В. В. Можаровский, Д. С. Кузьменков г. Гомель, ГГУ им. Ф. Скорины

РЕАЛИЗАЦИЯ РАСЧЕТА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СЛОИСТЫХ ЦИЛИНДРИЧЕСКИХ КОНСТРУКЦИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Рассмотрим многослойную трубу из композитных материалов (рисунок 1). На трубу действует внутреннее давление p_0 . Необходимо определить напряжения и перемещения, возникающие в многослойной трубе. При расчете напряженно—деформированного состояния трубопроводов и систем трубопроводов из-за сложной геометрии и особенностей конструкционного строения стенок труб, а также в связи с необходимостью моделирования различных слоистых тел, наряду с аналитическими расчетами эффективно применяется и метод конечных элементов.

Напряжения и перемещения определяются аналогично [1] при условии, что $E_y=E_z$, $G_{yy}=G_{zz},\ v_{zx}=v_{yx}.$ Был разработан алгоритм и создана программа, реализующая расчет напряжений и перемещений многослойных труб из композиционных материалов. Программа реализована в среде Delphi в виде многооконного приложения, обработаны все возможные случаи ввода некорректных данных. Реализована возможность записи и чтения из файла всех вводимых характеристик. Предусмотрена возможность выбора интервала по r и количества разбиений по r. Было просчитано множество различных примеров (различные материалы, давление и т. д.). Рассмотрим один из них. $r_0=0.05$ мм, $r_1=0.05$ мм, $r_2=0.072$ мм, $r_a=0.074$ мм, $\Delta T=100$ K, $\Delta T=100$ K

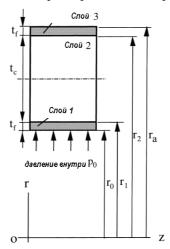


Рисунок 1 – Схема расчета многослойной трубы, где t – толщина слоя

Таблица 1 – Характеристики материалов для примера [1]					
PFI	Свойства	T 300/934	Резина (Е-стекло/эпокс.	ИНЫ
	$E_x(GPa)$	141,6	1,2	43,4	וטו וו
	$E_{y}(GPa)$	10,7	1,2	15,2	
	$G_{zz}(GPa)$	3,88	0,46	6,14	
	$ u_{yx} $	0,268	0,30	0,29	
	v_{zy}	0,495	0,30	0,38	
	$\alpha_{x}(10^{-6}K^{-1})$	0,006	110	2,32	
	$\alpha_{y}(10^{-6}K^{-1})$	30,04	110	35,19	
	φ	60	0	60	

Ниже на рисунках 2 и 3 приведены полученные результаты для рассматриваемого примера (радиус r приведен в мм., а $\sigma_r^{(k)}$, $\sigma_\theta^{(k)}$ в МПа, аналогичные графики были построены и для $\sigma_z^{(k)}$). На основании полученных результатов можно сделать вывод, что увеличение давления пропорционально ведет к увеличению $\sigma_r^{(k)}$, $\sigma_\theta^{(k)}$, $\sigma_z^{(k)}$.

Рисунок 2 – График зависимости $\sigma_r^{(k)}$ от r

Разбиение расчетной области, производится нерегулярной сеткой, треугольными конечными элементами. Увеличение количества конечных элементов (процедура дробления) в местах концентрации напряжений позволяет достичь наибольшей точности при расчетах.

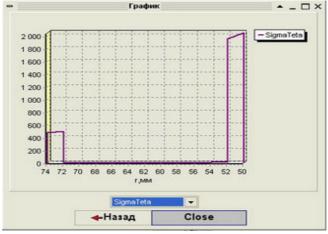


Рисунок 3 – График зависимости $\sigma_{\theta}^{(k)}$ от r

Разработанный программный комплекс позволяет свободно варьировать материалами покрытия труб и их характеристиками и показывает правдоподобные результаты. Программа не только определяет напряжения и перемещения слоистых труб, но и проверяет использованные в трубах материалы слоев (E_x , E_y , G_{zz} , V_{yx} , V_{yz} , α_x , α_y) на допустимость (см. формулы (1)–(2)).

$$\sigma_{np} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{1}{2} \sqrt{(\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}}$$
(1)
РЕПОЗИТОРИЙ ГГУ И БОР НИ Ф. СКОР НЫ

где $\sigma_{\!\scriptscriptstyle \partial on}$ – допустимое напряжение.

После расчета всех напряжений и перемещений перед выводом результатов в табличном виде выводиться текстовое сообщение с информацией о том, подходит ли данный материал, исходя из допускаемого напряжения.

Разработанная программа была включена в состав разработанного ранее программного комплекса выбора труб с покрытиями для их испытания и расчета [2]. Главное окно программного комплекса приведено на рисунке 4. Данная программа позволяет производить расчет и хранение различных характеристик стальных труб ППУ (наружный диаметр изолированной трубы, отклонение осевой линии от оси оболочки, водопоглощение, прочность на сдвиг в осевом и тангенциальном направлении и т. д.) и ПИ-труб (плотность, показатель текучести расплава, термоусадка и т. д.).

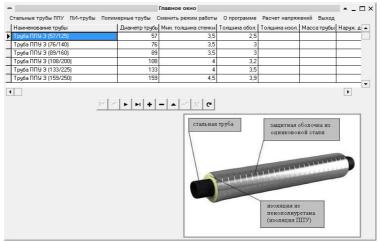


Рисунок 4 – Главное окно программного комплекса

На рисунке 5 приведена схема экспериментального исследования и результаты вычисления прочности на сдвиг для выбранной стальной трубы ППУ.

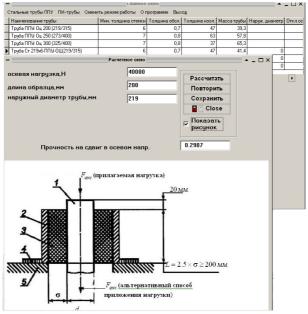


Рисунок 5 – Схема экспериментального исследования прочности на сдвиг

В программе предусмотрена возможность построения отчетов по рассчитанным характеристикам. База данных построена по технологии ADO. Приложение запускается из любого места (флешка, дискета, жесткий диск) без предварительной настройки и не требует наличие на компьютере специальных программ (Borland Delphi7, BDE Administrotor и т. д.). Также программа имеет возможность сравнения рассчитанных характеристик с ГОСТ и сделать вывод о соответствии или несоответствии трубы ГОСТ (рисунок 6).

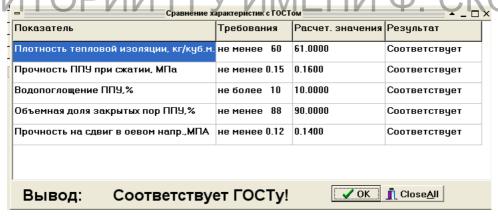


Рисунок 6 – Сравнение с ГОСТ

Описанную методику и разработанный программный комплекс можно легко применить на другие трубопроводные системы, использующие новые материалы (в том числе и композиционные).

Список использованных источников

- 1 Xia, M. Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading / M. Xia, K. Kemmochi, H. Takayanagi // Comp. Structures. $-2001. N \cdot 51. P. 273-283.$
- 2 Можаровский, В. В. Автоматизированная методика определения характеристик материалов для труб с ППУ-ОЦМ изоляцией / В. В. Можаровский, Д. С. Кузьменков, С. В. Шилько // Вестник Черниговского госсударственного технологического университета. Серия технических наук. − 2012. − № 3. − С. 42−47.