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Let G be a finite group, X a class of groups. A chief factor H/K of G
is called X-central provided [H/K ](G/CG (H/K )) ∈ X. Let ZXΦ(G)

be the product of all normal subgroups H of G such that all
non-Frattini G-chief factors of H are X-central. Then we say that
ZXΦ(G) is the XΦ-hypercentre of G . Our main result here is the
following (Theorem 1.4): Let X � E be normal subgroups of a group G.
Suppose that every non-cyclic Sylow subgroup P of X has a subgroup D
such that 1 < |D| < |P | and every subgroup H of P with order |H | = |D|
and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-
abelian 2-group) is weakly S-permutable in G. If X is either E or F ∗(E),
then E � ZUΦ(G). Here U is the class of all supersoluble finite
groups.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all groups are finite. We use N and U to denote the class of all nilpotent
groups and the class of all supersoluble groups, respectively. The symbol [A]B denotes the semidirect
product of the groups A and B where B is an operator group of A. A chief factor H/K of a group G
is called Frattini provided H/K � Φ(G/K ). A subgroup H of a group G is said to permute with
a subgroup T if H T = T H .

Let X be a class of groups. A chief factor H/K of a group G is called X-central provided
[H/K ](G/CG (H/K )) ∈ X (see [1]). Otherwise, it is called X-eccentric. The product of all normal sub-
groups of G whose G-chief factors are X-central in G is called the X-hypercentre of G and denoted by
ZX(G) [3, p. 389]. Note that for any N-central chief factor H/K of G we have CG(H/K ) = G . Hence
the N-hypercentre of G coincides with the hypercentre Z∞(G) of G .
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The X-hypercentre essentially influences the structure of a group. For example, if all subgroups
of G with prime order and order 4 are contained in ZN(G), then G is nilpotent (N. Ito). If all these
subgroups are in ZU(G), then G is supersoluble (Huppert, Doerk). If all subgroups of G with prime
order are in ZU(G), then G is soluble (Gaschütz). Note also that if G has a normal subgroup E such
that G/E ∈ X and E � ZX(G), then G ∈ X, for many concrete classes X.

In this paper we investigate the following subgroup, which inherits some key properties of the
X-hypercentre.

Definition 1.1. Let ZXΦ(G) be the product of all normal subgroups of G whose non-Frattini G-chief
factors are X-central in G . Then we say that ZXΦ(G) is the XΦ-hypercentre of G .

The subgroup ZXΦ(G) is characteristic in G and every non-Frattini G-chief factor of ZXΦ(G) is
X-central in G (Lemma 2.3).

We omit the letter X when X = N. So, the ZΦ(G)-hypercentre of G is the product of all normal
subgroups H of G such that all non-Frattini G-chief factors of H are central. The UΦ-hypercentre of
G is the product of all normal subgroups H of G such that all non-Frattini G-chief factors of H have
prime order.

Example 1.2. Let V be a simple F3 A4-module which is faithful for the alternating group A4. Then
we may consider V as a F3SL2(3)-module with CSL2(3)(V ) = Z where Z is a unique minimal
normal subgroup of SL2(3). Let E = [V ]SL2(3), and let A = A3(E) be the 3-Frattini module of E
(see [4] or [3, p. 853]), and let G be a non-splitting extension of A by E . By Corollary 1 in [4],
V Z = O 3′,3(E) = C E (A/Rad A). Hence for some normal subgroup N of G we have A/N � Φ(G/N)

and G/CG (A/N) � A4. Thus |A/N| > 3, so ZUΦ(G/N) = ZΦ(G/N) = (A/N)(D/N) where D/N is a
unique normal subgroup of G/N with order 2. On the other hand, ZU(G/N) = Z∞(G/N) = D/N .

Example 1.3. Let r < p < q be primes and suppose r divides p − 1. Let S be a non-abelian group of
order pr, C p and Cq groups of order p and q, respectively. Let A = [Q ]C p where Q is a simple FqC p -
module which is faithful for C p , and B = [P ]Cq where P is a simple Fp Cq-module which is faithful
for Cq . Let H = A × B × S , and let V be a projective envelope of a trivial Fp H-module. Let G = [V ]H .
Let C = C H (V ), and let C0 be the intersection of the centralizers in H of all G-chief factors of V . Then
Φ(G) = Rad(V ) by Lemma B.3.14 in [3], and C = O p′ (H) = Q , C0 = O p′,p(H) by Theorem VII.14.6
in [5]. Suppose that all G-chief factors of V are cyclic. Then H/C0 is an abelian group of exponent
dividing p − 1. Since q does not divide p − 1, Cq � C0. Hence Cq � Q . This contradiction shows that
G has a Frattini chief factor K/L such that |K/L| > p and for every G-chief factor M/N between K
and V we have |M/N| = p. Hence ZUΦ(G/L) = (V /L)(Z L/L) �= ZΦ(G/L) = V /L where Z is a unique
normal subgroup of H with order p.

Our main goal here is to prove the following

Theorem 1.4. Let X � E be normal subgroups of a group G. Suppose that every non-cyclic Sylow subgroup P
of X has a subgroup D such that 1 < |D| < |P | and every subgroup H of P with order |H| = |D| and every
cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) is weakly S-permutable in G. If
X is either E or F ∗(E), then E � ZUΦ(G).

In this theorem F ∗(E) is the generalized Fitting subgroup of E , that is, the product of all normal
quasinilpotent subgroups of E .

We shall prove Theorem 1.4 in Section 4. The proof of this theorem consists of many steps and the
following useful fact is one of the important stages in the proof of Theorem 1.4.

Theorem 1.5. Let E be a normal subgroup of a group G, and p be a prime dividing |E|. Suppose that a Sylow
p-subgroup P of E has a subgroup D such that 1 < |D| < |P | and every subgroup H of P with order |H| = |D|
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and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) not having a p-
nilpotent supplement in G is weakly S-permutable in G.

(I) If p is the smallest prime dividing |G|, then E/O p′ (E) � ZΦ(G/O p′ (E)).
(II) If p is the smallest prime dividing |E|, then E/O p′ (E) � ZUΦ(G/O p′ (E)).

We shall prove Theorem 1.5 in Section 3.
Finally, note that the main results of the papers [2,7–19] and of some other papers (see Section 5

in [2]) are special cases of Theorem 1.4. In Section 5 we discuss some other applications of the gen-
eralized X-hypercentre concept.

All unexplained notations and terminologies are standard. The reader is referred to [3] or [20–22]
if necessary.

2. Preliminaries

The following lemma is obvious.

Lemma 2.1. Let H/K and E/T be chief factors of a group G. If H/K and E/T are G-isomorphic, then
[H/K ](G/CG (H/K )) � [E/T ](G/CG (E/T )).

Lemma 2.2. Let H be a normal subgroup of a group G. Let H1 and H2 be G-chief series of H. Then there exists
a one-to-one correspondence between the chief factors of H1 and those of H2 such that corresponding factors
are G-isomorphic and such that the Frattini (in G) chief factors of H1 correspond to the Frattini (in G) chief
factors of H2 .

Proof. The assertion is a strengthened form of [3, A, Theorem 9.13] with the same proof. �
We say that a subgroup H of a group G is XΦ-hypercentral in G provided H � ZXΦ(G).

Lemma 2.3. Let Z = ZXΦ(G) and N and T be normal subgroups of the group G. Then

(1) Every non-Frattini G-chief factor of Z is X-central in G.
(2) Z N/N � ZXΦ(G/N).
(3) If T N/N � ZXΦ(G/N) and (|T |, |N|) = 1, then T � Z .

Proof. (1) Suppose that A and B are normal subgroups of G such that all non-Frattini G-chief fac-
tors of A and B are X-central in G . We shall prove by induction on G that all non-Frattini G-chief
factors of AB are X-central in G . Suppose that A ∩ B �= 1, and let N be a minimal normal sub-
group of G contained in A ∩ B . Then by induction (A/N)(B/N) = AB/N is XΦ-hypercentral in G/N .
Since by hypothesis N is either a Frattini G-chief factor or X-central in G , the result follows from
Lemma 2.2.

Finally, assume that A ∩ B = 1. If H/K is a non-Frattini G-chief factor and AB � H > K � B , then
H/K is G-isomorphic to a non-Frattini G-chief factor H ∩ A/K ∩ A. Therefore, by Lemma 2.1, H/K is
X-central in G . Hence AB � Z .

(2) Let H/K be a non-Frattini G-chief factor of G and N � K < H � N Z . Then H/K is G-isomorphic
to a non-Frattini G-chief factor H ∩ Z/K ∩ Z . Therefore, by Lemma 2.1, H/K is X-central in G . Hence
we have (2).

(3) Let H/K be any non-Frattini G-chief factor of T , M a maximal subgroup of G such that K � M
and H M = G . Since (|T |, |N|) = 1, N � M . Hence (N H/N)/(N K/N) is a non-Frattini G/N-chief factor
of T N/N � ZXΦ(G/N). Hence N H/N K both is X-central in G and G-isomorphic to H/K . Therefore
T � Z . �
Lemma 2.4. (See [23, Theorem 9.15].) Let X be one of the classes N or U. Then G/CG (ZX(G)) ∈ X.
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We shall use the following special case of Theorem 1 in [24].

Lemma 2.5. Let A be a p′-group of automorphisms of a p-group P of odd order. Assume that every subgroup
of P with prime order is A-invariant. Then A is cyclic.

The following lemma is, in fact, a fragment in the proof of Theorem 1 in [24].

Lemma 2.6. Let V be an S-permutable subgroup of order 4 of a group G.

(1) If V = A × B, where |A| = |B| = 2 and A is S-permutable in G, then B is S-permutable in G.
(2) If V = 〈x〉 is cyclic, then 〈x2〉 is S-permutable in G.

Proof. Let Q be a Sylow q-subgroup of G such that q �= 2. By hypothesis, V Q = Q V and A Q = Q A.
Since |V Q : A Q | = 2 = |A Q : Q |, Q is normal in V Q . Therefore B Q = Q B .

(2) See the proof of (1). �
Before continuing, we shall need to know a few facts about S-permutable subgroups.

Lemma 2.7. (See [6].) Let G be a group and H � K � G, V � G. Then

(1) If H and V are S-permutable in G, then H ∩ V is S-permutable in G.
(2) Suppose that H is normal in G. Then K/H is S-permutable in G/H if and only if K is S-permutable in G.
(3) If H is S-permutable in G, then H is subnormal in G.

Lemma 2.8. (See [25, Lemma A].) Suppose that H is a p-group for some prime p. Then H is S-permutable in
G if and only if O p(G) � NG(H).

Lemma 2.9. Let G = [P ]Q be a Schmidt group (i.e., a minimal non-nilpotent group) where P is a Sylow p-
subgroup of G. If every cyclic subgroup of P with order p or order 4 (if P is a non-abelian 2-group) not having
a p-nilpotent supplement in G is weakly S-permutable in G, then |P | = p.

Proof. See the proof of Lemma 2.12 in [2]. �
We shall need the following modification of Lemma 2.2 in [2].

Lemma 2.10. Let G be a group, p be the smallest prime divisor of |G| and P a non-cyclic Sylow p-subgroup
of G. Let E �= 1 be a normal subgroup of G contained in P . If either every maximal subgroup of P has a p-
nilpotent supplement in G or every maximal subgroup of E has a p-nilpotent supplement in G, then G is
p-nilpotent.

Proof. Suppose that every maximal subgroup of P has a p-nilpotent supplement in G . Let M1T1 = G
where T1 is p-nilpotent and M1 is maximal in P . We can assume that T1 = NG(H1) for some Hall p′-
subgroup H1 of G . Clearly, P = M1(P ∩ T1). Suppose that P ∩ T1 �= P . Then we can choose a maximal
subgroup M2 in P containing P ∩ T1. By assumption, G = M2T2 where T2 is p-nilpotent. Again,
we can assume that T2 = NG(H2) for some Hall p′-subgroup H2 of G . By [26] we have Hx

1 = H2 for
some x ∈ G . Therefore, G = M1T1 = M2T2 = M2T x

1 = M2T1 and P = M2(P ∩ T1) = M2, a contradiction.
Hence P ∩ T1 = P , which implies the p-nilpotency of G .

Now suppose that every maximal subgroup of E has a p-nilpotent supplement in G . We shall
prove by induction on |G| that G is p-nilpotent. First note that for any non-identity normal subgroup
N contained in E , G/N is p-nilpotent. Indeed, if N = E , it is clear. Let N �= E . Then E/N �= 1 and
every maximal subgroup of E/N has a p-nilpotent supplement in G/N . Hence G/N is p-nilpotent
by induction. Let N = Φ(G) ∩ E �= 1. It is well known that the class of all p-nilpotent groups is a
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saturated formation (see [3]). Hence G is p-nilpotent. Finally, suppose that Φ(G) ∩ E = 1. Then by
[23, Lemma 7.9], E is the direct product of some minimal normal subgroups of G . Without loss we
may assume that E is a minimal normal subgroup of G and |E| �= p. Let M be a maximal subgroup of
E , T a p-nilpotent supplement of M in G . Then E = M(E ∩ T ), which implies E ∩ T �= 1. But ET = G ,
and so E ∩ T is normal in G , which contradicts the minimality of E . �

In our proofs we shall use the following known properties of the generalized Fitting sub-
group F ∗(G) (see Chapter X in [27]).

Lemma 2.11. Let G be a group. Then

(1) If N is a normal subgroup of G, then F ∗(N) � F ∗(G).
(2) If N is a normal subgroup of G and N � F ∗(G), then F ∗(G)/N � F ∗(G/N).
(3) F (G) � F ∗(G) = F ∗(F ∗(G)). If F ∗(G) is soluble, then F ∗(G) = F (G).
(4) F ∗(G) = F (G)E(G) and F (G) ∩ E(G) = Z(E(G)), where E(G) is the layer of G (see [27, p. 128]).
(5) CG (F ∗(G)) � F (G).

The following lemma is a direct corollary of [27, Theorem X,13.6].

Lemma 2.12. Let P be a normal p-subgroup of a group G contained in Z(G). Then F ∗(G/P ) = F ∗(G)/P .

3. Proof of Theorem 1.5

Suppose that this theorem is false and consider a counterexample (G, E) for which |G||E| is mini-
mal.

(1) O p′ (E) = 1.

Suppose that O p′ (E) �= 1. By [2, Lemma 2.10(4)] the hypothesis holds for (G/O p′ (E), E/O p′ (E)).
Hence by the choice of (G, E) the theorem is true for (G/O p′ (E), E/O p′ (E)), and hence for (G, E),
a contradiction.

(2) Either E = G or E = P .

Suppose that E �= G . By [2, Lemma 2.10(3)] the hypothesis is still true for (E, E), so E is p-
supersoluble by the choice of (G, E). But since by hypothesis p is the smallest prime dividing E ,
E is p-nilpotent. But by (1), O p′ (E) = 1. Hence E = P .

(3) O p′ (G) = 1.

Suppose that V = O p′(G) �= 1. Then by (1) and (2), E = P . By [2, Lemma 2.10(4)] the hypothesis is
still true for (G/V , E V /V ). Hence the theorem is true for (G/V , E V /V ) by the choice of (G, E). Now
from (1) and Lemma 2.3(3) we deduce that the theorem is true for (G, E), a contradiction.

(4) |D| > p.

Suppose that |D| = p. First we show that G does not have a cyclic chief factor of the form E/V .
Suppose G does. Then V is not cyclic, so |V | is not prime. Let V p be a Sylow p-subgroup of V .
Suppose that |V p| = p. Since p is the smallest prime dividing |E|, V is p-nilpotent. But since
O p′ (V ) char V , O p′ (V ) � O p′(E) = 1. Hence |V | = p, a contradiction. Therefore |V p| > p. Hence the
hypothesis is still true for the pair (G, V ), which implies V � ZUΦ(G) by the choice of (G, E). Hence
E � ZUΦ(G). If p is the smallest prime dividing |G|, it follows that E � ZΦ(G). This contradiction
shows G does not have a cyclic chief factor of the form E/V .
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First assume that p is the smallest prime dividing |G|. Then G has no p-closed Schmidt subgroup
of the form H = [H p]Hq , where H p � E . Indeed, by [2, Lemma 2.10(3)] every subgroup of H with
order p and order 4 (if H p is a non-abelian 2-group) not having a p-nilpotent supplement in G is
weakly S-permutable in H . But then by Lemma 2.9, |H p/Φ(H p)| = p, which contradicts the minimal-
ity of p. Since every non-p-nilpotent group has a p-closed Schmidt subgroup [22, Satz IV, 5.4], G �= E .
Hence by (2), E = P and x ∈ CG(P ) for any p′-element x of G . Hence G is p-nilpotent, a contradic-
tion.

Now suppose that p is not the smallest prime dividing |G|. Then p > 2 and by (2), E = P . Suppose
that some subgroup H of P with |H| = p has a p-nilpotent supplement T in G . Then T ∩ P is maximal
in P , so it is normal in G . But then from |P : T ∩ P | = |P T : T | = |G : T | = p it follows that E = P has
a cyclic G-chief factor P/T ∩ P .

This contradiction shows that every subgroup H of P with |H| = p is weakly S-permutable
in G . Suppose that some subgroup H of P with |H| = p is not S-permutable in G . Then by
[2, Lemma 2.10(5)], G has a normal subgroup M such that H M = G and |G : M| = p. Hence P ∩ M �= P
is normal in G and in view of the isomorphism G/M � P/P ∩ M , E = P has a cyclic G-chief factor
P/P ∩M , a contradiction. Hence every subgroup H of P with order |H| = p is S-permutable in G . Sup-
pose that P � O p(G). Then since every G-chief factor V /K above O p(G) is central (i.e. CG(V /K ) = G),
from the G-isomorphism O p(G)P/O p(G) � P/P ∩ O p(G) it follows that G has a cyclic chief factor
of the form E/K , a contradiction. Therefore P � O p(G). Now let G p be a Sylow p-subgroup of G .
Consider the series 1 � Ω1(P ) � Ω2(P ) � · · · � Ωt(P ) = P . Since all members of this series are char-
acteristic in P , the series may be refined to a G p -chief series

1 = P0 � P1 � · · · � Pr = P . (∗)

By [2, Lemma 2.4] every factor Ωi(P )/Ωi−1(P ) is elementary. Hence every subgroup of Ωi(P )/Ωi−1(P )

is normalized by every p′-element of G . Hence the series (∗) is a chief series of G . Thus E = P �
ZUΦ(G), a contradiction. Hence |D| > p.

(5) Suppose that |P : D| > p. Then G does not have a normal maximal subgroup M with |G : M| = p and
M P = G .

Otherwise, the hypothesis holds for (G, E ∩ M). Hence the theorem is true for (G, E ∩ M) by
the choice of (G, E). On the other hand, from the G-isomorphism G/M � E/M ∩ E we deduce that
E/M ∩ E is a central chief factor of G . Hence the theorem is true for (G, E), a contradiction.

(6) Suppose that |P : D| > p. Then every subgroup H of P with order |H| = |D| not having a p-nilpotent
supplement in G is S-permutable in G.

Assume that P has a subgroup H such that |H| = |D| and H neither has a p-nilpotent supplement
in G nor is S-permutable in G . Then by [2, Lemma 2.10(5)], G has a normal subgroup M such that
P M = G and |G : M| = p, which contradicts (5).

(7) |N| � |D| for any minimal normal subgroup N of G contained in P .

Assume that |D| < |N|. If some subgroup H of N with order |H| = |D| has a p-nilpotent sup-
plement T in G , then T N = G and T �= G . Hence N ∩ T is a proper non-identity subgroup of N ,
because N = N ∩ H T = H(N ∩ T ). But evidently N ∩ T is normal in G , which contradicts the minimal-
ity of N . Hence every subgroup H of N with order |H| = |D| is weakly S-permutable in G and so by
[2, Lemma 2.11] some maximal subgroup of N is normal in G , a contradiction. Thus we have (7).

(8) If E = P and p is the smallest prime dividing |G|, then P is a Sylow subgroup of G.

Let G p be a Sylow p-subgroup of G . Suppose that E = P �= G p and let Q be a Sylow q-subgroup
of G , where q �= p. Then |P Q | < |G| and by [2, Lemma 2.10(3)] the hypothesis holds for (P Q , P ).
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Hence P � ZΦ(P Q ), so P Q is nilpotent. Hence Q � CG(P ). Now let 1 = P0 � P1 � · · · � Pt = P
where Pi+1/Pi is a chief factor of G p , i = 0,1, . . . , t − 1. Then Pi+1/Pi is a chief factor of G , so
P � Z(G), which contradicts the choice of (G, E). Hence P = G p .

(9) Suppose that p = 2, |P : D| > 2 and some subgroup H of P with order 4 has a 2-nilpotent supplement T
in G. Then H is not cyclic, G/T G � A4 , every subgroup of H with order 2 is not S-permutable in G, and
TG is a 2-group.

In view of (5), |G : T | = 4. By considering the permutation representation of G/T G on the right
cosets of T /T G one can see that G/T G is isomorphic to some subgroup of the symmetric group S4
of degree 4. But since by (5), G does not have a subgroup M with |G : M| = 2, then G/T G � A4. It
follows that H � H T G/TG is not cyclic. Since by (3), O 2′ (G) = 1, we deduce that O 2′ (TG) = 1. Hence
TG is a 2-group. Suppose that some subgroup V of H with order 2 is S-permutable in G and let Q be
a Sylow 3-subgroup of T . Then V � NG(Q ). On the other hand, since T is 2-nilpotent and |T | = 2n3,
T � NG(Q ). Hence |G : NG(Q )| = 2, a contradiction. Thus we have (9).

(10) If P is non-abelian 2-group and |P : D| > 2, then |D| > 4.

We use here some arguments in the proof of Theorem 1 in [24].
Since P is a non-abelian 2-group, it has a cyclic subgroup H = 〈x〉 with order 4. Suppose that

|D| = 4. Then by (6) and |P : D| > 2 we know that every subgroup of P with order 4 not having a
2-nilpotent supplement in G is S-permutable in G . Hence in view of (9), H is S-permutable in G .
Then by Lemma 2.6(2), 〈x2〉 is S-permutable in G . Now note that if G has a subgroup V = A × B with
order 4, where |A| = 2 and A is S-permutable in G , then V and B are S-permutable in G by (9) and
Lemma 2.6(1). Therefore some subgroup Z of Z(P ) with |Z | = 2 is S-permutable in G . Hence every
subgroup of P with order 2 is S-permutable in G , which contradicts (4).

(11) If N is an abelian minimal normal subgroup of G contained in E, then the hypothesis is still true for
(G/N, E/N).

If either p > 2 and |N| < |D| or p = 2 and 2|N| < |D| or |P : D| = p, it is clear. So let |P : D| > p
and either p > 2 and |N| = |D| or p = 2 and |N| ∈ {|D|, |D| : 2}. By (6) every subgroup H of P with
order |D| not having a p-nilpotent supplement in G is S-permutable in G . Besides, in view of (4),
|D| > p. Suppose that |N| = |D|. Then N is non-cyclic and hence every subgroup of G containing N is
non-cyclic. Let N � K � P , where |K : N| = p. Since K is non-cyclic, it has a maximal subgroup L �= N .
If at least one of the subgroups L or N has a p-nilpotent supplement in G , then K does. Otherwise,
K = LN is S-permutable in G , as it is the product of two S-permutable in G subgroups. Thus if either
p > 2 or P/N is abelian, the hypothesis is true for (G/N, E/N) by [2, Lemma 2.10(2)(4)]. Next suppose
that P/N is a non-abelian 2-group. Then P is non-abelian, so |D| > 4 by (10). Let N � K � V where
|V : N| = 4 and |V : K | = 2. Let K1 be a maximal subgroup of V such that V = K1 K . Suppose that K1
is cyclic. Then N � K1, so V = K1N , which implies |N| = 4. But then |D| = 4, which contradicts (10).
Hence K1 is non-cyclic and hence as above one can show that K1 either is S-permutable in G or has
a 2-nilpotent supplement in G . Therefore every subgroup of P/N with order 2 and order 4 not having
a p-nilpotent supplement in G/N is weakly S-permutable in G/N .

Finally, suppose that |D| = 2|N|. If |N| > 2, then as above one can show that every subgroup of
P/N with order 2 and order 4 (if P/N is non-abelian) not having a 2-nilpotent supplement in G/N
is weakly S-permutable in G/N . Now, suppose that |N| = 2 and P/N is non-abelian. Then P is non-
abelian and |D| = 4, which contradicts (10). Hence we have (11).

(12) E = G .

Suppose that E = P and let N be any minimal normal subgroup of G contained in P . Then by (11)
the hypothesis holds for (G/N, E/N). Hence E/N � ZUΦ(G/N), N � Φ(G) and |N| > p. Therefore
Φ(G) ∩ E = 1. Hence by [23, Lemma 7.9], P is the direct product of some minimal normal subgroups
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of G . In view of [2, Lemma 2.11], P �= N . Hence for some minimal normal subgroup R of G contained
in P we have R �= N . Then by [3, Lemma A,9.11], N R/N � Φ(G/N). Therefore |R| = |N R/N| = p,
which implies that the theorem is true for (G, E), a contradiction. Therefore we have (12).

(13) Some maximal subgroup of P does not have a p-nilpotent supplement in G (this follows from
Lemma 2.10).

(14) E is p-soluble.

By (11) we need only to show that P G �= 1. Suppose that this false. Then by Lemma 2.7(3) and
[23, Theorem 7.7] every non-identity subgroup of P is not S-permutable in G .

First suppose that |P : D| = p. By (13) at least one of the maximal subgroups of P , M say, does not
have a p-nilpotent supplement in G . Since MsG = 1, by hypothesis M has a subnormal complement
T in G . By (12) the order of a Sylow p-subgroup of T is equal to p, so T is p-nilpotent, which con-
tradicts the choice of M . Hence we may assume that |P : D| > p. In this case, by (6), every subgroup
H of P with order |H| = |D| not having a p-nilpotent supplement in G is S-permutable in G . Hence
we have to conclude that every subgroup H of P with order |H| = |D| has a p-nilpotent supplement
in G and so every maximal subgroup of P has a p-nilpotent supplement in G , which contradicts (13).
Thus we have (14).

Final contradiction. Let N be a minimal normal subgroup of G . Then in view of (1), (12) and (14),
N � P . Hence by (11) and the choice of G for every minimal normal subgroup N of G the quotient
G/N is p-nilpotent. Thus |N| > p, N � Φ(G) and N = O p(G) = F (G) is the only minimal normal
subgroup of G . Hence G = [N]M for some maximal subgroup of G . Assume that |P : D| = p. For every
maximal subgroup A of P containing N we have AM = G , so M � G/N is a p-nilpotent supplement
of A in G . Thus by (13) some maximal subgroup V of P neither contains N nor has a p-nilpotent
supplement in G . Hence by hypothesis V is weakly S-permutable in G . Let L = V sG and let T be a
subnormal subgroup of G such that V T = G and T ∩ V � L. Suppose that L = V . Clearly N ∩ V is
normal in P . Hence by Lemmas 2.7(1) and 2.8, N ∩ V is normal in G , which implies |N| = p. This
contradiction shows that L �= V , so T �= G .

Suppose that L = 1. By (12) the order of a Sylow p-subgroup of T is equal to p, so T is p-
nilpotent, which contradicts the choice of V . Thus L �= 1. By Lemma 2.7(3), L � O p(G) = N and hence
L � N ∩ V . Suppose that N � T . Then T ∩ V � N ∩ V � T ∩ V and so T ∩ V = N ∩ V . Therefore from
T ∩ V � L � N ∩ V we have T ∩ V = L. Therefore L = N ∩ V is S-permutable in G and thus for every
Sylow q-subgroup Q of G we have Q � NG(L). On the other hand, N ∩ V is normal in P . Hence L is
a non-identity subgroup of P which is normal in G . Hence N � L � V , a contradiction. Therefore we
have to conclude that N � T . Since T is subnormal in G , it contains all Sylow q-subgroups of G for
all primes q �= p. Hence G/T G is a p-group. Thus G � G/N ∩ T G is p-nilpotent, a contradiction.

Therefore we may assume that |P : D| > p. Then by (6) every subgroup H of P satisfying |H| = |D|
and not having a p-nilpotent supplement in G is S-permutable in G . Since every S-permutable sub-
group of G contained in P is contained in O p(G) = N , it follows that every subgroup H of P different
from N and satisfying |H| = |D| has a p-nilpotent supplement in G . Therefore every maximal sub-
group of P has a p-nilpotent supplement in G , which contradicts (13). This contradiction completes
the proof of this theorem.

4. Proof of Theorem 1.4

First assume that X = E . Suppose that in this case the theorem is false and let (G, E) be a coun-
terexample with |G||E| minimal. If V is a normal Hall subgroup of E , then V is normal in G and
the hypothesis also holds for (G, V ) and (G/V , E/V ) (see (1) in the proof of Theorem 1.4 in [2]).
If 1 �= V �= E , then V � ZUΦ(G) and E/V � ZUΦ(G/V ) by the choice of (G, E). Hence E � ZUΦ(G),
a contradiction. Therefore for all normal Hall subgroups V �= 1 of E we have E = V . By Theorem 1.5(I),
E/O p′ (E) � ZΦ(E/O p′ (E)) where p is the smallest prime dividing |E|. Since the class of all nilpotent
groups is a saturated formation (see 1. in Section 5), it follows that E/O p′ (E) is nilpotent, so E is
p-nilpotent. Hence E is p-group, which in view of Theorem 1.5(II) implies that E � ZUΦ(G), a con-
tradiction.
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Now suppose that X = F ∗(E). Suppose that in this case the theorem is false and let (G, E) be a
counterexample with |G||E| minimal. Let F = F (E) and F ∗ = F ∗(E). If E is soluble we use p to denote
the smallest prime divisor of |F |. And let p be the largest prime divisor of |F | if E is non-soluble. Let
P be a Sylow p-subgroup of F .

(1) F ∗ = F �= E and CG(F ) = CG(F ∗) � F (see (1) in [2, Theorem 1.3]).
(2) P � ZUΦ(G) and E/P � ZUΦ(G/P ).

Since P is characteristic in F = F ∗ and F is characteristic in E , P is normal in G . Hence by the
case X = E , P � ZUΦ(G). Therefore E/P � ZUΦ(G/P ), otherwise, E � ZUΦ(G), which contradicts the
choice of (G, E).

(3) If Y is a proper normal subgroup of G and E � Y , then E � ZUΦ(Y ).

By Lemma 2.11(1), F ∗(Y ) � F ∗ = F � Y and so F ∗(Y ) = F ∗ . Thus the hypothesis is still true for
(Y , E) and hence E � ZUΦ(Y ), by the choice of (G, E).

(4) If E �= G, E is supersoluble (this follows directly from (3)).
(5) Assume that E is soluble, V /P = F (E/P ) and Q is a Sylow q-subgroup of V where q divides |V /P |. Then

q �= p and either Q � F or p > q and C Q (P ) = 1 (see (4) in [2, Theorem 1.3]).
(6) p > 2.

Assume that p = 2. Suppose that E is soluble. In this case by (5) we have F/P = F (E/P ). Besides,
by (1) and Lemma 2.11(3), F ∗(E/P ) = F (E/P ) = F ∗/P . Thus by [2, Lemma 2.10(4)] the hypothesis is
still true for (G/P , E/P ). Hence E/P � ZUΦ(G/P ), which contradicts (2). Therefore E is not soluble.
Hence P = F (E), since in this case p is the largest prime dividing |F |. Since by (1), E �= F , E contains
the subgroup V = P Q where Q is a q-group for some odd prime q. By the case X = E , V is nilpotent.
Thus Q � C E (F ). But by (1), C E (F ) = C E (F ∗) � F , a contradiction. Hence we have (6).

(7) Some minimal subgroup of P is not S-permutable in G .

Suppose that every minimal subgroup of P is S-permutable in G . Let P0 = Ω1(P ) and C = CG(P0).
It is clear that C is normal in G .

First suppose that E is soluble. Let V /P = F (E/P ) and Q be a Sylow q-subgroup of V where q
divides |V /P |. Then by (5) either Q � F or C Q (P ) = 1. In the second case Q is cyclic by (5) and
Lemma 2.5. Thus by [2, Lemma 2.10(4)] the hypothesis holds for G/P , so E/P � ZUΦ(G/P ), which
contradicts (2). Hence E is not soluble. Note that in this case E = G by (4). We show that every
minimal subgroup L of P is normal in G . But first we prove that O p(G) = G . Indeed, assume that
O p(G) �= G . By Lemma 2.11(1), F ∗(O p(G)) � F ∗ . Hence F ∗(O p(G)) = F ∗ ∩ O p(G) = F ∩ O p(G). There-
fore by (6) and [2, Lemma 2.10(3)] the hypothesis is still true for (O p(G), O p(G)). Thus O p(G) is
supersoluble by the choice of G . But then G is soluble, which implies the solubility of E , a contradic-
tion. Therefore we have to conclude that O p(G) = G , so by Lemma 2.8, G = O p(G) � NG(L), since L
is S-permutable in G . Therefore every minimal subgroup of P is normal in G and hence P0 � Z(F ).
Next we show that the hypothesis is still true for (G/P0, C ∩ E/P0). Indeed, F ∗ = F � F ∗(C ∩ E) and
by Lemma 2.11(1), F ∗(C ∩ E) � F ∗ . Hence F ∗(C ∩ E) = F ∗ and so by Lemma 2.12, F ∗(C ∩ E/P0) =
F ∗/P0 = F/P0, since P0 � Z(C). Now by (6) and [2, Lemmas 2.4 and 2.10(4)], we know that the hy-
pothesis is still true for (G/P0, C ∩ E/P0). Hence C ∩ E/P0 � ZUΦ(G/P0), by the choice of (G, E). On
the other hand, since by Lemma 2.4, G/C is supersoluble, every G-chief factor between E and E ∩ C
has prime order. Hence E � ZUΦ(G), a contradiction.

(8) P is non-cyclic (this follows directly from (7)).

By (8), P is non-cyclic and so by hypothesis P has a subgroup D such that 1 < |D| < |P | and every
subgroup H of P with |H| = |D| is weakly S-permutable in G .
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(9) |D| > p.

Suppose that |D| = p. By (7), P has a subgroup H such that |H| = p and H is not S-permutable
in G . By [2, Lemma 2.10(5)] the subgroup H has a normal complement T in G . Then the hypothe-
sis is true for (G, V ) where V = T ∩ E . Indeed, evidently F ∗(V ) � F ∗(E). On the other hand, since
|G : T | = p, every Sylow q-subgroup of F = F ∗ , where q �= p, is contained in T . Thus the hypothesis is
still true for (G, V ). But since T is a proper subgroup of G and ET = G , |V | < |E|. Hence V � ZUΦ(G),
by the choice of (G, E). But G/T = ET /T � E/E ∩ T is a cyclic group, so E � ZUΦ(G). This contradic-
tion completes the proof of (9).

(10) If L is a minimal normal subgroup of G and L � P , then |L| > p.

Assume that |L| = p. Let C0 = C E (L). Then the hypothesis is true for (G/L, C0/L). Indeed, since
F = F ∗ � C0 and L � Z(F ), we have F ∗(C0/L) = F ∗/L. On the other hand, if H/L is a subgroup of G/L
such that |H| = |D|, we have 1 < |H/L| < |P/L|, by (9). Besides, H/L is weakly S-permutable in G/L,
by [2, Lemma 2.10(2)]. Now, by [2, Lemma 2.10(2)] and by (6) we see that the hypothesis still holds
for (G/L, C0/L). Hence C0/L � ZUΦ(G/L), which implies E � ZUΦ(G), a contradiction.

(11) E = G is not soluble and F = P (see (11) and (14) in [2, Theorem 1.3]).

Final contradiction. Since by (6), p �= 2, and by (1) and (11), F ∗ = F = P = F ∗(G), G is supersoluble
by Theorem 1.3 in [2]. This contradiction completes the proof of the theorem.

5. Final remarks

1. Recall that a formation is a homomorph X of groups such that each group G has a smallest
normal subgroup whose quotient is still in X. A formation X is said to be saturated (solubly saturated)
if it contains each group G with G/Φ(G) ∈ X (with G/Φ(R) ∈ X, for some soluble normal subgroup R
of G , respectively).

2. We say that a chief factor H/K of a group G is a solubly-Frattini chief factor of G if H/K �
Φ(R/K ) for some soluble normal subgroup R/K of G/K . By analogy with Definition 1.1 we introduce
the following

Definition 5.1. Let ZXΦ(S)(G) be the product of all normal subgroups of G whose non-solubly-Frattini
G-chief factors are X-central in G . Then we say that ZXΦ(S)(G) is the XΦ(S)-hypercentre of G .

The importance of this concept and the concept of XΦ-hypercentre in the theory of (solubly)
saturated formations is connected with the following observation.

Proposition 5.2. Let X be a class of groups and E a normal subgroup of G with G/E ∈ X. Suppose that at least
one of the following hold:

(1) X is a saturated formation and E � ZXΦ(G).
(2) X is a solubly saturated formation and E � ZXΦ(S)(G).

Then G ∈ X.

3. It is clear that ZX(G) � ZXΦ(S)(G) � ZXΦ(G). The following example shows that in general,
ZX(G) < ZXΦ(S)(G) < ZXΦ(G).

Example 5.3. It is well known [28, Chapter 4] that the Schur multiplier of the Mathieu group M22
is cyclic of order 12. Hence there is a group A with a cyclic normal subgroup R = 〈a〉 such that
R = Φ(A) ∩ Z(A), A/R � M22 and |R| = 4. Let p be an odd prime and C p a group with |C p | = p.
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Let G = A � C p = [K ]C p , where K is the base group of the regular wreath product G . Then ZN(G) <

ZNΦ(S)(G) = 〈a2〉� < ZNΦ(G) = R� (we use here the terminology in [3, Chapter A]).

4. Researches of many authors are connected with analysis of the following general question: Let
X be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E
such that G/E ∈ X. Under what conditions on E then, does G belong to X? (see Section 5 in [2] or the
survey [29]). Almost all results in this direction may be improved by proving that under certain
conditions the assumptions imply that E � ZUΦ(G) is true. As a partial illustration for this we obtain
from Theorem 1.4 the following stronger versions of Theorems 1.3 and 1.4 in [2].

Corollary 5.4. Let F be a saturated formation containing all supersoluble groups and G a group with a normal
subgroup E such that G/E ∈ F. Suppose that every non-cyclic Sylow subgroup P of F ∗(E) has a subgroup
D such that 1 < |D| < |P | and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P
with order 4 (if |D| = 2 and P is a non-abelian 2-group) is weakly S-permutable in G. Then E � ZUΦ(G). In
particular, G ∈ F.

Corollary 5.5. Let F be a saturated formation containing all supersoluble groups and G a group with a normal
subgroup E such that G/E ∈ F. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such
that 1 < |D| < |P | and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P with
order 4 (if |D| = 2 and P is a non-abelian 2-group) not having a supersoluble supplement in G are weakly
S-permutable in G. Then E � ZUΦ(G). In particular, G ∈ F.

5. A subgroup H of a group G is called nearly normal in G if G has a normal subgroup T such
that T ∩ H � HG and H T = H G [30]. By using the same arguments as in the proof of Theorem 1.4 the
following result may be proved.

Theorem 5.6. Let X � E be normal subgroups of a group G. Suppose that every maximal subgroup of every
Sylow subgroup of X is nearly normal in G. If X is either E or F ∗(E), then E � ZUΦ(S)(G).

In view of Proposition 5.2, Theorem 3.8 in [30] is a corollary of Theorem 5.6.
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