В. Н. Княгина, В. С. Монахов г. Гомель, ГГУ им. Ф. Скорины

КОНЕЧНЫЕ ГРУППЫ С НОРМАЛЬНО ВЛОЖЕННЫМИ ПОДГРУППАМИ

Рассматриваются только конечные группы. Запись $H \leq G$ означает, что H – подгруппа группы G, |H| – порядок подгруппы H, а H^G – наименьшая нормальная в G подгруппа, содержащая H. Нильпотентным корадикалом группы G называется наименьшая нормальная подгруппа в G, фактор-группа по которой нильпотентна. $\pi(G)$ – множество всех простых делителей |G|. Подгруппа H группы G называется холлово нормально вложенной в G, если H – холлова подгруппа в H^G , [1, определение 1].

Shirong Li и Jianjun Liu предложили следующую задачу [2, проблема 1]: Изучить группу G, в которой существует холлово нормально вложенная подгруппа H порядка |B| для каждой $B \le G$. В частности, G разрешима?

Adolfo Ballester–Bolinches и ShouHong Qiao [3] решили эту проблему. Они ввели класс X, состоящий из всех групп G, в которых существует холлово нормально вложенная подгруппа H порядка |B| для каждой $B \leq G$.

Теорема 1. [3] Группа G принадлежит классу X тогда и только тогда, когда G разрешима и ее нильпотентный корадикал является циклической подгруппой порядка, свободного от квадратов.

Подгруппа H называется S-перестановочной в G, если HP = PH для каждой силовской подгруппы P группы G. Пусть класс X_1 состоит из всех групп G со следующим свойством: для любого $p \in \pi(G)$ и любой подгруппы B из G с силовской p-подгруппой порядка p существует S-перестановочная подгруппа с холловой подгруппой U порядка B. Ясно, что $X \subseteq X_1$. Оказалось, что $X = X_1$.

Теорема 2. Группа G принадлежит классу X_1 тогда и только тогда, когда G разрешима u ее нильпотентный корадикал является циклической подгруппой порядка, свободного от квадратов.

Список использованных источников

- 1 Li Shirong. On Hall normally embedded subgroups of finite groups / Li Shirong, He Jun, Nong Guoping, Zhou Longqiao // Comm. Algebra. 2009. Vol. 37. P. 3360–3367.
- 2 Li Shirong. On Hall subnormally embedded and generalized nilpotent groups / Li Shirong, Liu Jianjun // J. Algebra. 2013. Vol. 388. P. 1–9.
- 3 Ballester-Bolinches, A. On a problem posed by S. Li and J. Liu / A. Ballester-Bolinches, Qiao ShouHong // Arch. Math. 2014. Vol. 102. P. 109–111.