22.317973 T983

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

Г. Ю. ТЮМЕНКОВ

ТЕРМОДИНАМИКА и статистическая физика STW PENOSINIO PINININI STRANGE PRINING SINIO PININI STRANGE PRINING PR

22.317273

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

Г.Ю. ТЮМЕНКОВ

ТЕРМОДИНАМИКА И СТАТИСТ

Тестовые задания

я студентов специальностей 2014

04 01 «Физика (по направлениям)»

YK 8983

Установа адукацыі "Гомельскі дзяржаўны ўніверсітэт імя Францыска Скарыны" БІБЛІЯТЭКА

> Гомель ГГУ им. Ф. Скорины 2013

УДК 536(079) БКК 22.317я73 Т 983

Репензенты:

кандидат физ.-мат. наук, доцент В. А. Зыкунов; кафедра теоретической физики учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государствениый университет имени Франциска Скорины»

Тюменков, Г. Ю.

Т 983 — Термодинамика и статистическая физика: тестовые задания / Г. Ю. Тюменков; М-во образования РБ, Гомельский гос. ун-т им. Ф. Скорины. — Гомель: ГГУ им. Ф. Скорины, 2013. — 36 с.

ISBN 978-985-439-775-7

Целью данных тестовых заданий является оказание помощи студентам в процессе усвоения основ термодинамики и статистической физики, а также при подготовке к текущему и итоговому контролю знаний.

Тестовые задания адресованы студентам специальностей: 1-31 04 01 «Физика (по направлениям)»,

УДК 536(079) БКК 22.317я73

ISBN 978-985-439-775-7

- © Тюменков Г. Ю., 2013
- © УО «Гомельский государственный университет им. Ф. Скорины», 2013

Содержание

Содержание							
Введение 4 1. Термодинамика 5 2. Статистическая физика 18 Литература 33							
Введение							
ROPINI							
PELIO3W							

Введение

методическим приемом повышения эффективности обучения является текущий контроль знаний. Немаловажное значение при этом имеет самоконтроль, позволяющий учащемуся в течение семестра оценивать уровень своих знаний. Наиболее перспективной формой контроля знаний является тестирование. К его достоинствам, несомненно, относятся универсальность, объективность и прямая ориентированность на использование современных технических средств, в первую очередь, компьютерных. ПК технологии могут быть с успехом использованы на всех стадиях учебного процесса, так как позволяют достаточно рельефно выделить общую структуру и главные положения излагаемого курса, обобщить и систематизировать материал в рамках предлагаемых разделов, либо тем. Понятно, что компьютерное тестирование не позволяет преподавателю анализировать характер мышления обучаемого, оценивать его умение давать полный развернутый ответ, выявляемые в процессе индивидуального опроса. Поэтому правильным является использование тестирования предварительную, либо же дополнительную форму контроля знаний совместно с традиционными формами, такими, как коллоквиумы, зачёты и экзамены.

Разработанные тестовые задания предназначены для проведения текущего и итогового контроля знаний студентов по общему курсу «Термодинамика и статистическая физика», методологически разделенному на два взаимодополняющих раздела. Вопросы теста имеют разный уровень сложности и часто предполагают множественный выбор ответа. Текущий контроль знаний осуществляется по мере прохождения разделов курса и позволяет студентам объективно оценивать уровень своих знаний. А это в свою очередь корректирует направленность самостоятельной работы в рамках изучаемого курса.

Данные метолические материалы предназначены для подготовки студентов к компьютерному тестированию по курсу «Термодинамика и статистическая физика» с целью контроля и коррекции знаний. Тестовые задания адресованы студентам специальностей 1-31 04 01 02 «Физика (производственная деятельность), 1-31 04 01 03 «Физика (научно-педагогическая деятельность)», 1-31 04 01 04 «Физика (управленческая деятельность), 1-02 05 04-04 «Физика. Техническое творчество» и 1-31 04 03 «Физическая электроника».

В заданиях использованы традиционные термодинамические обозначения, а также общепринятая научная терминология. В каждом пункте возможен болсе чем один правильный ответ.

1. Термодинамика

- 1. Первое начало термодинамики для газовой системы с переменным количеством вещества имеет вид:
 - a) $dU = -TdS PdV + \mu dN$;
 - 6) $dU = TdS PdV + \mu dN$;
 - B) $dU = -TdS + PdV + \mu dN$;
 - r) $dU = TdS PdV \mu dN$;
 - μ) $dU = TdS + PdV \mu dN$.
- 2. Обобщённой силой и обобщённой координатой в теории стержней соответственно являются:
 - a) f и l;
 - б) f и (-l);
 - в) (-f) и l;
 - г) 1 и (-f);
 - д) (-f) и (-l).
- 3. Термодинамический потенциал Гиббса в системе СИ имеет размерность:
 - a) кг·м²·с:
 - б) кг·м/с²
 - в) кг•м²/с;
 - г) кг·м/с;
 - д) $\kappa r \cdot m^2/c^2$.
- 4. Процессы перехода термодинамической системы из неравновесного состояния в равновесное называются:
 - а) выравниванием;
 - б) сублимацией;
 - в) релаксацией;
 - г) работой;
 - д) теплопередачей.

- 5. Критический объем $V_{\kappa p} = 4b$ соответствует:
 - а) идеальному газу;
 - б) газу Бертло;
 - в) газу Ван-дер-Ваальса;
 - г) первому газу Дитеричи;
 - д) второму газу Дитеричи.
- 6. Коэффициент полезного действия тепловой машины...:
 - а) прямо пропорционален работе А, совершенной за цикл;
- б) обратно пропорционален количеству теплоты Q_1 , полученному от нагревателя;
 - в) зависит только от работы А, совершенной за циклу
 - г) обратно пропорционален работе А, совершенной за цикл;
- д) обратно пропорционален количеству теплоты Q_2 , отданному холодильнику.
- 7. Первое уравнение Эренфеста для фазовых переходов второго рода следует из...:
 - а) неравенства молярных энтропий фаз;
 - б) равенства молярных энтропий фаз;
 - в) неравенства молярных объёмов фаз;
 - г) равенства молярных объёмов фаз;
 - д) равенства химических потсициалов фаз.
 - 8. Уравнение Клапейрона-Клаузиуса...:
 - а) описывает фазовые переходы первого рода;
 - б) описывает фазовые переходы второго рода:
 - в) следует из равенства химических потенциалов фаз;
 - г) является уравнением состояния;
 - д) связывает теплоемкости изопроцессов.
- 9. Если показатель политропы равен 0, то соответствующий процесс подчиняется закону...:
 - а) Бойля-Мариотта;
 - б) Шарля;
 - в) Пуассона;
 - г) Майера;
 - д) Гей-Люссака.

10. Точка Бойля отсутствует, если газ подчиняется...:

- а) первому уравнению Дитеричи;
- б) второму уравнению Дитеричи;
- в) уравнению Ван-дер-Ваальса;
- г) уравнению Бертло;
- д) уравнению Менделеева-Клапейрона.

11. Процесс Джоуля-Томсона является:

- а) изотермическим;
- б) изоэнтальпическим;
- в) адиабатическим;
- г) подсистемно равновесным;
- д) процессом плавления.

12. Параметра в в уравнении Бертло...:

- а) связан с силами межмолекулярного притяжения;
- б) связан с силами межмолекулярного отгалкивания;
- в) рассчитывается в приближении жестких сфер;
- г) связан с электрическим дипольным моментом молекул;

CKOBNHIP

д) безразмерен.

13. Свободная, энергия Ропределяется выражением:

- a) F = U + TS + PV
- 6) F = U TS + PV:
- B) F = U + PV:
- Γ) $F \neq U TS$;
- л) F U + TS

14. Изотермы газа Ван-дер-Ваальса в (PV) — плоскости при T< $T_{\kappa p}$ имеют:

- а) один экстремум;
- б) два экстремума;
- в) одну асимптоту;
- г) две асимптоты;
- д) точку перегиба.

15. Термодинамические системы, имеющие несколько нетепловых степеней свободы, называются:

CKOBNHIP

- а) политропическими;
- б) политехническими;
- в) замкнутыми;
- г) адиабатическими;
- д) поливариантными.
- 16. Количество теплоты в термодинамике...:
 - а) является функцией процесса;
 - б) является скалярной величиной;
 - в) является функцией состояния;
 - г) не может быть равным 0;
 - д) не может иметь вид $Q = T(S_2 S_1)$.
- 17. Изменение типа кристаллической решетки углерода, приведшее к скачку величины теплоемкости...:
 - а) является фазовым переходом первого рода;
 - б) является фазовым переходом второго рода;
 - в) не является фазовым переходом;
 - г) сопровождается выделением тепла;
 - д) сопровождается поглощением тепла.
 - 18. Аналог формулы Майера для стержней имеет вид:
 - a) $c_1 = 2c_f = 0$;
 - 6) $c_1 + c_f = 0$
 - B) $c_1 c_1 = 0$;
 - Γ) $c_{fi} + 2c_{i} = 0$:
 - д) $c_f c_l = R$.
- 19. Если в уравнении состояния идеального газа положить R = 8,31 Дж/град моль, то шкала температур становится шкалой...:
 - а) энтропии;
 - б) Цельсия;
 - в) Фаренгейта;
 - г) Планка;
 - д) Кельвина.

20. Принцип Нернста называют:

- а) первым началом термодинамики;
- б) вторым началом термодинамики;
- в) третьим началом термодинамики;
- г) принципом температуры;
- д) принципом энтропии.

21. Второе начало термодинамика запрещает:

- а) превращать в работу всё тепло, полученное от нагревателя;
- б) превращать в работу всё тепло, отданное холодильнику;
- в) иметь КПД цикла, равный 1;
- г) возможность построения холодильной машины;
- д) циклические процессы.

22. Цикл Карно состоит из:

- а) одной адиабаты и двух изотерм;
- б) одной изотермы и двух изобар;
- в) двух изотерм и двух изохор
- г) двух адиабат и двух изотерм;
- д) двух изохор и двух изобар.
- 23. Термодинамический коэффициент вида $(\partial T/\partial V)_P$ для идеального газа равен:
 - a) R/P
 - 6) P/K
 - в) V/P
 - 1) K/V
 - д) ТУР.
 - 24. Таблица термодинамических коэффициентов состоит из:
 - а) 6 компонентов;
 - б) 9 компонентов;
 - в) 10 компонентов;
 - г) 12 компонентов;
 - д) 24 компонентов.

25. Физическое равноправие (PV) – и (TS) – плоскостей в теории реальных газов достигается условием:

- a) $\partial(PV)/\partial(TS) = 1$;
- 6) $\partial(PV)/\partial(TS) = 2$;
- B) $\partial(PV)/\partial(TS) = 0$;
- r) $\partial(PV)/\partial(TS) = -1$;
- π) $\partial(PV)/\partial(TS) = -2$.

26. Являются полными дифференциалы термодинамических параметров:

- а) внутренней энергии;
- б) работы;
- в) количества теплоты;
- г) энтропии;
- д) теплоемкости.

27. Химический потенциал µ это:

- а) молярная энтропия;
- б) молярная энтальпия;
- в) молярный объём;
- г) молярная внутренняя энергия;
- д) молярный термодинамический потенциал Гиббса.

28. Второе уравнение Дитеричи имеет вид:

a)
$$P = \frac{RT}{V-b} \frac{a}{TV^2}$$

$$(7) P = \frac{RT}{V-b} \exp\left(-\frac{a}{RTV}\right);$$

$$P = \frac{RT}{V-b} - \frac{a}{V^2};$$

r)
$$P = \frac{RT}{V-b} - \frac{a}{V^{5/3}}$$

$$_{\rm Д}) P = \frac{\rm RT}{\rm V}$$

29. Область отрицательного эффекта Джоуля-Томсона для газа Бертло удовлетворяет условиям:

- a) $P > 6\sqrt{2}P_{\kappa p}$;
- 6) $P \le 6\sqrt{2}P_{KP}$;
- B) $\lambda > 6\sqrt{2}P_{\kappa p}$;
- r) $\lambda > 0$;
- д) $\lambda < 0$.

30. Приведённые термодинамические параметры определяются отношением вида:

- a) X/Y_{KD} ;
- б) X_{кр}/ X;
- B) $X_{\kappa p}/Y$;
- Γ) X / X_{κp};
- д) $X_{\kappa p}/Y_{\kappa p}$.

31. Экстенсивными термодинамическими параметрами являются:

- а) температура, химический потенциал и энтальпия;
- б) давление, свободная энергия и объём;
- в) химический потенциал, число молей и длина стержня;
- г) энтропия, объём и внутренняя энергия;
- д) энтальпия, энтропия и температура.

32. На изотермах газа Ван-дер-Ваальса нефизической является область, где...:

- a) $(\partial P/\partial V)_T > 0$;
- 6) $(\partial P/\partial V)_T < 0$;
- B) $(\partial P/\partial V)_T = 0$;
- r) $(\partial V/\partial P)_T > 0$;
- д) $(\partial V/\partial P)_T < 0$.

33.	Адиабатическая	теплоемкость	термодинамической	системы	c_s
равна					

- a) $c_s = \infty$;
- 6) $c_s = 0$;
- B) $c_s = R$:

34. Метастабильное состояние растянутой жидкости возникает при ловии: а) P< 0, T< 0, V< 0 условии:

- 6) P> 0, T< 0, V< 0:
- B) P > 0, T > 0, V < 0;
- Γ) P< 0. T> 0. V< 0:
- д) P < 0, $\Gamma > 0$, V > 0.

35. Малым параметром в термодинамике стержней является:

- а) изобарный коэффициент объёмного расширения;
- б) адиабатический термический коэффициент давления;
- в) коэффициент линейного температурного расширения;
- г) изотермическая сжимаемость;
- д) изохорная теплоемкость.

36. К окончательному фазовому равновесию приводит выравнивание:

- а) температур;
- б) химических потенциалов;
- в) давлений:
- г) энтропий;
- д) внутренних энергий.

теплоизолированных системах энтропия обязательно возрастает в процессах:

- а) выравнивания;
- б) равновесных адиабатических;
- в) неравновесных изохорных;
- г) равновесных изотермических;
- д) равновесных изобарных.

38. Компоненты и фазы характеризуют соответственно:

- а) физическую и химическую неоднородность системы;
- б) только химическую неоднородность системы;
- в) только физическую неоднородность системы;
- г) химическую и физическую неоднородность системы;
- д) неоднородность системы по концентрации.

39. О температуре можно сказать, что она...:

- а) изотермична;
- б) поливариантна;
- в) бинарна;
- г) интенсивна;
- д) экстенсивна.
- 40. Первое начало термодинамики в теории стержней имеет вид:
 - a) dU = -TdS fdl:
 - 6) dU = TdS fdl;
 - B) dU = -TdS + fdI;
 - r) dU = TdS + fdI;
 - π) dU = TdS PdV.
- 41. Обобщённой силой и обобщённой координатой в теории реальных газов соответственно являются:
 - a) Ри(-V);
 - V и Р:
 - в) РиV;
 - г) V и (-P);
 - д) (-P) и V
 - 42. Энтальпия W в системе СИ имеет размерность:
 - a) $K\Gamma M^{2}/c^{2}$
 - б) кг·м²/с;
 - B) $K\Gamma \cdot M/c^2$:
 - Γ) $K\Gamma \cdot C^2/M^2$;
 - д) кг·м/с.

- 43. Прямой фазовый переход из твёрдой фазы в газообразную называется:
 - а) процессом Джоуля-Томсона;
 - б) кипением;
 - в) релаксацией;
 - г) сублимацией;
 - д) кристаллизацией.
 - 44. Критический объем $V_{\kappa p} = 3b$ соответствует:
 - а) идеальному газу;
 - б) газу Бертло;
 - в) газу Ван-дер-Ваальса;
 - г) первому газу Дитеричи;
 - д) второму газу Дитеричи.
 - 45. Коэффициент полезного действия цикла Карно зависит:
 - а) только от температуры холодильника Т2;
 - б) от разности температур нагревателя и холодильника (Т₁ Т₂);

CKOBNHIP

- в) только от температуры нагревателя Т₁;
- Γ) от отношения температур холодильника и нагревателя (T_2/T_1);
- д) от суммы температур нагревателя и холодильника $(T_1 + T_2)$.
- 46. Второе уравнение Эренфеста для фазовых переходов второго рода следует из...:
 - а) неравенства молярных энтропий фаз;
 - б) равенства молярных энтропий фаз;
 - в) неравенства молярных объёмов фаз;
 - г) равенства молярных объёмов фаз;
 - д) равенства химических потенциалов фаз.
- 47. При фазовых переходах первого рода наличие теплообмена с внешними системами обусловлено изменением...:
 - а) молярного объёма;
 - б) температуры;
 - в) давления;
 - г) молярной энтальпии;
 - д) молярной энтропии.

48. Если	уравнение	политропы	сводится	K	закону		
Бойля- Мариотта, то показатель политропы равен:							

- a) 0:
- б) 2;
- B) 1;
- γ;
- д) ∞.

49. Укажите критерий определения точки Бойля:

- a) $P = P_{\kappa p}$;
- б) P = 0:
- B) $P \to \infty$;
- Γ) $V = V_{\kappa p}$;
- д) V = 0.

50. По условию процесса Джоуля-Томсона давления начального P₁ и конечного P₂ состояний связаны соотношением:

- a) $P_1 < P_2$;
- б) $P_1 \ll P_2$;
- B) $P_1 > P_2$;
- Γ) $P_1 \equiv P_2$;
- $_{\rm Д}) P_1 = P_{2+}$

51. Параметр в уравнении Ван-дер-Ваальса...:

- а) связан с силами межмолекулярного притяжения;
- б) связан с силами межмолекулярного отталкивания;
- в) рассчитывается в приближении парных столкновений;
- г) связан с электрическим дипольным моментом молекул; д безразмерен.

Энтальпия W определяется выражением:

- a) W = U + TS + PV;
- 6) W = U TS + PV;
- \overrightarrow{B}) W = U + PV;
- Γ) W = U TS;
- д) W = U + TS.

53. Семейство изотерм стержня в (fl) – плоскости представляет собой:

- а) семейство линейных функций, исходящих из начала координат;
- б) семейство экспонент, исходящих из начала координат;
- в) семейство линейных функций, исходящих из точки $f = -\sigma E$;
- г) семейство экспонент, исходящих из точки $f = -\sigma E$:
- д) семейство линейных функций, исходящих из точки $f = \sigma E$.
- 54. Поливариантная термодинамическая система бинарной, если число её нетепловых степеней свободы...:
 - а) равно 2;
 - б) равно 1:
 - в) стремится к бесконечности:
 - г) равно 0;
 - д) больше 2.

55. Работа в термодинамике...:

- а) является функцией состояния;
- б) является скалярной величиной
- в) является функцией процесса:
- Γ) не может иметь вид $A = P(V_2)$
- д) не может быть равной 0.
- 56. Изменение типа кристаллической решетки льда приведшее к скачку сжимаемости . . .:
 - а) является фазовым переходом второго рода;
 - б) не является фазовым переходом второго рода;
 - в) не является фазовым переходом вообще;
 - г) не сопровождается выделением тепла;
 - д) сопровождается поглощением тепла.

Формула Майера имеет вид...:

a)
$$c_v - c_p = R$$
;
b) $c_v + c_p = R$;

б)
$$c_v + c_n = R$$
:

B)
$$c_v - c_p = 2R$$
;

r)
$$c_p + c_v = R$$
;

д)
$$c_p - c_v = R$$
.

58. Уравнение вида PV = RT для идеального газа является...:

- а) дифференциальным;
- б) молярным;
- в) уравнением состояния;
- г) уравнением процесса;
- д) однопараметрическим.

59. Принцип Нернста говорит о...:

- а) поведении энтальпии при T = 0;
- б) поведении внутренней энергии при T = 0;
- в) поведении энтропии при T = 0;
- г) невозможности построения вечного двигателя первого рода;

KOBNHIP

- д) недостижимости состояния с T = 0.
- 60. Второе начало термодинамики говорит о невозможности создания...:
 - а) вечного двигателя первого рода;
 - б) паровой машины;
 - в) велосипеда;
 - г) вечного двигателя второго рода;
- д) холодильной машины.

2. Статистическая физика

- 1. При микроканоническом распределении вероятности микросостояний ω_k связаны со статистическим весом Γ соотношением...:

 - a $\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \int_{\alpha}^{2\pi};$ 6) $\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \int_{\alpha}^{2\pi} e^{-\alpha} dx =$

MARHAD

a)
$$\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \sqrt{\frac{2\pi}{\alpha}};$$

6)
$$\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \int_{\pi}^{\alpha}$$

B)
$$\int_{-\infty}^{+\infty} e^{-\alpha \pi x^2} dx = \sqrt{\frac{\pi}{\alpha}};$$

$$\Gamma) \int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\alpha}{2\pi}};$$

3. Редукционная формула для Г – функции имеет вид:

a)
$$\Gamma\left(\frac{n+1}{2}\right) = \left(\frac{2n-1}{2}\right)\Gamma\left(\frac{n-1}{2}\right);$$

6)
$$\Gamma\left(\frac{n-1}{2}\right) = \left(\frac{n+1}{2}\right)\Gamma\left(\frac{n+1}{2}\right);$$

B)
$$\Gamma\left(\frac{n+1}{2}\right) = \left(\frac{n-1}{2}\right)\Gamma\left(\frac{n-1}{2}\right);$$

$$\Gamma) \ \Gamma \left(\frac{n-1}{2} \right) = \left(\frac{n+1}{2} \right) \Gamma \left(\frac{2n+1}{2} \right);$$

д)
$$\Gamma\left(\frac{n+1}{2}\right) = \left(\frac{n-2}{2}\right)\Gamma\left(\frac{n}{2}\right)$$
.

4. Статистическим весом Г называется...:

- а) количество макросостояний, соответствующих микросостоянию;
- б) количество микросостояний, соответствующих макросостоянию;
- в) число частиц макросистемы;
- г) натуральный логарифм энтропии системы;
- д) натуральный логарифм статистической суммы системы.
- 5. Плотность вероятности распределения Максвелла для модуля скорости молекулы 9 имеет вид:

a)
$$\varphi(\vartheta) = \left(\frac{m}{2\pi T}\right)^{3/2} e^{-\frac{3m\vartheta^2}{2T}} 4\pi\vartheta^3$$
;

6)
$$\varphi(\vartheta) = \left(\frac{m}{2\pi T}\right)^{3/2} e^{-\frac{m\vartheta^2}{2T}} 4\pi \vartheta^2;$$

B)
$$\varphi(\vartheta) = \left(\frac{2m}{\pi T}\right)^{3/2} e^{-\frac{m\vartheta^2}{2T}} 4\pi\vartheta^2$$
;

6)
$$\varphi(\vartheta) = \left(\frac{m}{2\pi T}\right)^{3/2} e^{-\frac{m\vartheta^2}{2T}} 4\pi \vartheta^2;$$
B)
$$\varphi(\vartheta) = \left(\frac{2m}{\pi T}\right)^{3/2} e^{-\frac{m\vartheta^2}{2T}} 4\pi \vartheta^2;$$

$$\Gamma) \varphi(\vartheta) = \left(\frac{m}{2\pi T}\right)^{5/2} e^{-\frac{m\vartheta^2}{2T}} 4\pi \vartheta^2;$$
D)
$$\varphi(\vartheta) = \left(\frac{m}{2T}\right)^{1/2} e^{-\frac{m\vartheta^2}{2T}} 4\pi T \vartheta^2.$$

6. Статистическая сумма Z в каноническом распределении определяется, как сумма по всем микросостояниям к макросистемы вида:

a)
$$Z = \sum e^{-\frac{E_k}{T_0}}$$

$$\delta) Z = \sum e^{\frac{E_k}{T_0}};$$

B)
$$Z = \sum e^{-\frac{E_k^2}{T_0}}$$

r)
$$Z = \sum e^{\frac{E_k^2}{T_0}}$$
;

д)
$$Z = \sum e^{\frac{3E_k^2}{2T_0}}$$

- 7. Физическая величина, определяемая как $X = \ln \Gamma$, называется:
 - а) внутренней энергией;
 - б) энтальпией;
 - в) температурой;
 - г) энтропией;
 - д) термодинамическим потенциалом Гиббса.
- 8. Каноническое распределение предполагает, что макросистема...:
 - а) находится в адиабате;
 - б) подчиняется микроканоническому распределению;
 - в) может быть микросистемой;
 - г) находится в термостате;
 - д) находится в милиции.
- 9. В квазиклассическом приближении газ называется больцмановским, если число его квантовых состояний $n_{\kappa B}$ связано с числом частиц N как...:

a)
$$n_{KB} = \frac{VP_{Xap}^3}{(2\pi\hbar)^3} = N;$$

6)
$$n_{KB} = \frac{VP_{XAP}^3}{(2\pi\hbar)^3} \gg N;$$

B)
$$n_{KB} = \frac{VP_{Kap}^3}{(2\pi\hbar)^3} \ll N;$$

$$\Gamma) \quad n_{KB} = \frac{VP_{Xap}^3}{(2\pi\hbar)^3} \approx N,$$

д)
$$n_{KB} = \frac{VP_{KB}^3}{(2\pi\hbar)^3} < N.$$

10. Среднеквадратичное отклонение случайной величины Δх задается выражением:

a)
$$\Delta x = \sqrt{\langle (x - \langle x \rangle)^2 \rangle}$$
;

δ)
$$\Delta x = \sqrt{\langle (x + \langle x \rangle)^2 \rangle}$$
;

B)
$$\Delta x = \sqrt{\langle x^2 \rangle + \langle x \rangle^2}$$
;

$$\Gamma) \quad \Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \; ;$$

д)
$$\Delta x = \langle (x - \langle x \rangle)^2 \rangle$$
.

11. Формулой Стирлинга называется выражение:

- a) $N! = \Gamma (N + 1);$
- 6) $N! = \Gamma (N-1);$
- B) $N! = (2\pi N)^{1/2} \left(\frac{N}{e}\right)^N$;
- r) $N! = (2N)^{1/2} \left(\frac{N}{e}\right)^{N};$
- д) N! = Z.

12. В теории макросистем статистическая физика...

а) изучает неравновесные состояния и неравновесные процессы;

KOBNHIP

- б) изучает равновесные состояния и неравновесные процессы;
- в) изучает неравновесные состояния и равновесные процессы;
- г) изучает равновесные состояния и равновесные процессы;
- д) основывается на модельных представлениях о структуре вещества.
- 13. Микроканоническое распределение в терминах илотности вероятности приобретает вид:
 - a) $\omega(E, k) = A \cdot \delta(E E_k);$
 - 6) $\omega(E, k) = A \cdot \Gamma(E E_k);$
 - B) $\omega(E, k) = A \cdot N \cdot (E E_k);$
 - $\Gamma) \quad \omega(T, k) = A \cdot N \cdot (T T_k);$
 - д) $\omega(N, k) = A \cdot \delta(N N_k)$.

14. 6N – мерное пространство, координатами которого являются 6N канонических переменных, называется:

- а) римановым;
- б) пространством Лобачевского;
- в) фазовым;
- г) газовым;
- д) псевдоевклидовым.

- 15. Энергетическая температура Т и безразмерная энтропия S связаны с помощью постоянной Больцмана k с термодинамическими температурой Т и энтропией S соотношениями:
 - a) $T = k \cdot T$ и $S = k \cdot S$:
 - б) $T = k \cdot T$ и S = S/k:

 - B) T = T/k μ S = S/k; r) T = T/k μ $S = k \cdot S$; μ $T = k^2 \cdot T$ μ $S = k^2 \cdot S$ $S = k^2 \cdot S$
 - 16. Следствием формулы Стирлинга является выражение:
 - a) $\frac{d}{dN}(\ln N) = \ln N$;
 - 6) $\frac{d}{dN}(\ln N!) = \ln N!;$
 - B) $\frac{d}{dN}(\ln N) = \ln N!;$
 - $\Gamma) \frac{d}{dN} (\ln N!!) = \ln N;$
 - д) $\frac{d}{d} (\ln N!) = \ln N.$
- OR CHOPWHIP 17. Обобщение понятия энтропии 8 для неизолированных систем через вероятности микросостояний ω_k имеет вид:
 - a) $S = -\sum_{k} \omega_{k} \ln \omega_{k};$ 6) $S = \sum_{k} \omega_{k} \ln \omega_{k};$

 - B) $S = -\sum_{k} \omega_{k} \lg \omega_{k}$;
 - $\Gamma) S = \sum_{k} \omega_{k} \lg \omega_{k};$
 - д) $S = \prod_k \omega_k ln\omega_k$.
- котором потенциальная энергия парного межмолекулярного взаимодействия пренебрежимо мала по сравнению кинетической энергией отдельной молекулы, называется:
 - а) больцмановским;
 - б) ван-дер-ваальсовским:
 - в) идеальным;
 - г) квантовым;
 - д) бозе-газом.

- 19. Распределение Максвелла для идеального больцмановского газа является прямым следствием:
 - а) микроканонического распределения;
 - б) канонического распределения;
 - в) большого канонического распределения;

a)
$$Z = N \left(\frac{mT}{2\pi\hbar^2}\right)^{3/2}$$
;

6)
$$Z = V \left(\frac{mT}{2\pi h^2}\right)^{3/2}$$
;

B)
$$Z = V \left(\frac{mT}{2\pi\hbar^2} \right)^{-3/2}$$
;

$$\Gamma) Z = N \left(\frac{mT}{2\pi\hbar^2}\right)^{1/2};$$

д)
$$Z = V \left(\frac{NT}{2\pi\hbar^2}\right)^{3/2}$$
.

и дирака; дирака; 20. Статистическая сумма Z в распределении Максвелла равна; $Z = N \left(\frac{mT}{2\pi\hbar^2}\right)^{3/2}$; $Z = V \left(\frac{mT}{2\pi\hbar^2}\right)^{3/2}$; $Z = V \left(\frac{mT}{2\pi\hbar^2}\right)^{1/2}$; $Z = V \left(\frac{mT}{2\pi\hbar^2}\right)^{1/2}$; $Z = V \left(\frac{NT}{2\pi\hbar^2}\right)^{1/2}$. 21. Из распределения Максвелла среднее значение квадрата энергии $\langle \epsilon^2 \rangle$ молекулы и её дисперсия $\langle (\Delta \epsilon)^2 \rangle$ соответственно равны:

a)
$$\langle \epsilon^2 \rangle = \frac{10}{4} T^2$$
 и $\langle (\Delta \epsilon)^2 \rangle = \frac{5}{2} T^2;$
6) $\langle \epsilon^2 \rangle = \frac{3}{2} T^2$ и $\langle (\Delta \epsilon)^2 \rangle = \frac{15}{4} T^2;$
B) $\langle \epsilon^2 \rangle = \frac{15}{4} T^2$ и $\langle (\Delta \epsilon)^2 \rangle = \frac{3}{2} T^2;$
r) $\langle \epsilon^2 \rangle = \frac{5}{4} T^2$ и $\langle (\Delta \epsilon)^2 \rangle = \frac{13}{2} T^2;$

6)
$$\langle \varepsilon^2 \rangle = \frac{3}{2} T^2$$
 $\qquad \text{if} \qquad \langle (\Delta \varepsilon)^2 \rangle = \frac{15}{4} T^2;$

B)
$$\langle \epsilon^2 \rangle = \frac{15}{4} T^2$$
 \varkappa $\langle (\Delta \epsilon)^2 \rangle = \frac{3}{2} T^2$

r)
$$\langle \epsilon^2 \rangle = \frac{5}{4} T^2$$
 и $\langle (\Delta \epsilon)^2 \rangle = \frac{13}{2} T^2$;

д)
$$\langle \epsilon^2 \rangle = \frac{15}{2} T^2$$
 и $\langle (\Delta \epsilon)^2 \rangle = \frac{3}{4} T^2$.

- 22. С учетом тождественности частиц статистическая сумма идеального газа Z связана со статистической суммой молекулы z соотношением:
 - a) $Z = \frac{z^N}{N}$;
 - 6) $Z = \frac{z^N}{N!}$;
 - $B) Z = \frac{z^{-N}}{N};$
 - $\Gamma) \ Z = \frac{z^{-N}}{N!};$
 - д) $Z=-\frac{\mathbf{z}^{\mathbf{N}}}{\mathbf{N}!}.$
- 23. Свободная энергия макросистемы F является функцией температуры T и статистической суммы Z вида:
 - a) $F = -2T \cdot lnZ$;
 - 6) $F = -T \cdot lnZ$;
 - B) $F = T \cdot \ln Z$;
 - $\Gamma) \ F = \frac{3}{2} T \cdot \ln Z;$
 - д) $F = T^{1/2} \cdot \ln Z$.
- 24. Точное выражения для энтропии S идеального больцмановского газа это...:

a)
$$S = N \ln \frac{V}{N} + \frac{1}{2} N \ln T + \frac{3}{2} N \ln \left(\frac{m}{2\pi\hbar^2}\right) + \frac{5}{2}N;$$

6)
$$S = N \ln \frac{V}{N} + \frac{3}{2} N \ln T + \frac{1}{2} N \ln \left(\frac{m}{2\pi\hbar^2}\right) + \frac{5}{2} N;$$

B)
$$S = N \ln \frac{V}{N} + \frac{3}{2} N \ln T + \frac{3}{2} N \ln \left(\frac{m}{2\pi\hbar^2}\right) + \frac{1}{2} N;$$

$$\Gamma) \quad S = N \, \ln \frac{V}{N} + \frac{3}{2} \, N \, \ln T + \frac{3}{2} \, N \, \ln \left(\frac{m}{2\pi h^2} \right) + \frac{5}{2} \, N;$$

$$\text{$ \Xi $} \text{ } N \text{ } \ln \frac{V}{N} + \frac{3}{2} \, N \text{ } \ln T + \frac{3}{2} \, N \text{ } \ln \left(\frac{m}{2\pi \hbar^2} \right) + \frac{3}{2} \, N,$$

25. В статистической физике химический потенциал и является термодинамическим потенциалом Гиббса...:

- а) всей макросистемы;
- б) одного моля вещества;
- в) одной частицы;
- г) термостата;
- д) адиабата.

26. Большое каноническое распределение (БКР) это распределение вида:

a)
$$\omega_{N,k} = \frac{1}{Q} e^{(\mu N + E_{N,k})/T}$$

б)
$$\omega_{N,k} = \frac{1}{Q} e^{(\mu N - E_{N,k})/T}$$

B)
$$\omega_{N,k} = \frac{1}{Q} e^{-\left(\mu N + E_{N,k}\right)/T}$$

$$\Gamma) \ \omega_{N,k} = \, {\textstyle \frac{1}{Q}} \, e^{\left(E_{N,k} - \mu N\,\right)/T} . \label{eq:definition}$$

д)
$$\omega_{N,k} = \frac{1}{Q} e^{\mu N/T}$$
.

27. Ω – потенциал определяется выражением:

- a) $\Omega = E + TS \mu N$;
- 6) $\Omega = E TS + \mu N$:

- B) $\Omega = E + TS + \mu N;$ r) $\Omega = E TS \mu N;$ μ $\Omega = E TS \mu N.$

28. Большая статистическая сумма Q из БКР и энтропия S связаны потенциалом соотношениями:

a)
$$\Omega = -T \cdot \ln Q$$
 и $S = \frac{\partial \Omega}{\partial T}$;
b) $\Omega = -T \cdot \ln Q$ и $S = -\frac{\partial \Omega}{\partial T}$;
c) $\Omega = T \cdot \ln Q$ и $S = -\frac{\partial \Omega}{\partial T}$;
c) $Q = -T \cdot \ln \Omega$ и $S = -\frac{\partial \Omega}{\partial T}$;

6)
$$Q = -T \ln Q$$

$$S = -\frac{\partial s}{\partial s}$$

$$O = T \cdot \ln O$$

$$S = -\frac{\partial \Omega}{\partial \Omega}$$

$$O = -T \cdot \ln O$$

$$S = -\frac{\partial s}{\partial s}$$

$$\Omega = -T \cdot \ln Q$$

$$S = -\frac{\partial T}{\partial T}$$

$$\Omega = -T \cdot \ln Q$$
 и

$$\Omega = -\frac{\partial S}{\partial T}$$

29. Если газ является идеальным, но не является больцмановским, то его называют:

- а) невырожденным;
- б) вырожденным;
- в) перенасыщенным;
- г) максвелловским:
- д) угарным.

30. Распределение Ферми-Дирака имеет вид:

a)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k - \mu)/T} + 1}$$
;

6)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_{\mathbf{k}} + \mu)/T} + 1}$$
;

B)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k - \mu)/T} - 1};$$

r)
$$\langle N_k \rangle = \frac{1}{1 - e^{(\epsilon_k - \mu)/T}}$$
;

д)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k + \mu)/T} - 1}$$
.

- а) с полуцелым спином;
- б) с целым спином:
- в) бесспиновых;
- г) векторных:
- д) спинорных.

32. К бозе – газам можно отнести:

- а) электронный газ в металлах;
- б) фотонный газ;
- в) фононный газ;
- г) ионно-электронную плазму;
- д) идеальный газ.

33. Распределение Бозе-Эйнштейна имеет вид:

a)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k - \mu)/T} + 1}$$
;

6)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k + \mu)/T} + 1}$$
;

B)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k - \mu)/T} - 1};$$

r)
$$\langle N_k \rangle = \frac{1}{1 - e^{(\epsilon_k - \mu)/T}}$$

д)
$$\langle N_k \rangle = \frac{1}{e^{(\epsilon_k + \mu)/T} - 1}$$
.

34. Большая статистическая сумма Q в распределении Бозе-Эйнштейна равна:

a)
$$Q = \frac{1}{1 \cdot e^{(\epsilon_k - \mu)/T}}$$
;

$$6) Q = \frac{\pi}{1 - e^{(\epsilon_k - \mu)/T}};$$

B)
$$Q = \frac{1}{1+e^{(\epsilon_k - \mu)/T}}$$
;

r)
$$Q = \frac{\pi}{1 - e^{(\mu - \varepsilon_k)/T}}$$
;

$$Q = \frac{\pi}{1 + e^{(\mu - \varepsilon_{\mathbf{k}})/T}}$$
.

35. Среднее число заполнения уровня в ферми – газе $\langle N_k \rangle = 1/2$, если...:

a)
$$\mu = 2\varepsilon_k$$

6)
$$\mu = \epsilon_{b}$$
:

B)
$$\mu = -\varepsilon_k$$
;

r)
$$\mu = \sqrt{\epsilon_k}$$

л)
$$\mu = (\epsilon_{\nu})^{3/2}$$
.

36. Условие нормировки распределений Ферми-Дирака и Бозе-Эйнштейна записывается как:

a)
$$\sum_{k} \langle N_k \rangle = N;$$

6)
$$\sum_{k} \langle N_k \rangle = 1$$
;

B)
$$\sum_{\mathbf{k}} \langle \mathbf{N}_{\mathbf{k}} \rangle = 0$$
;

$$\Gamma) \quad \sum_{\mathbf{k}} \langle \mathbf{N}_{\mathbf{k}} \rangle = \infty;$$

д)
$$\sum_{k} \langle N_k \rangle \neq 1$$
.

37. Вириальное представление уравнения состояния неидеального газа это:

a)
$$P = F\sum_{i} B_{i}(T) \left(\frac{N}{V}\right)^{i}$$
;

6)
$$P = V \sum_{i} B_{i}(T) \left(\frac{N}{V}\right)^{i}$$
;

B)
$$P = S\sum_{i} B_{i}(T) \left(\frac{N}{V}\right)^{i}$$
;

$$\Gamma$$
) $P = T \sum_{i} B_{i}(T) \left(\frac{N}{V}\right)^{i}$;

д)
$$P = k \sum_{i} B'_{i}(T) \left(\frac{N}{V}\right)^{i}$$
.

38. «Статистическое» уравнение Ван-дер-Ваальса имеет вид:

a)
$$(P + \frac{aN^3}{V^2})(V - bN) = NT;$$

6)
$$(P + \frac{aN^2}{V^2})(V - b) = NT;$$

B)
$$(P + \frac{aN^2}{V^2})(V - bN) = NT;$$

$$\Gamma) \left(P + \frac{aN^2}{V^2}\right)(V - N) = RT;$$

д)
$$\left(P + \frac{aN^2}{V^2}\right)(V - bN) = RT.$$

- 39. Энергия ван-дер-ваальсовского газа равна:
 - a) $E = \frac{3}{2}NT \frac{aN^2}{V}$;
 - 6) $E = \frac{3}{2}NT \frac{aN^3}{V}$;
 - B) $E = \frac{5}{2}NT + \frac{aN^2}{V}$;
 - r) $E = \frac{1}{2}NT + \frac{aN^2}{V}$;
 - д) $E = \frac{3}{2}RT \frac{aN^2}{V}$.
- 40. В теории фазовых переходов второго рода Ландау использует характеристику внутренней симметрии макросистемы называемую...:

KOBNIHK

- а) параметр беспорядка;
- б) параметр симметрии;
- в) параметр гармонии;
- г) параметр порядка;
- д) параметр асимметрии.
- 41. В разложении термодинамического потенциала Гиббса по параметру порядка η наличию внешнего поля отвечает слагаемое Х, которое...:

 - не зависит от η.
- Критические индексы в теории фазовых переходов второго Ланлау равны:
 - a) $\alpha = \alpha' = 1$, $\beta = \beta' = 1/2$, $\gamma = \gamma' = 0$;
 - 6) $\alpha = \alpha' = 0$, $\beta = \beta' = 1/2$, $\gamma = \gamma' = 1$;
 - B) $\alpha = \alpha' = 1/2$, $\beta = \beta' = 0$, $\gamma = \gamma' = 1$;
 - r) $\alpha = 1$, $\alpha' = 0$, $\beta = \beta' = 1/2$, $\gamma = 2$, $\gamma' = 1$; $\beta = 0$, $\alpha' = 1$, $\beta = 0$, $\beta' = 1/2$, $\gamma = \gamma' = 0$.

43. Ω — потенциал идеального ферми-газа представим в виде:

- a) $\Omega = -T \sum_{k} \ln(1 \langle N_k \rangle);$
- 6) $\Omega = T \sum_{k} \ln(1 + \langle N_k \rangle)$:
- B) $\Omega = T \sum_{k} \ln(1 2\langle N_k \rangle)$;
- r) $\Omega = T \sum_{k} \ln(1 \langle N_k \rangle);$
- д) $\Omega = -T \sum_{k} \ln(1 + \langle N_k \rangle)$.

CKOBNHIP 44. Энтропия S идеального бозе-газа представима в виде:

a)
$$S = \sum_{k} [(1 - \langle N_k \rangle) \ln(1 + \langle N_k \rangle) - \langle N_k \rangle \ln(N_k)];$$

δ)
$$S = \sum_{k} [(1 + \langle N_k \rangle) \ln(1 - \langle N_k \rangle) - \langle N_k \rangle \ln(N_k)];$$

B)
$$S = \sum_{k} [(1 + \langle N_k \rangle) \ln(1 + \langle N_k \rangle) + \langle N_k \rangle \ln(N_k)];$$

r)
$$S = -\sum_{k} [(1 + \langle N_k \rangle) \ln(1 + \langle N_k \rangle) - \langle N_k \rangle \ln(N_k \rangle)];$$

д)
$$S = \sum_{k} [(1 + \langle N_k \rangle) \ln(1 + \langle N_k \rangle) - \langle N_k \rangle \ln(N_k)]$$

45. Флуктуация, называемая дисперсией, это ...:

- а) среднее значение квадрата отклонения случайной величины от своего среднего значения;
- б) среднее значение квадрата отклонения случайной величины от своего математического ожидания:
- в) среднее значение квадрата отклонения случайной величины от своего наиболее вероятного значения;
 - г) квадрат относительной флуктуации;
 - д) квадрат среднеквадратичного отклонения.

46. В теории флуктуаций дисперсия температуры и энтропии газов соответственно равны:

a)
$$\langle (\Delta T)^2 \rangle = \frac{T^2}{C_P}$$
 и $\langle (\Delta S)^2 \rangle = C_P$;

$$\delta) \langle (\Delta T)^2 \rangle = \frac{T^2}{C_V} \quad \text{if} \quad \langle (\Delta S)^2 \rangle = C_V;$$

B)
$$\langle (\Delta T)^2 \rangle = \frac{T^2}{C_V}$$
 \varkappa $\langle (\Delta S)^2 \rangle = C_P$;

r)
$$\langle (\Delta T)^2 \rangle = \frac{T^2}{C_S}$$
 и $\langle (\Delta S)^2 \rangle = T \cdot C_P$;

д)
$$\langle (\Delta T)^2 \rangle = \frac{T^2}{C_V}$$
 и $\langle (\Delta S)^2 \rangle = 0$.

47. Для относительной флуктуации температуры δΤ в газах справедливо, что...:

- a) $\delta T \sim N$:
- 6) $\delta T \sim \frac{1}{\sqrt{N}}$;
- B) $\delta T \sim \frac{1}{N}$;

 $\sqrt{c_V}$.
48. Дисперсия числа частиц определяется выражением:

а) $\langle (\Delta N)^2 \rangle = T \left(\frac{\partial N}{\partial \mu} \right)_{V,T};$ б) $\langle (\Delta N)^2 \rangle = T^{2}$ MARHINO

a)
$$\langle (\Delta N)^2 \rangle = T \left(\frac{\partial N}{\partial \mu} \right)_{V,T}$$

6)
$$\langle (\Delta N)^2 \rangle = T \left(\frac{\partial T}{\partial N} \right)_{V,T}$$

b)
$$\langle (\Delta N)^2 \rangle = \mu \left(\frac{\partial N}{\partial \mu} \right)_{V,T}$$
;

r)
$$\langle (\Delta N)^2 \rangle = S \left(\frac{\partial N}{\partial \mu} \right)_{VT}$$

д)
$$\langle (\Delta N)^2 \rangle = V \left(\frac{\partial N}{\partial \mu} \right)_{P,S}$$

49. Дисперсия числа частиц заполнения k-го квантового уровня состояния ферми-газа равна:

a)
$$\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle (1 + \langle N_k \rangle);$$

6) $\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle (1 - \langle N_k \rangle);$
B) $\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle (2 - \langle N_k \rangle);$
C) $\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle (1 - \langle N_k \rangle);$

6)
$$\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle (1 - \langle N_k \rangle);$$

B)
$$\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle (2 - \langle N_k \rangle)$$

$$\Gamma) \langle (\Delta N_k)^2 \rangle = -\langle N_k \rangle (1 - \langle N_k \rangle)$$

д)
$$\langle (\Delta N_k)^2 \rangle = \langle N_k \rangle^2$$
.

50. Относительная флуктуация числа частиц заполнения к-го квантового уровня состояния бозе-газа равна:

a)
$$\delta N_k = \sqrt{1 + \frac{1}{\langle N_k \rangle}}$$

$$\delta N_k = \sqrt{1 - \frac{1}{\langle N_k \rangle}};$$

B)
$$\delta N_k = \langle N_k \rangle \sqrt{1 - \frac{1}{\langle N_k \rangle}}$$

$$\Gamma$$
) $\delta N_k = \langle N_k \rangle \sqrt{1 + \frac{1}{\langle N_k \rangle}}$

д)
$$\delta N_k = \sqrt{\langle N_k \rangle}$$
.

51. При переходе к классическим системам статистическая сумма Z заменяется статистическим интегралом Z_{кл}, определяемым как...:

a)
$$Z_{\kappa \pi} = \frac{1}{M} \int e^{\frac{H(p,q)}{T}} d\Gamma$$
;

6)
$$Z_{KJ} = \frac{1}{N!} \int e^{-\frac{H(p,q)}{T}} d\Gamma;$$

B)
$$Z_{KII} = \frac{1}{N!} \int e^{\frac{H(p,q)}{T}} dN;$$

B)
$$Z_{KI} = \frac{1}{N!} \int e^{-\frac{H(p,q)}{T}} dN;$$

r) $Z_{KI} = \frac{1}{N!} \int e^{-\frac{H(p,q)}{T}} dN;$

д)
$$Z_{\kappa n} = \frac{1}{N!} \int e^{\frac{H(p,q)}{T}} dV$$

52. Дифференциан статистического веса dГ для классических истем это...: систем это...:

гем это...: a)
$$d\Gamma = \frac{\gamma^N}{(2\pi\hbar)^{3N}} d\vec{P}_1 d\vec{P}_2 ... d\vec{P}_N d\vec{q}_1 dq_2 ... d\vec{q}_N;$$
 6) $d\Gamma = \frac{\gamma^N}{(2\pi\hbar)^{3N}} d\vec{P}_1 d\vec{P}_2 ... d\vec{P}_N;$

6)
$$d\Gamma = \frac{\gamma^N}{(2\pi\hbar)^{3N}} d\vec{P}_1 d\vec{P}_2 ... d\vec{P}_N;$$

в)
$$d\Gamma = \frac{\gamma^N}{(2\pi\hbar)^{3N}} d\vec{q}_1 dq_2 \dots d\vec{q}_N;$$

$$\Gamma) \quad d\Gamma = \frac{1}{(2\pi\hbar)^{3N}} \ d\vec{P}_1 d\vec{P}_2 \ ... \ d\vec{P}_N d\vec{q}_1 dq_2 \ ... \ d\vec{q}_N;$$

д)
$$d\Gamma = d\vec{P}_1 d\vec{P}_2 \dots d\vec{P}_N d\vec{q}_1 dq_2 \dots d\vec{q}_N$$
.

Литература

- 1. Квасников, И. А. Термодинамика и статистическая физика. Теория равновесных систем / И. А. Квасников. М: МГУ, 2005. 798 с.
- 2. Румер, Ю. Б. Термодинамика, статистическая физика и кинетика / Ю. Б. Румер, М. Ш. Рывкин. М: Наука, 2000. 607 с.
- 3. Ландау, Л. Д. Статистическая физика: Ч. 1. / Л. Д. Ландау, Е. М. Лившиц. – М: Наука, 1976. – 584 с.
- 4. Коткин, Г. Л. Лекции по статистической физике Г. Л. Коткин. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2006. 190 с.

MARTHY O.

- 5. www.wikipedia.org.
- 6. www.eqworld.ipmnet.ru.
- 7. www.uc.jinr.ru/kurs.
- 8. www.bookfi.org.

ELIO3NI(

- 9. www.grc.nasa.gov.
- 10. www.emc.maricopa.edu.

Установа адукацыі
"Гомельскі дзяржаўны ўніверсітэт імя Францыска Скарыны" БІБЛІЯТЭКА

Тюменков Геннадий Юрьевич

ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА

CKOBNHIE

Тестовые задания

для студентов специальностей 1-31 04 01 «Физика (по направлениям)»

Редактор В. И. ПКредова Корректор В. В. Калугина

Подписано в печать 15.05.2013. Формат 60×84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,09. Уч.-изд. л. 2,29. Тираж 25 экз. Заказ 367.

5036-00

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». ЛИ № 02330/0549481 от 14.05.2009. Ул. Советская, 104, 246019, г. Гомель