=t$. Now,

$$
1+h p=t(1+k p), \quad t=1+(h-t k) p
$$

We see that p divides $t-1$, and thus $t>p$. If t is prime, this contradicts the maximality of p.
Lemma 5. 1. A group is supersolvable if and only if the index of every of its maximal subgroup is prime.
2. Every subgroup of a supersolvable group is $\widehat{\mathbb{P}}$-subnormal.
3. A group is supersolvable if and only if the normalizers of all of its Sylow subgroups are \mathbb{P}-subnormal.

Proof. 1. This is Huppert's classic theorem, see [3, Theorem VI.9.5].
2. The statement follows from (1) of the lemma.
3. If a group is supersolvable, then all of its subgroups are \mathbb{P}-subnormal, see (2).

Conversely, suppose that the normalizer of every Sylow subgroup of a group G is \mathbb{P} subnormal. By Lemma 4, for the largest $p \in \pi(G)$ a Sylow p-subgroup P of G is normal. It is easy to check that the conditions of the lemma are inherited by all quotient groups and so G / P is supersolvable. In particular, G has an ordered Sylow tower of supersolvable type. Since the class of all supersolvable groups is a saturated formation, we can assume, by the inductive hypothesis, that G is primitive, in particular, $G=[P] M$, where M is a maximal subgroup with trivial core. Since M is supersolvable, it follows that $M=N_{G}(Q)$ for the largest $q \in \pi(M)$. It is obvious that $p \neq q$ and $M=N_{G}(Q)$ is \mathbb{P}-subnormal in G, by the condition of the lemma. Therefore $|P|=p$ and, by Lemma 3, G is supersolvable.

Lemma 6. [5, Theorem 22], [6] Let G be a minimal non-supersolvable group. We have:

1) G is solvable and $|\pi(G)| \leq 3$.
2) If G is not a Schmidt group, then G has an ordered Sylow tower of supersolvable type.
3) G has a unique normal Sylow subgroup P and $P=G^{\mathfrak{U}}$.
4) $|P / \Phi(P)|>p$ and $P / \Phi(P)$ is a minimal normal subgroup of $G / \Phi(G)$.
5) The Frattini subgroup $\Phi(P)$ of P is supersolvable embedded in G, i.e., there exists a series

$$
1 \subset N_{0} \subset N_{1} \ldots \subset N_{n}=\Phi(P)
$$

such that N_{i} is a normal subgroup of G and $\left|N_{i} / N_{i-1}\right| \in \mathbb{P}$ for $1 \leq i \leq n$.
6) Let Q be a complement to P in G. Then $Q / Q \cap \Phi(G)$ is a minimal non-abelian group or a cyclic group of prime power order.
7) All maximal subgroups of non-prime index are conjugate in G, and moreover, they are conjugate to $\Phi(P) Q$.

3 Main results

Theorem. Every 2-maximal subgroup of a group G is \mathbb{P}-subnormal in G if and only if $\Phi\left(G^{\mathfrak{U}}\right)=1$ and every proper subgroup of G is supersolvable.

Proof. Suppose that all 2-maximal subgroups of a group G are \mathbb{P}-subnormal. We proceed by induction on $|G|$. Show first that G has an ordered Sylow tower of supersolvable type. By Lemma 2, the conditions of the theorem are inherited by all quotient groups of G.
(1) G has an ordered Sylow tower of supersolvable type.

Let P be a Sylow p-subgroup of G, where p is the largest prime divisor of $|G|$. Suppose that P is not normal in G. It follows that $N_{G}(P)$ is a proper subgroup of G. If $N_{G}(P)$ is not maximal in G, then there exists a 2-maximal subgroup A containing $N_{G}(P)$. By the condition of the theorem, A is \mathbb{P} - subnormal in G, and so A is contained in a subgroup of prime index. This contradicts Lemma 4. Therefore $N_{G}(P)$ is maximal in G and $\left|G: N_{G}(P)\right| \notin \mathbb{P}$ by Lemma 4. If $N_{G}(P)=P$, then G is solvable by Theorem IV.7.4 [3]. It follows that $N_{G}(P) \neq P$ and $N_{G}(P)$ has a maximal subgroup B which contains P. We see that B is 2 -maximal in G and, by the condition of the theorem, B is \mathbb{P}-subnormal. Hence there exists a chain of subgroups

$$
P \subseteq B=B_{0} \subset B_{1} \subset \ldots \subset B_{t-1}=V \subset B_{t}=G,\left|B_{i}: B_{i-1}\right| \in \mathbb{P}, 1 \leq i \leq t
$$

The subgroup V is maximal in G and V different from $N_{G}(P)$, because $\left|G: N_{G}(P)\right|$ is not a prime number, whereas $|G: V|$ is prime. Besides, $t \geq 3$. Thus $V \cap N_{G}(P)=B$ and $N_{V}(P)=V \cap N_{G}(P)=B=N_{B_{1}}(P)$. We have $\left|B_{1}: N_{B_{1}}(P)\right| \in \mathbb{P}$, this contradicts Lemma 4. Therefore the assumption is false and P is normal in G. By induction on $|G|$, every proper subgroup of G / P is supersolvable, and by Lemma $6, G / P$ has an ordered Sylow tower of supersolvable type. Thus G has an ordered Sylow tower of supersolvable type, in particular, G is solvable.
(2) Every proper subgroup of G is supersolvable.

Suppose that G contains a non-supersolvable maximal subgroup H. Then, by Lemma 5 , H contains a maximal subgroup K of non-prime index. Since K is 2-maximal in G, there exists a chain of subgroups

$$
K=K_{0} \subset K_{1} \subset \ldots \subset K_{n-1}=T \subset K_{n}=G
$$

such that $\left|K_{i}: K_{i-1}\right| \in \mathbb{P}$ for all $i=1,2, \ldots, n$. It is clear that $H \neq T$ and $H \cap T=K$.
Assume that $G=H T$. In this case,

$$
|G: T|=|H: H \cap T|=|H: K| \in \mathbb{P}
$$

this is a contradiction. Hence $G \neq H T$. Since H and T are distinct maximal subgroups of G, and G is solvable, by Theorem II.3.9 [3], we have $T=H^{g}$ for some $g \in G$. Since $H \neq T$, we see that H is a non-normal maximal subgroup of prime index in G. By Lemma 3, the quotient group G / H_{G} is supersolvable. Since

$$
H_{G} \subseteq H \cap H^{g}=H \cap T=K
$$

we have K / H_{G} is maximal in H / H_{G}. By Lemma 5 ,

$$
|H: K|=\left|H / H_{G}: K / H_{G}\right| \in \mathbb{P}
$$

this is a contradiction. Therefore the assumption is false and every proper subgroup of G is supersolvable.

(3) $\Phi\left(G^{\mathfrak{U}}\right)=1$

If G is supersolvavle, then $G^{\mathfrak{U}}=1$, it follows that $\Phi\left(G^{\mathfrak{U}}\right)=1$. Assume now that G is non-supersolvable. Then G has the properties listed in Lemma 6. We keep the notation of that lemma. Now $G^{\mathfrak{A}}=P$ and $[\Phi(P)] Q$ is maximal in G.

Suppose that $\Phi(P) \neq 1$. Assume that $A=N_{m-1}$ is a maximal subgroup of $\Phi(P)$, and that A is normal in G. Then $[A] Q$ is a 2-maximal subgroup of G. By the condition of the theorem, $[A] Q$ is \mathbb{P}-subnormal in G. Hence, there exists a chain of subgroups $[A] Q \subseteq B \subseteq G$ such that $|G: B| \in \mathbb{P}$. Since $G=[P] Q$ and $Q \subseteq B$, by the Dedekind identity, we have $B=(B \cap P) Q$, and $B \cap P$ is maximal in P. Therefore $\Phi(P) \subseteq B \cap P$ and $\Phi(P) Q$ is conained in B, where $\Phi(P) Q$ is maximal in G. Thus $B=\Phi(P) Q$ and $p=|G: B|=|P: \Phi(P)|$, this contradicts Lemma 6. Therefore our assumption is false and $\Phi(P)=1$. The necessity is proved.

Prove the sufficiency. Assume that every proper subgroup of G is supersolvable and $\Phi\left(G^{\mathfrak{U}}\right)=1$. If a group is supersolvable, then every its maximal subgroup has a prime index, it follows that every 2-maximal subgroup of a supersolvable group is \mathbb{P}-subnormal. Let G be non-supersolvable. Then G is minimal non-supersolvable and the structure of G is described in Lemma 6. We keep for G the notation of that lemma, in particular, we have:
$P=G^{\mathfrak{U}}, \Phi(P)=1$ and Q is a maximal subgroup of G. Let H be an arbitrary 2-maximal subgroup of the group G. If $H \subseteq M$, where M is a maximal subgroup of G and $|G: M| \in \mathbb{P}$, then H is \mathbb{P}-subnormal in G, because M is supersolvable. If $H \subseteq K$, where K is a maximal subgroup of the group G and $|G: K| \notin \mathbb{P}$, then, by Lemma 6 , the subgroup H contained in Q^{g} for some $g \in G$. Therefore $P H$ is a proper subgroup of G, thus $P H$ is supersolvable, and H is \mathbb{P}-subnormal in $P H$. Let T be a maximal subgroup of G containing $P H$. Since T is supersolvable and $|G: T| \in \mathbb{P}$, we see that $P H$ is \mathbb{P}-subnormal in G. Using Lemma 2 , we deduce that H is \mathbb{P}-subnormal in G. The theorem is proved.

Corollary. Suppose that every 2-maximal subgroup of a group G is \mathbb{P}-subnormal. If $|\pi(G)| \geq 4$, then G is supersolvable.

Proof. Let every 2-maximal subgroup of a group G be \mathbb{P}-subnormal. Suppose that G is not supersolvable. By the previous theorem, G is a minimal non-supersolvable group. By Lemma 6, the order of G has at most three prime divisors, i.e. $|\pi(G)| \leq 3$, which is a contradiction. Therefore, our assumption is false and G is supersolvable.

The following examples show that for $|\pi(G)|=2$ and for $|\pi(G)|=3$ there exist nonsupersolvable groups in which every 2 -maximal subgroup is \mathbb{P}-subnormal.

Example 4. There are three non-isomorphic minimal non-supersolvable groups of order 400:

$$
\left[E_{5^{2}}\right](<a>),|a|=|b|=4 .
$$

Numbers of these groups in the library of SmallGroups [7] are [400,129], [400,130], [400,134]. The Sylow 2-subgroups of these groups are non-abelian and have the form: $\left[Z_{4} \times Z_{2}\right] Z_{2}$ and $\left[Z_{4}\right] Z_{4}$. Suppose that G is one of these groups. Then $G^{\mathfrak{U}}=\left[E_{5^{2}}\right]$ and $\Phi\left(G^{\mathfrak{U}}\right)=1$. All subgroups of the group G are \mathbb{P}-subnormal, except the maximal subgroup $<a\rangle<b\rangle$.

Example 5. The general linear group $G L(2,7)$ contains the symmetric group S_{3} which acts irreducibly on the elementary abelian group $E_{7^{2}}$ of order 49. The semidirect product $\left[E_{7^{2}}\right] S_{3}$ is a minimal non-supersolvable group, it has subgroups of orders 14 and 21. Therefore, in the group $\left[E_{7^{2}}\right] S_{3}$, every 2 -maximal subgroup is \mathbb{P}-subnormal.

References

[1] Vasilyev A.F., Vasilyeva T. I., Tyutyanov V. N. On finite groups similar to supersoluble groups // Problems of physics, mathematics and technics. 2010. No. 2 (3). P. 21-27.
[2] Vasilyev A.F., Vasilyeva T.I., Tyutyanov V.N. On the finite groups of supersoluble type // Siberian Mathem. J. 2010. Vol. 51, No. 6. P. 1004-1012.
[3] Huppert B. Endliche Gruppen I. Berlin, Heidelberg, New York. 1967. 792 p.
[4] Huppert B., Blackburn N. Finite groups, II. Berlin-Heidelberg-New York: Springer. 1982.
[5] Huppert B. Normalteiler und maximale Untergruppen endlicher Gruppen // Mathematische Zeitschrift. 1954. Vol. 60. P. 409-434.
[6] Doerk K. Minimal nicht überauflösbare, endliche Gruppen / Mathematische Zeitschrift. 1966. Vol. 91. P. 198-205.
[7] GAP (2009) Groups, Algorithms, and Programming, Version 4.4.12. www.gapsystem.org.

V.N. KNIAHINA

Gomel Engineering Institute, Gomel 246035, BELARUS
E-mail address: knyagina@inbox.ru

Department of mathematics, Gomel F. Scorina State University, Gomel 246019, BELARUS
E-mail address: Victor.Monakhov@gmail.com

