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This paper presents the first calculations of the parity-violating polarization asymmetry and forward-
backward asymmetry of the e™ e~ — uu~(y) process at a center-of-mass energy of 10.579°GeV with up to
one-loop electroweak radiative corrections. The calculations are relevant for futtite precision electroweak
measurements at the Belle II experiment, which is now collecting data at the SuperKEKB e* e~ collider
with a center-of-mass energy at the mass of the Y'(45) resonance. In this paper we take under full control
the bremsstrahlung process at the conditions of Belle II/SuperKEKB; and the possibilities for a soft photon
approach are discussed. The scale of the obtained relative corrections te the parity-violating and forward-
backward asymmetries is significant and the scattering angle dependencies of the asymmetries is nontrivial.
As an additional validation cross-check using an independent‘formulation, the calculated asymmetries are
compared to results from the C/C Monte Carlo generator.
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I. INTRODUCTION

Electroweak measurements can be made at a high lumi-
nosity electron-positron collider B-factory, such as Belle 1I/
SuperKEKB [1] operating at a center-of-mass (CM) energy
of E.,=+/s=10.579 GeV (the“umasss of the Y(4S)
meson), via y — Z interference if the process e*e™ — ff.
In the Standard Model this intérference term is parametrized
in terms of the axial vectorcoupling of the fermion f, equal to
its third component of weak isospin, g,(f) = I5(f), and its
vector coupling, g,(f)'s [7'—20Q;sin* Oy (I3, . = —1/2,
I} = +1/2, andicos OBy = my,/m;), where Q/ is its electric
charge and 9y.is the weak mixing angle. The precision on the
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measurement of the effective weak mixing angle, and hence
the effective vector couplings of the neutral current, would be
comparable to those measured on the Z° pole at LEP and
SLC, but at a much lower energy, if the electron beam of the
B-factory has at least a 70% spin polarization [2,3] in a left-
right asymmetry measurement. Currently, SuperKEKB does
not have a polarized beam and the work presented here is a
necessary component of the physics justification for install-
ing polarization in that machine in a potential upgrade.
Without polarized beam, Belle 1I/SuperKEKB could still
measure the forward-backward asymmetry but with a sig-
nificantly lower precision on sin” &5If, as shown in this paper.
A forward-backward asymmetry measurement would, how-
ever, still provide a useful measurement of the axial vector
coupling constant for the final-state fermion, f.

With a polarized beam, the vector current couplings to
electrons, muons, taus, s-quarks, c-quarks, and b-quarks
can be measured and would enable a precision comparison
with the Standard Model predictions of their running from
10.579 GeV to the Z-pole. Deviations of the running would
signal the presence of new physics. On the other hand,
assuming the running holds, these measurements can be
used to significantly reduce the uncertainties on the Z-pole
values of the couplings. The electroweak fits that now

Published by the American Physical Society
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include the measured Higgs boson parameters [4] show
reasonable internal consistency, but there is a 2.5¢
deviation associated with the determination of the Zbb
couplings and sin® 6%{} from the forward-backward asym-
metries for b-quarks at LEP. The tension is even greater,
3.20, between this bb determination of sin?@%f and
that from SLD, which provides the single most precise
determination of sin? @ using a left-right asym-
metry measurement. Therefore, it would be interesting to
have additional precision measurements of the Zbb vertex.
Because SuperKEKB produces B mesons just above
threshold it would have a unique ability to measure the
neutral current vector coupling of b-quarks in a manner that
is free from fragmentation uncertainties [2,3] and would
provide a significant decrease in its uncertainty compared
to the value measured at LEP, where the dominant
systematic error came from fragmentation uncertainties.

In order to extract reliable information from the
experimental data, it is necessary to take into account
higher order effects of electroweak theory, i.e., electro-
weak radiative corrections (EWC). The procedure for
the inclusion of EWC is an indispensable part of any
modern experiment, but will be of paramount importance
for precision electroweak measurements of Belle II/
SuperKEKB. Consequently, theoretical predictions for
the observables must include not only full treatment of
one-loop radiative corrections (NLO) but also leading two-
loop corrections (NNLO).

Significant theoretical effort already has been dedicated
to NLO EWC to electron-positron annihilation starting
with [5], where EWC for this process with .rbitrary
polarization are calculated for center-of-mass (CM) ener-
gies between 40 and 140 GeV. For the LEP, and SLC
colliders the process e*e™ — ff demandediconsideration
of the EWC at Z-boson pole with mew \precision. The
following collaborations have perfermed,this task: BHM
and WOH [6,7], LEPTOP [8], TOPAZ0Q [9], and ZFITTER
[10,11]. More recent results for EWC in “after LEP/SLC”
era are provided by /ICK [12] and SANC [13] codes.

The main goal of thistworksis to calculate the full set of
one-loop (NLO) EWC, with,the highest precision possible.
In order to avoid technical errors and to provide a validation
cross-check, we do.the same calculations in two indepen-
dent and different ways and compare the results first, with a
semiautomatic approach (computer algebra) employing
FeynAuts' | 14], FormCalc [15], LoopTools [15], and FORM [16],
with'nossimplifications, and then analytically (by hand), in
a compact asymptotic form. Section II details the calculated
differential cross sections up to one-loop. The bremsstrah-
lung process at the lower energies of Belle II/SuperKEKB
is fully accounted for in Sec. III, with both a soft photon
approximation (SPA) and a more exact hard photon
approach (HPA). The analysis of the results obtained
through the semi-automatic and asymptotic methods is
given in Sec. IV, as well as the comparison of the

soft-photon and hard-photon approaches. In addition, a
comparison is made with results from the JCXC Monte Carlo
generator. The sensitivity studies of left-right polarization
and forward-backward asymmetries are described in
Sec. V. Our conclusions and future plans are discussed
in Sec. VL

II. NLO ELECTROWEAK CORRECTIONS
AT SIMPLEST CASE: GENERAL NOTATIONS
AND MATRIX ELEMENTS

In our calculations we will start with the simplest case of
ete” - fTf(y) scattering, where f = u. First we will
disregard the electron mass m and fipal=state fermion mass
my (valid for f = u) wherever possible; and second we
treat energy in the CM system,_of eTe™ as a small
parameter, in comparison to'the masses of W/Z bosons:

m,m; < E<<myz. (1)

For this case we can“obtain the total NLO EWC in a
compact and,relatively simple form, free from unphysical
parameters and\Suitable for an analysis of the kinematic
behavior fot a'given reaction.

Let ugsstart by writing the cross section for the scattering
of pelarizeéd electrons on unpolarized positrons,

et (p1) + e (p2) = f7(p3) + /7 (Ps). (2)

using the Born approximation shown in Fig. 1, we find:
3
/4
~—|My|*. 3
o~ M (3)
Here o is a short notation for the differential cross section
6 =do/d(cosb),
0 is the scattering angle of the detected muon with
4-momentum ps in the CM system of the initial electron
and positron. The 4-momenta of initial (p; and p,) and
final (p3 and p,) fermions generate a standard set of

Mandelstam variables:

_pl _p3

1253 Py

FIG. 1. Feynman diagram describing the process et (p;) +
e (p2) = fT(p3) + f(ps4) in the s-channel at tree level.
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s=(pi+p2)’ t=(pi—p3)’. u=(pi—-ps)’. (4
Defining M, as the Born [O(a)] amplitude (matrix

element), we describe the structure of M|:

M, = E M, Mi = iglipjjﬂ,,i, (5)
b T
j=rz

where the electron and muon currents are

L= L_‘(—m)}’ﬂ(vi — alys)u(p,),

i = w(pa)y, (v — ajys)u(=ps) (6)

and D/ is represented by:

. 1

- - 00000000 P
b 7s—m5—|—imjl“j U =r2). )
which depends on the Z-boson mass (m;) and width (I",),
or on the photon mass m, = 1. The photon mass is set to
zero everywhere with the exception of specially indicated
cases where it is taken to be an infinitesimal parameter that
regularizes the infrared divergence (IRD).

The squared amplitude M, forms the Born cross section:

0 :;r_leO'z _ ”Taz Z DiDk* ik (8)
ik=y,Z
where
pihit = T 80— kil T, =2 4%, (9)
and

ikjl ik qjl
NE = 2k,

ik _ ik ik
’111 = /12\/ - PB/VeAv

AR

A5 M — ekl (10)

with pp representingsthe ‘degree of electron polarization.
The A-type functions|haye the following structures (here

g=e, f)
il g i J ijo_ i i)
Aoy & Vgby + ayay, Agp = Vglly + ayvg, (11)

where, the vector and axial coupling constants are

v _ v _
vg=—0, ag=0,

(12 _2Qgs%V>/(2SWCW),

vé az=I/(2syew).  (12)
0, is the electric charge of particle g in units of the proton’s
charge. Let us recall that I} = —1/2,1; = +1/2 etc., and
sw(cw) is the sine (cosine) of the Weinberg mixing angle
expressed in terms of the Z- and W-boson masses accord=
ing to the on-shell definition in the Standard Modelk

sw=1/1—cip (13)

At the next-to-leading-order (NLO),{we can introduce
the NLO differential cross section [@(a)}\via an interfer-
ence term given by the seconds term of the following
expansion:

Cy = my/my,

P 7r3
o= Mo+ M,|* ~ g(MoM(T) +20[M MG]).  (14)

Here, the one-loop amplitude M, has structure of the
sum of boson self-energy (BSE), vertex (Ver) and box
diagrams (seevFig. 2):

M, = Mysg + My + Mpoy. (15)

We'use the on-shell renormalization scheme from [17,18],
S0 “there are no contributions from the electron self-
energies. The infrared-finite BSE term can easily be
expressed as:

a T
M — = i DY Ju.j
BSE lﬂ_'Z IMDS‘I . (16)
i,j=y,Z
with
DY = -D'S(s)D/, (17)

where £J(s) is the transverse part of the renormalized
photon, Z-boson and yZ self-energies. The longitudinal
parts of the boson self-energy make contributions that are
proportional to m?/r (r = s, t, u); therefore they are very
small and are not considered here.

For the Belle II experiment, the CM energy of the
electron and positron is /s = 10.579 GeV. Specifically for
the Hollik renormalization conditions [6], we have the
following numerical results for the truncated and renor-

malized self energies (iiTj):

FIG.2. One-loop diagrams: the circles represent the contributions of self-energies and vertex functions. Unsigned curly lines represent

photon or Z-boson.
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R[EY (s)]D"* = —0.0361, S[EH (5)]D7* = 0.0159,
m[z;z(s)}m = —0.0301,  J[E(s)]D"* = —0.0056,
R[EF (s5)|D% = —-0.0317, S[E% ()| D% = —0.0003.

In order to derive the vertex amplitude (2nd and 3rd
diagrams in Fig. 2), we use the form factors notation in
the manner similar to the work of [17]. Here, we will

replace the coupling constants v,’] a;,’} with the form factors

vffz) - U,?(Z), a!};(Z) - aF , where for the photon
L Y/ 7\2 Z\2\AZ 3AW 18
Vg _E 1+((Ug) +(ag)) 2+m 3 | ( )
abr = X {2uZazng ¢ AV, (19)
9 T an |7 4s3,

and for Z-boson

a
vh? = s [1}5/\1{ + 04 ((v%)? + 3(a?)?) A5
1 3
TR - AW] (20)
8sycw - 4s
a
ah? = yp [aqu + aZ(3(v5)* + (aZ)*)AS
1 3
oA -y e1)
8syycw 4s3,

The function A corresponds to the contribution of triangle
diagrams with the photon in the loop, A, corresponds to the
triangle diagrams with the massive boson—Z or W, and A,
corresponds to the triangle diagrams ¢ with®, 3-boson
vertices—WWy or WWZ. These complex| functions have
been studied in detail and presented, €:g.;nin [6]. Hence,

Mye = i2 3 (L7 DR LLDi e, (22)
=

The infrared singularity iS\wegularized by giving the photon
a small mass 4 and.in the vertex amplitude can be extracted

in the form:
a s
T mm f

The remaining (infrared-finite) part of the vertex amplitude
hasva simple form convenient for further analysis:

N
M%/er = 1) lnl—zMo. (23)

M(’er = MVer - M%/er = ]WVer(A2 - S). (24)

The box amplitude can be presented as a sum of all two-
boson exchange contributions:

Mgy =M,, + M,z + M7z + Myy. (25)

We need to account for both direct and crossed yy, yZ, and
ZZ-boxes:

M;; :M3+M$j (i,j=7.2), (26)
but, obviously, for WW-boxes we only need the direct

expression. The infrared parts of the yy- and yZ-boxes are
similarly given by

= Ty, o7
Tt

The finite part of the yy-box can be found,in, [19]. Using
asymptotic methods, we can significantly simplify the box
amplitudes containing at least one heavy, boson (see, e.g.,
[20], where simplifications were done on the cross section
level). Finally, we provide the expressions for Mg ““in the
low energy approximation:

a\? 1
MP = —i(—) —=d
" l(n’) 16m?

(=pa)r*rey* (vE — alys)u(py)

Iz(p4)yv},a},ﬂ(1]]l§ - a?},S)M(_p3)v (28)
C X AN = M0V (0B B
Mi; = i, T@u(—pl)y rr¥(vé = alys)u(p,)
W(P4)rurar, (v} — afys)u(—ps), (29)

with“the coupling-constants combinations for ZZ- and
WW-boxes (B = ZZ, WW)

v* = (vE)? + (af)?, a?? =20%a?,

"W = a"W = 1/(4s%,). (30)

Now we are ready to present the one-loop amplitude as
the sum of IR-divergent (index 1) and IR-finite (index f)

parts: M, = M} + M/, where
M =i, Ti—4Bhn=.  (31)
2r NG
and the value B can be presented in the form
t
B=In—" 1. (32)
mmu

Using (31), it is straightforward to write the expression for
the NLO cross section:

3 .
oV :%m[MlMg} — ¢ +ol, (33)

where IR-divergent and regularized NLO cross section is
given by

[04
o} =2rie". (34)
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FIG. 3.
The IR-finite part can be represented using the notation of
the relative correction (F{ )

(04
6{ - ;F{GO = OBSg T+ 6</er + Gléox’ (35)

where at one-loop level the cross sections are written as
follows:

2ma? . -
OBSE = L Z D DX+ kK, (36)
S i,jk=y.Z
2ma? ) . .
foer — ; R Z DtDk* [”F[ktk +M1kF,k]’ (37)
i.k=y.Z

P SN -
0]f30x = ?9{(1"1{7 + ij‘z + Mgz + Myw)M§.  (38)

In (37), the IR-finite part of vertex form factors was used
according (24).

III. BREMSSTRAHLUNG: CANCELLATION OF
INFRARED DIVERGENCE

The bremsstrahlung diagrams are illustrated,in, Fig. 3,
where the first two diagrams correspond tofinitial, state
|

—2p5 + pr’

N 2p1 —y"p

Diagrams with photon emission.

radiation (ISR), whereas the last two correspond to final
state radiation (FSR).

We express the full differential cross section for, the
process

et (p1) e (p2) = fH(p3) +f(py) #v(p), (39)

as

3
a
dogp = —— R|*dT;, 40
o = oy R (40)
where phase space is ‘defined as

d3p3 d3p4 d3p
dlr; =T —p3—ps—p)————— (41
3 (ot P2 —P3—pa—p) 2030 2P0 2P0 (41)

and

STIRP =Y (O2RY +Q.0/RY + Q3RY).  (42)

ij=r.Z

where the three terms in the sum are the ISR, interference
and FSR parts, respectively.
The ISR part can be written as

RY = —ITTIE Ty [(}/"
71

A P 5
X( Parrh o,

2p% = pr’
71 Uy

|
. y")i(l’{—ﬂz’ys)pz

L ij oo Na s
) 5[’1} Trly, (ﬂfjv - /1fJA75)P37’uP4]- (43)

The FSR part can be found'by substitution R;j = RY(IV — D/, P12 <> —P43. A2 <> Ay sa), and for the interference term

we have

RY = —II'D/*Tr Kyﬂ
|

—2p5 + py” N 2P —v"p
Uy

—2pg -y

p 1 ij ij A 1 A
y") 5 (A = lz’yS)panpl}

A

X Tely, (1, — 2,75) s (

R T S
— D'TV*Tr {hi (/11j - /12]75)172(

P 2ph + prP\ .
7ty 4Z )m}

—-2p5 + py’ 2p7 =7\ 1,
2 yu+yu 1 EPI

V| Uy

=2p5=v"D 204+ Dy G i ve s
XTr[<y” : += ) (A = A%4vs) P3vupa |- (44)

v Z

For the radiative case, the truncated propagator has the following form
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. 1
IV = j=y.Z). (45
s—z—v—m?—f—imjl"j U=r2). (45

In the last three equations we have used four radiative
invariants (they tend to zero at p — 0):
2 =2p1p, 1 =2pap, 2=2p3p, v=2pup,  (46)
together with three invariants s, ¢, u, and taking into
account the momentum conservation, we can write the
following identities
-z, =v; — v, s+tdu=042m* +2m;.  (47)
Here we have five (4 + 3 — 2 = 5) independent variables in
the description of bremsstrahlung process. Phase space of
the emitted photon dI'; can be expressed in the basis of
these invariants

Ldtdvdzdvl
/—F4 ’

and —I'4 is a usual Gram determinant.

Next we divide the bremsstrahlung cross section into soft
and hard parts using a separator . The soft part ¢”(w) is
integrated under the condition that the photon energy (all
energies are in the CM system of eTe™) is less than w. The
hard part of bremsstrahlung cross section o7 (w, Q) corre-
sponds to the photon energy greater than w and less than Q.
To evaluate the cross section induced by the emission of a
single soft photon, we follow the methods of Berends efal.
[21] (see also [22,23]). To obtain the result, we must
calculate the 3-dimensional integral over the phasespace of
the emitted real soft photon:

L0 ) :—i/ <p

= 4
T (48)

T*(p)To(ph>ali+ Ry, (49)

4n po<w PO
where
a a a a
To(p)y =Ll P2 4 s Pi (50)
PyP\. P2P P3P DPa2p
and
2 2 2
Ry = —ap s S ™ L T
20 s 2 K 3

12 1 m> 2 —t —
S oL+ D) poni, — oL, 2
s 2 s 3 u t
(51)

As a result the soft cross section can be factorized in terms
of the Born cross section in this soft-photon bremsstrahlung
approximation:

:f[

o' (w) - -’} + Ry]o”. (52)

In the rest of the article we will refer to it as the soft photon
approximation (SPA). The contribution due to soft photons
is evaluated in with our semiautomatic approach, with no
further simplifications.

The hard photon approach (HPA) fully accounts for the
photon in the final state, where the HPA emission cross
section is calculated with a Monte Carlo integration
technique using the VEGAS routine [24] in the region
@ < po < Q. The hard photon bremsstrahlung cross,section
can be expressed as

a dvdzdv, s — v

3
", Q) = — bt §
o(@.Q) 8zs [usmsg vV-Ty s

Z [RIZO(=T).
(53)

Here we have used the ultrarelativistic form of the Jacobian
(s — v)/s, which originates inf the transition from radiative ¢
invariant

1
122(2m2+2m}—s+v

+eos 01/ _jm2m> (54)

to the cosine of the scattering angle: cos 6. The integral in
(53)'can be evaluated first analytically over the variables v,
and \z" (explicit details are given in [25]), and then
numerically.

Putting it all together at one-loop, we get:

o' =06} + 0 (0) + o/ (w, Q). (55)

Obviously ¢' does not depend on either 1 or w. The
independence on the mass of the photon can be justified by
direct analytical cancellations of 4, and as a result we get

o} + o' (w) :%Rlao. (56)

Independence from @ is obvious by definition. But since
the hard photon bremsstrahlung integration was performed
numerically, we verify that and observe @ independence
with a relative numerical uncertainty not exceeding the
order of 107%.

IV. NUMERICAL RESULTS

Electroweak input parameters of the on-shell renormal-
ization scheme (my, my, and @) are naturally defined as
measurable quantities with fixed values at all orders of

2
perturbation theory. As a result, the s, = 1 — % definition
z

of the weak mixing angle is also fixed at all orders of
perturbation theory. From muon decay one can establish the
relationship between the most precisely measured quantity,
the Fermi constant G, = 1.1663787(6) x 1075 GeV~2,
and the my,. This can be achieved by comparing muon
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lifetimes calculated in Fermi four-fermion interaction
theory and the Standard Model calculations at one-loop
level. This gives the following relationship:
5 a
my, = . 57
Y V26,53, (1 - Ar) 57)

Here Ar is a radiative correction which is calculated in the
on-shell renormalization scheme [26] and has the following
structure:

R ww (0
ar=220w® | a (6

7 — 452
ZSW In c%v>
281y

m?, drs?,
2 $2_ (2
+ ?;m[2y4 ”2}. (58)
mss my + %, (m3)

Here, ivl v, 18 defined as a truncated and renormalized self-
energy graph for V|, — V, mixing.

The formulas (57) and (58) gives the effective my, value
of 80.4628 GeV, which we use in our calculations. For the
numerical calculations we have used @ = 1/137.035999,
myz = 91.1876 GeV, and my = 125 GeV as input param-
eters according to [27]. The electron, muon, and z-lepton
masses are taken as m, = 0.510998910 MeV, m, =
0.105658367 GeV, m, = 1.77684 GeV and the quark
masses for loop contributions as m, = 0.06983 GeV,
m.=12GeV, m, =174 GeV, my;=0.06984 GeV,
mg; = 0.15 GeV, and m;, = 4.6 GeV. The light quark
masses provide a shift in the fine structure constant due

to hadronic vacuum polarization Aaﬁfi(mé) = 0.02757
[28], where

5
sl = > ai(m-B Ve

q=u.d,s,c,b q

Here, we choose to use the light quarkvmasses as param-
eters regulated by the hadronic yacuum polarization.

Let us introduce superscript €, which corresponds to the
specific type of contributioh toya‘cross section or asym-
metry. C can be 0 (Born’contribution), 1 (one-loop EWC
contribution), or 0 41 “(both these types): C = {0,1,

where the subscripts L and R on the cross sections
correspond to the degree of polarization for electron
pp = —1 and pp = +1, respectively. The relative correc-
tion to the unpolarized total cross section is

_ Ikt %

S = =L, 61
TR +x) % (61)

where forward and backward cross sections are defined-as

cosa 0
P —/ 6, - d(cosf), X§ —/ o5y ndleos0).
0 —cosa
The relative correction to integrated crossssection is

YRR A

—ZL T ZR 62
3 et 3 (62)

>

where the left and right integrated cross sections are given
by

¢ = /Cowag d(cos 0),

0s b

¢ :/ 6% - d(cos6),

0s b

and the integration is over the cosine of the polar angle of
the outgeing negative fermion.

The'parity-violating (left-right) asymmetry is defined in
a.traditional way

oC — o€
Afp =L R, (63)
H of + ok
which at the Born level has the following structure
A0 S (y=12 1-4s%
R amd,2(y =)y +1 s,
2s (1=2y)
=—— — |, (64
w2t e Ty ) (Y

with y = —t/s. The left-right integrated asymmetry is
constructed from integrated cross sections

0+ 1}. The relatiye cotrection to the unpolarized differ- c ¢ -3¢
ential cross section (denoted by subscript 00) is Alrs = ¥C yyC" (65)
L R
ol + o} o) . . .
Soo = é g = %, (60)  Born results for the integrated asymmetry can be written in
oL +0or Oy the following form
|
A0 S 1 — 453, 2 cos acos b + 6(cos a + cos b) + cos 2a + cos 2b + 8
LRE8m3, 53, 2cosacos b + cos2a + cos2b + 8
2s 6(cosa + cosb)

=——5 |a.v, + a,v,

m2 2cosacosb + cos2a + cos2b + 8|

(66)
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In the case, when we consider full acceptance (a = 0°
and b = 180°), expressions for the integrated asymmetry
simplify considerably:

1 —4s2 2s
AO 1§00 = — § - w = ——54a,V
LRE10 8m3, 53, m%
\/EG ) 1 G,s
_ S 2 o _ LS W
- Ta SWCWLI‘,U” \/§ Ta ga(e)gb(”)

(67)

The choice of the polarization asymmetry (or integrated
asymmetry) as one of the observables is driven by its high
sensitivity to Weinberg mixing angle. In the case that the
physics beyond the Standard Model has a parity violating
contributor (as for a Z’ boson), it would be best to use AS,
and AS.s in the study of the properties of new physics
particles. By analogy, the forward-backward asymmetry is
defined as

ZC—ZC
AGy =Lt F 68
FB Eg+zg ( )

At the Born level A%, is found to be

6scosa

a e
“#3 +cos’a
s(1+2v,v,) —m}

(s —m%)* 4+ 2s0,v,(s —

0 _
App =a

m%) + s*(v,v, + a.4,)’
(69)

here, and in the above formulas, {vf,af} = {vjzr,aj%}.
Since A% is directly proportional to the product a,ay, it
is a very useful observable if we woulddike to search for the
candidates beyond the SM, withqan axial part of the
coupling only.

Finally, we would like to,define the NLO absolute
corrections to the Born asymmetri€s:

Apg = ATR = AYpop. Ars = AR — A%y,
Apgs = A%elz _ AgRZ' (70)

In our analysis*we start with a comparison between the
asymptotic ‘and full semiautomatic calculations. The results
for the relative correction &y, using the SPA approach can

TABLE 1.

be found in Table I for different i~ scattering angles in the
CM of the eTe™ system. Table I shows the asymptotic
and full semiautomatic results, respectively. For the cut
on the maximum energy of emitted soft photon, we take
y1 = w/+/s. Here we used y; = 0.05; this corresponds to
the maximum photon energy 0.05 - /s = 0.52885 (GeV)
for Belle II conditions. We also found very good agreement
between the two approaches for any reasonable choice
of y,.

Various numerical results for asymmetries and radiative
corrections are presented on Figs. 4-10. Here, for the cut on
energy of the emitted hard photon, in the center-of-mass
system of et and e, we used Q = 2.00GeV.

As we can see on Fig. 4, the correctionitoithe unpolarized
cross section related to the forward/backward kinematics is
not negligible. The correction imthe region 50° < § < 130°
is linearly decreasing with itS central value at ~5.0%. It is
important to note that our comparison between asymptotic
and full semi-automatic results (see Table I) has used only
the soft-photon contribution to the unpolarized cross-
section and that obvieusly disagrees with the values of
the correction on ‘Fig. 4 (left plot), where the hard photon
bremsstrahlung.contribution was also included. For the L-R
polarization”asymmetry on Fig. 5, we observe a standard
dependence'of the asymmetry on scattering angle. Here, as
expected,/the asymmetry reaches its maximum value at
forward angles, which is explained by the short range
interaction regime, where the parity violating Z-boson
exchange dominates the contribution to the numerator of
the asymmetry term. At backward angles we observe that
the asymmetry is trending towards a zero value due to the
large range interaction regime, where short range Z-boson
exchange has a negligible contribution, and hence the entire
L-R asymmetry goes to zero.

The total cross section and NLO correction, as a function
of detector acceptance, are shown on Fig. 6. The correction
to the total cross section reaches the value of ~46.8%, for
full geometrical acceptance, and is relatively constant.

The integrated L-R asymmetry ALl and its NLO
correction A; gy are shown on Fig. 7. The maximum value
of AVFL (for @ = 10° and b = 170°) is approximately equal
to the average value of differential L-R asymmetry, which
also corresponds to A% at @ = 90°. Results for the
calculated A%! asymmetry are shown in Fig. 8.

Figs. 8-10 are dedicated to the sensitivity study of
calculated observables to the cuts on the energy of emitted

SPA relative corrections to unpolarized differential cross sections, &, at the Belle 1I/SuperKEKB CM energy for the

€ e — putu(y) process at y; = 0.05 comparing asymptotic (2nd row) and semiautomatic (3rd row) calculations at different x~ polar

angles, 0, in the eTe~ CM system.

6° 10 30 50 70 90 110 130 150 170
Asymptotic approximation  0.0180 —0.0456 —0.0738 —0.0935 -0.1099 -0.1264 -0.1460 -0.1743 —-0.2378
Semiautomatic approach 0.0179 -0.0455 -0.0738 —0.0934 —0.1099 —-0.1263 —-0.1459 —0.1742 —-0.2372
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FIG. 4. Left: unpolarized NLO corrected (0 + 1), Born (0), and their difference (1) differential crgss sections vs scattering angle 6.
Right: the relative NLO correction to unpolarized Born cross section vs . Calculations are done at an @ cutof 2 GeV. The points are the
results obtained from running the /C/C Monte Carlo generator as described in the text, where the error bars represent the statistical errors

from the number of Monte Carlo events generated.

soft photons. In these plots we show dependencies of the
observables on the photon’s energy cut Q, where the dashed
line was obtained using the soft-photon approach only, and
the solid line corresponds to the calculation with hard-
photon emission.

As it can be seen, for the asymmetries, either AYR!, A%
or AV-L. the two approaches start to deviate significantly at
Q ~ 0.5 GeV. This justifies the importance of inclusion of
hard-photon emission calculations when it is required|to
provide analysis for observables such as asymmetries.
However, for the various cross sections such”aswde®t!,
Z(%H or 288“ ! the discrepancy between two approaches start

to become visible only at Q= 4.5 GeV, which is rather
close to they maximum energy of emitted photons,
Q = 5.2885/GeV. Since the calculations in the soft-photon
approdch. are considerably simpler, we can rely on SPA
when ‘dealing with cross section calculations.

A. Comparisons with }C/C Monte Carlo

The ICK [12] Monte Carlo code is used by a number of
particle physics experiments, including BABAR, Belle, and
Belle II, to simulate ete™ — utp~(ny) and ete” —
7777 (ny) events. In KK, photon emission effects from
the initial beams as well as outgoing fermions are

x102 A, , x102 A,
0.1 : : : 012 : : :
L N Pt L (o S— L — - Ao
dih Y22 L [ 5 i :
0 : ; ; 0.08 f-----mm--- Ao bemmme e R
005 F--at- N SN A L ; ; !
: E 006 [---------- dememneonee- bofmneeee- s
Qe 83 T O i / i
| - | 004 [emmmmmene- dommee S bommmmeee oo
N drmmenmnees S dmmmnmnes : | |
; ; ; 002 frmmmmmmect A R O
S Ammmmmeemes pomooensl LT ! !
095 e I R - 0" {— H— H—
i i ' cos 0 i i i cos O
-03 - - i -0.02 L L L
R 05 0 05 -1 05 0 05 1

FIG. 5.

Left: the polarization Born asymmetry (0) and asymmetry taking into account the NLO EWC (0 + 1) vs scattering angle

cos @, KK Monte Carlo points are integrated in cos@ bins 0.125 in width. Right: the absolute NLO correction to polarization
Born asymmetry vs cosd. Calculations are done at an Q cut of 2 GeV. The points are the results obtained from running the CXC
Monte Carlo generator as described in the text, where the error bars represent the statistical errors from the number of Monte Carlo

events generated.
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FIG. 6. Left: unpolarized NLO corrected (0 + 1), Born (0), and their difference (1) total cross sections vs angle a. Right: the relative
NLO correction to unpolarized total Born cross section vs a. Calculations are done at an € cut of 2 GeV. The points are the results
obtained from running the IC/C Monte Carlo generator as described in the text, where the error bars represent the statistical errors from

the number of Monte Carlo events generated.

calculated up to second order, including interference
effects, using coherent exclusive exponentiation (CEEX)
[29] and electroweak corrections using the DIZET
library, which is based on the on-shell renormalization
scheme [30]. The calculations of this work are compared
to those provided by IC/C version 4.19, which uses DIZET
version 6.05. In order to carry out these comparisons
the particle masses used in JCC were changed to match
those in Sec. IV and the Weinberg mixing angle, which:is
also an input to [C/C, was set to the value corresponding to
the on-shell value of sin? @y, = 0.221392, aS deScribed
by (13).

Ao
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Two billion, ees — utu~ events were generated with
ICK for bothya left-handed polarized e~ beam and a right-
handed” polarized e~ beam. Each simulated event was
required to,produce both muons within an angular accep-
tancey, of @ = 10° and b = 170°. From the simulated
events comparisons were made with each observable in
Figs. 4-10. For Figs. 4 and 5 the KK results were binned in
cos 6 with bins 0.125 in width. The mean of each bin was
used to determine the cos @ value of the points. In both of
these figures the /CKC results are in agreement with our
calculations. In order to obtain the differential cross section
in ICKC we calculate the integrated cross section in the bin

AL[\’Z
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FIG. 7. Left: the left-right integrated Born asymmetry (0) and asymmetry taking into account the NLO EWC (0 + 1) vs angle b at
a = 10°. Right: the absolute NLO correction to left-right integrated Born asymmetry vs b at @ = 10°. Calculations are done at an Q cut
of 2 GeV. The points are the results obtained from running the XXC Monte Carlo generator as described in the text, where the error bars
represent the statistical errors from the number of Monte Carlo events generated.
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Left: the forward-backward Born asymmetry (0) and asymmetry taking into account the NLO EWC,(0 + 1) vs angle a at an Q

cut of 2 GeV. Right: Calculations in two approaches: SPA (dashed line) and HPA (solid line), the NLO corrected forward-backward
asymmetry at @ = 30°. The points are the results obtained from running the K Monte Carlo generator as described in the text, where
the error bars represent the statistical errors from the number of Monte Carlo events genetated.
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FIG. 9. Calculations in two approaches: SPA (dashed line) and HPA (solid line). Left: The NLO corrected unpolarized differential
cross section at a = 30° vs'Q. Right: the NLO corrected unpolarized integrated cross section at a = 10°, b = 170° vs Q. The points are
the results obtained from running the IC/C Monte Carlo generator as described in the text, where the error bars represent the statistical

errors from the number of\Monte Carlo events generated.

and then normalize it by the width of the bin. In Figs. 6 and
7 the ICKC\events are binned by angular acceptance. Note
thataas‘ene end of the bin is fixed and the other moved to
variods angular cuts, some C/C events populate multiple
bins and therefore the points are not statistically indepen-
dent. Using ICK the forward-backward asymmetry was
determined with two separate methods. The first method
counts the events that fall in an angular acceptance between
+a and 90° with a 2 GeV Q cut, shown in Fig. 8 (left). The
second method counts events as a function of the Q cut in
an angular acceptance of a = 30° and 90°, as seen in Fig. 8

(right). The forward-backward asymmetry seen in Fig. 8
shows an offset of a few percent between our calculations
and the /C/C results. This is most likely a result of App
receiving a substantial contribution from the IR-finite part
of the photon bremsstrahlung terms (see Fig. 15, left plot).
In our case we consider only one-photon emission in initial
and final states, while ICK accounts for higher photon
multiplicity when the bremsstrahlung contribution to Agp is
calculated.

In Fig. 8 we switch from angular acceptances to cuts on
the energy of the emitted photon. As multiple photons are
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FIG. 10. Calculations in two approaches: SPA (dashed line) and HPA (solid line). Left: the NLO corrected polarization asymmetry at
6 = 90°, LK Monte Carlo integrated between 70° and 110°. Right: the NLO corrected integrated asymmetry from a = 10°to b = 170°.
The points are the results obtained from running the ICKC Monte Carlo generator as described.in"the text, where the error bars represent

the statistical errors from the number of Monte Carlo events generated.

produced in /C/C, not just a single photon, we define Q as
Qg = § (1- ‘T') where s is the square of the center-of-
mass energy and s’ is the square of the invariant mass of the
muon pair. In Figs. 9 and 10 the KK events are binned
according to the Q cut value of the event. As some events
populate multiple bins as the Q cut value is varied, this
again leads to statistical correlations between bins on these
plots. The level of agreement between the ICIC cross
sections and the NLO corrected (0 + 1) cross sections
can be seen in Fig. 9. Figure 10 compares the KK results
with our calculations of A; ; as a function of the Q cut. In

order to compare our calculations of Aggtat € =90° as a

V. SENSITIVITY STUDY

We néxtStudy the sensitivities of the observables A) %

(65)4and” A% (68) to the effective weak mixing angle
(53= sin® 1) and vector part of the Z-boson to fermion
coupling (vZ; =I5 — 20,5%).

In order to represent the ete™ — ptu~ matrix element
with the simple effective Born-like amplitude, we can use
leading order low energy one-loop oblique corrections to
the Born matrix element. Overall we can write for the QED
and electroweak parts [26]:

function of the Q cut to those of KK [Fig 10 (eft)], the M, = (5)Qc 0y (Do, ue) (i, 7" v,).
acceptance for charged muons generated by /C/C is set to § 5
o o . . G m
70° < 8 < 110°, a region over whichithe A; r dependence My = Ex z (Bor, 12 — 253 ()0,

on cos# is linear to a good approximation (see Fig. 5).
Note that, again, the point-to-peint correlations are large.
From Fig. 10 (right), it is_evident that in the region
1 GeV < Q <3 GeV.“the, KK results integrated over
10° < 6 < 170° are inygood agreement with the HPA
calculation, within the /C/C statistical uncertainties. This
statistical uncertdinty arises from the finite number of
events gen¢rated\by K/ for each of the two e~ polarization
states. Accounting for the numbers of [C/IC events from
each, sample that survive the acceptance and € require-
ments; the absolute /C/C statistical uncertainty on Ajg
ish£1.9 x 1073,

It is evident that at low values of Q there is significant
disagreement between K/ and the SPA and HPA
treatments. This is a result of the fact that K addresses

V2 s—m%+ i1z
- IgyS]ue)(aﬂyy[l/s; - 23%4/(S)Q/4 - 1;347/5]1}#)'

(71)

Here a(s) represents the running value of fine structure
constant, defined as

a(s)

TIERE, ()]s

and 5%, (s) defines the effective running Weinberg mixing
angle through the following expression

TABLE II. Results of S“%V in on-shell and MS renormalization
schemes.

. . . - ) s (GeV? S ones 52 __, PDG(201
infrared divergences via exponentiation whereas in 5 (GeV) SW on—shell Sy PPG2016)
the SPA and HPA treatments, the infrared divergences 0 0.23821 0.23857
persist. m’ 0.23124 0.23129
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cut on soft-photons at 2.0 GeV. The width of the band corresponds to the £0.0000097 uncertainty on the central value of A?fL.

ER[i}/Z(S)]

s+ Eﬁ[iw(s)] ’ (72)

Siv(s) = sty — swew

Parameter «, is defined based on relationship to expression
(58) in the following way:

1-Ar

K=—"""—"FF%"". 73

I+ S%[%Zzz(s)] 7%
The effective mixing angle is frequently used,as one of the
primary parameters in precision electtoweak physics and
here we study the dependencies of A%z and A%, on 53,. To
start with, we show on Tablé 1I, E%V(s) computed in
different renormalization schemes at zero and Z-pole
kinematics. Our calculated ‘on-shell values of 5% (s) com-
pare favorably with thésécalculated in the MS scheme, as
reported in the PDG MS.

For the kinematics, relevant to the Belle II experiment,
Vs =10.579.GeV, the on-shell effective value of 53, (s) is
equal to 023413. In order to study the sensitivity of the
polarization ‘asymmetry to the variation of 5%,(s), we can
simply‘wary ‘the value of my, then calculating 5% (s) and
asymimetries, we construct parametric dependencies of the
agymifietry on 53,(s) or v%;. It is important to note that in
the analysis of the sensitivity of the asymmetries we took
the cut on the bremsstrahlung photons at 2.0 GeV.

In order to evaluate the experimental asymmetry uncer-
tainties that feed into the sensitivities, we make the
following reasonable assumptions regarding pertinent
experimental parameters that potentially can be achieved

at Belle’TI/SuperKEKB if there is an upgrade that intro-
duces, polarization:

@), the electron beam polarization is pp = 0.7000%
0.0035, the positron beam is unpolarized.

(i) pp can measured with 0.5% precision, and this
dominates the systematic error on A; .

(iii) App can be measured with an absolute systematic
uncertainty of 0.005.

(iv) Belle II collects 20 ab~! of data with the electron
beam polarization and selects ete™ — utu=(y)
events with 50% efficiency.

(v) The average /s, which has a root-mean-square
(RMS) spread of 5 MeV [1], is known to
+1.2 MeV of the peak of the Y (4S) resonance.'

With such parameters we can expect an absolute stat-

istical uncertainty on both Azg and A,z of 9.4 x 1075,
This gives a total uncertainty on A;zs (With b = 170°)
of  £0.0000094(stat) + 0.0000030(syst) = £0.0000097
(total). The error is dominated by the statistical uncertainty
and gives a relative uncertainty on A; gy of 1.6%. The total
uncertainty on Apg (with a = 10° b = 170°) is £0.0050
(total). In this case, the uncertainty is completely dominated

'SuperKEKB operations, following past practice of previous
generation et e~ B-factories, will ensure that /s is at the peak of
the T(4S) by scanning the energy of one of the beams in a
manner that maximizes the rate of e™ e~ — hadrons throughout of
data-taking runs. As the RMS spread in +/s is significantly
smaller than the Y(4S) width (20.5 £2.5 MeV), the average
value of /s will be known to +1.2 MeV, the experimental
precision on the Y (4S) mass [27].
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FIG. 12. Forward-backward asymmetry for the « = 10°and » = 170° as a functior$). orizontal band shows the central value

0+1
central value of Ay .

by the systematic uncertainty and gives a relative error on
A FB of 9.4%.

The reason for this difference in relative uncertainties i
that the systematic error on A; ; scales as the relative error
because pp is a multiplicative correction needed for the
measurement and has no other large systematic error sin
essentially all other detector systematic errors/Caneel. On
the other hand, for Ay the dominant systematigor arise
in the detector and do not fully canceliflis nec ssary to
measure the angles and forward and b d acceptances,
the boost to transform into the CMafr: d understand
any charge asymmetries in t tor. As these are
systematic uncertainties in the ctor asymmetries, they
are absolute uncertainties .

Figure 11 shows dependence of AVL on
5%,(s = 10.579% GeV?). That is evident from the fact that
the polarization as is proportional to the interfer-
ence term: 2N , which is linearly proportional to

e seen from Fig. 11, the absolute

5%,(s). As
uncert@ O+s equal to £0.000097, translates into

an ainty of 0.21% on 5%,(s) at s = 10.579% GeV>.

eneral the on-shell extraction of 5% (s) from an

ental polarization asymmetry could be done by

Q)mrmining the effective my from the measured A%}

and then determine 57,(s) for that specific effective my,
from Eq. (72).

It is known that in the timelike region, the value of 5%(s)

changes rapidly near resonances. Although we have not

included the effect of hadronic resonances in our treatment,

we %imate the impact of such an effect on the

1on of an asymmetry measurement made at the peak
e Y(4S) resonance using Fig. 1 of reference [31].

From that figure, sin? @y, changes by approximately 0.003

over the 20.5 MeV full width of the Y(4S) resonance

FB asymmetry: solid-Born (in numerator), dashed-fully corrected.

0.5

102Ars

20 40 60 80
ao
FIG. 13. Born [first term in Eq. (75)] and fully corrected A%j".

Born is represented by solid line, and corrected A%g' is shown by
dashed line.
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FIG. 14. Various coatributions to Ayg. On all graphs, solid green line corresponds to Born contribution (in numerator of Ar), dashed
yellow line is*fully, corrected asymmetry and dot-dashed blue shows various NLO parts of App.

and , therefore there is a sensitivity of Agpq /A 5=
0:00015/MeV in the region of the peak of the Y(4S)
resonafice. As /s is known to +1.2 MeV, in the inter-
pretation of the integrated A; p measurement in terms of
5% (s), this translates into an uncertainty on 5%,(s) of
approximately 0.00018, or 0.08%, which contributes a
small additional uncertainty: adding this in quadrature with
the 0.21% coming from the other uncertainties yields a

total uncertainty on 5% (s) of 0.22%. We note that this

uncertainty will be common to measurements from each
fermion species and therefore will cancel in evaluations of
fermion universality of the weak mixing angle performed
with A;zs at Belle IL

In a similar fashion we can study the sensitivity of the
forward-backward asymmetry to the variations of 5%,(s).
Figure 12 shows the similar dependence of A%;' on 53,(s),
but with a substantially smaller slope when compared to

Fig. 11. Although the numerical value of A% is much
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IR finite soft-photon bremsstrahlung (left plot) and total correction (right plot) toithe numerator of the asymmetry. Solid green

line corresponds to Born contribution (in numerator of Arp), dashed yellow line is fully'corrected asymmetry and dot-dashed blue shows

various NLO parts of App.

larger than AYEL, it’s sensitivity to 5%, (s) is rather low. This

translates to an uncertainty of 19.8% on 5%(s), if we
consider £0.00050 uncertainty in A%L".

Clearly A%;! contains substantial contributions, which
are not sensitive to parity-violating physics. At this point
we would like to determine the most dominant contribu-
tions to A%E! and their nature. We will start with the basic
definition of various QED and Weak contributions in the
forward-backward asymmetry:

0+1 0+1 01
Ir —Xp _FFB

A0+1 _
FB = 0+1 0+4" — $0+1
2F = ZB ZT

(74)

The denominator of (74); is defined as a total integrated
unpolarized cross section including one-loop corrections. We
will keep this part of A%l unmodified. This way contribu-
tions to the asymmetry; are additive. As for the numerator of
A% it will be dividéd into Born, various infrared finite NLO,

and soft-brémsstrahlung contributions. More specifically:

P =y + T D™ 4 T o

iy F}":—BTR(Z) i 1—‘;;7—BBB(Z) n FIZ:l—gSE(y) n Fi;TR @)
n ri;BB(y) n FIZ:;SE(Z) n FIZTI—;TR(Z) n F,Z;;BB(Z) el

(75)

Here, I').; is the forward-backward Born contribution to the

(r)

numerator of A%l and F%SE (for example) and

corresponds to the interference term between Born QED
and 7 — y self-energies (SE). Furthermore TR and BB stand
for triangle and box type graphs, respectively.

Our starting point is to show Born and fully corrected
forward-backward asymmetries. We do this for both
renormalization conditions, based on [6] and [18].
Results on Fig. 13 are represented by the infrared finite
parts of virtual and soft-bremsstrahlung corrections only.
That would also be true for all partial NLO contributions
appearing in (75). We have observed practically zero con-

oo . —SE(y) —TR(y) (—SE(Z) (-7—BB(Z
tributions coming from T ) 1= TRU) pioSEZ) - BE(Z)

o AFg L FB L FB
Z—-SE(y) 1~Z—SE(Z) (~Z~TR(Z) 1~Z-BB(7) Z-BB(Z) .
I'eg” . Tpp JTrg T Y, and I'pp terms in

(75). This implies that contributions coming from all types
of self-energies and electroweak (y—Z2, Z—-Z, and
W — W) boxes are negligible, and can be disregarded.
It is important to note that generally electroweak self-
energies or vertex correction graphs are not gauge invariant
and hence their independent contributions have no physical
meaning. However, for the forward-backward asymmetry
this can be bypassed, since gauge dependent contributions
largely cancel out even for separate parts, such as self-
energies or vertex correction graphs. We have verified this
by comparing self-energies (or triangles) contributions in
the different renormalization conditions (Denner and
Hollik) and found that the results are identical. At this
point we only show contributions which are substantial and
can not be avoided in the calculations of A%%!.

As we can see from Fig. 14 (two top graphs), we have
identical (symmetrical) contributions from interference
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terms, such as: 2R [MeMETTIR | and fﬂ[MgMg;eTjoop]. The
biggest contribution comes from the interference term
between y-Born and yy-box (see Fig. 14, second row, left).
Overall, all one-loop contributions are systematically addi-
tive and the result is shown on Fig. 14, second row, right
graph. Since it is clear now that the addition of one-loop
contributions (blue, dot-dashed curve) and Born (green,
solid curve) term would not reproduce the full result for
A%E!, we turn our attention to IR finite terms of soft-photon
bremsstrahlung.

Itis clearly visible on Fig. 15 (left) that the bremsstrahlung
contribution largely cancels out one-loop results
and produce the correction, shown on Fig. 15 (right and
blue dot-dashed curve). The addition of the one-loop
correction (Fig. 15, left and blue dot-dashed curve) and
Born result (solid green curve on the same plot) produce the
final result for A%:! (dashed yellow curve). One of the
possible explanations for such a large cancellation could be
found in the fact that both of the IR finite parts of virtual one-
loop correction and soft-photon bremsstrahlung contain
collinear divergent terms, which cancel out in the final result.

Overall we conclude that A%HL is the observable most
sensitive to the effective electroweak parameters. As such,
in order to search for physics beyond the Standard Model at
the precision frontier of neutral-current measurements, it is
crucial to have polarized electron beams in Belle II/

SuperKEKB in order to measure AY%L.

VI. CONCLUSION

In this paper we compare the results for the full set of
one-loop EWC to parity violating polarization and foerward-
backward asymmetries at the Belle II/SuperKEKB CM
energy obtained by different methods+ The soft photon
approximation using an exact semi-automaticvapproach is
validated by an asymptotic approach with simplifications
giving a compact form. We takeyunder full control the
bremsstrahlung process and compare results for the soft
and hard photon calculations. We ‘also evaluate the sensi-
tivity to the variation 6f $%,for both polarization and

forward-backward asymmetries. We find that the highest
sensitivity is achieved for the measurements using A;xs
with a polarized electron beam. In addition, we have
analyzed various NLO contributions to the IR finite part
of A%L!. As a result, we found that the large contribution
arising from interference terms between {y,Z}-Born,
{y —y}-box, and {y, Z}-triangle graphs are compensated
by the IR finite part of the soft-photon bremsstrahlung
contribution and that self-energies, although importantfor
the overall cross sections, cancel out for the, forward-
backward asymmetry and therefore have an oyverall negli-
gible contribution to that asymmetry. A comparison is also
made with the ICKC Monte Carlo generator for the A; ; and
App asymmetries. Where infrared divergencies are small,
our current calculations are in goed,agreement with those
of the XX Monte Carlo.

We plan to broaden these studies to include left-right
asymmetries in e e~ collisions for Bhabha scattering and
for massive final-state fermions (tau leptons, charm and
bottom quarks), where the ‘negligible-mass assumption is
not valid. In order to-~further reduce the theoretical uncer-
tainties, our next step is to include the two-loop EWC in the
on-shell renormalization scheme, and compare these to the
calculationsn the MS scheme. Nonetheless, the results of
this papet demonstrate that the Standard Model predictions
for'Ag zhat'10.579 GeV, and consequently the weak mixing
angle at that energy, are already under excellent theoretical
control and provide encouragement to upgrade SuperKEKB
with a polarized e~ beam in order to provide a new toolin the
search for physics beyond the Standard Model.
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