А. Ф. Васильев, Т. И. Васильева, А. С. Вегера г. Гомель, ГГУ им. Ф. Скорины, БелГУТ

КЛАССЫ КОНЕЧНЫХ ГРУПП, ОПРЕДЕЛЯЕМЫЕ ВЛОЖЕНИЕМ СИЛОВСКИХ ПОДГРУПП

Рассматриваются только конечные группы. Хорошо известно, что группа нильпотентна тогда и только тогда, когда любая ее силовская подгруппа является субнормальной в ней. В 1969 году Т. О. Хоукс [1] обобщил понятие субнормальности, введя определение F-субнормальной подгруппы в разрешимой группе. В 1978 году Л. А. Шеметков в монографии [2] распространил данное понятие на произвольные конечные группы.

Пусть F – непустая формация. Подгруппа H группы G называется F-субнормальной в G (обозначается H F-sn G), если либо H = G, либо существует максимальная цепь подгрупп H = $H_0 < H_1 < ... < H_n = G$ такая, что $H_i^F \le H_{i-1}$ для i = 1, ..., n. В случае, когда F совпадает с классом N всех нильпотентных групп, всякая N-субнормальная подгруппа является субнормальной, обратное утверждение в общем случае неверно. Однако в разрешимых группах эти понятия эквивалентны.

Еще одно обобщение субнормальности предложил в 1978 году О. Кегель [3], введя понятие F-достижимой (К-F-субнормальной, согласно [4, с. 236]) подгруппы.

Подгруппа H группы G называется K-F-субнормальной в G (обозначается H K-F-sn G), если существует цепь подгрупп $H = H_0 \le H_1 \le ... \le H_n = G$ такая, что либо H_{i-1} нормальна в H_i , либо $H_i^F \le H_{i-1}$ для i=1,...,n.

Отметим, что субнормальная подгруппа является K-F-субнормальной в любой группе, обратное утверждение верно не всегда. Для случая F=N понятия субнормальной и K-N-субнормальной подгрупп эквивалентны.

Свойства F-субнормальных и K-F-субнормальных подгрупп и их приложения активно изучались в различных направлениях, и нашли отражение в многочисленных работах, в частности, в монографиях [4; 5].

В работе [6] было начато рассмотрение следующей общей задачи. Пусть F – непустая формация. Изучить влияние F-субнормальных (K-F-субнормальных) силовских подгрупп на строение всей группы,

Определение. Для некоторого множества простых чисел π и непустой формации F введем классы групп:

 $W_{\pi}F$ — класс всех групп G, у которых 1 F-sn G и Q F-sn G для любой силовской q-noдгруппы Q из G, где $q \in \pi \cap \pi(G)$;

 $\overline{W}_{\pi}F$ – класс всех групп G, у которых Q K-F-sn G для любой силовской q-подгруппы Q из G, где $q \in \pi \cap \pi(G)$.

В случае, когда $\pi = \mathbf{P}$ – множество всех простых чисел, будем обозначать $\mathbf{W} \mathbf{F}$ и $\overline{\mathbf{W}} \mathbf{F}$, вместо $\mathbf{W}_{\pi} \mathbf{F}$ и $\overline{\mathbf{W}}_{\mathbf{P}} \mathbf{F}$ соответственно.

В [7] исследовался класс всех групп G, у которых $\pi(G) \subseteq \pi(F)$ и все силовские подгруппы являются F-субнормальными в G. В частности, для наследственной насыщенной формаци F было доказано, что такой класс групп образует наследственную насыщенную формацию. Также в классе разрешимых групп было установлено ее локальное задание. Легко заметить, что данный класс групп совпадает с WF.

В работах [8; 9; 10] аналогичные результаты были получены для класса всех групп, у которых все силовские подгруппы группы являются K-F-субнормальными, т. е. для класса групп \overline{W} F.

В работах [11] и [12] были введены определения **P**-субнормальной и K-**P**-субнормальной подгрупп, которые для формации U всех сверхразрешимых групп являются обобщениями понятий U-субнормальной и K-U-субнормальной подгрупп соответственно.

Подгруппа H группы G называется \mathbf{P} -субнормальной в G, если либо H=G, либо существует цепь подгрупп $H=H_0 < H_1 < ... < H_{n-1} < H_n = G$ такая, что $|H_i:H_{i-1}|$ — простое число для любого $i=1,\ldots,n$.

Подгруппа H группы G называется K-**P**-субнормальной в G, если существует цепь подгрупп $H = H_0 \le H_1 \le ... < H_{n-1} \le H_n = G$ такая, что либо H_{i-1} нормальна в H_i , либо $|H_i: H_{i-1}|$ есть простое число для любого i=1,...,n.

В любой группе всякая U-субнормальная подгруппа является P-субнормальной, а для разрешимых групп имеет место и обратное утверждение. Однако в общем случае оно неверно.

Понятие K-P-субнормальной подгруппы шире, чем понятие P-субнормальной подгруппы. Каждая K-U-субнормальная в G подгруппа является K-P-субнормальной в G. В общем случае обратное утверждение не выполняется. Например, в знакопеременнной группе A_5 степени 5 силовская 2-подгруппа K-P-субнормальна, но не K-U-субнормальна. В разрешимой группе понятия U-субнормальной, P-субнормальной, K-P-субнормальной и K-U-субнормальной подгрупп эквивалентны [12, лемма 3.4].

В [11] исследовался класс wU всех групп, у которых любая силовская подгруппа **Р**-субнормальна в G. В частности, было установлено, что wU состоит из разрешимых групп, является наследственной насыщенной формацией, найдено ее локальное задание. Из разрешимости групп из wU следует, что $wU = wU = \overline{w}U$.

Важность классов WU и $\overline{\mathrm{W}}$ U была подчеркнута работами [11; 12; 13; 14; 15], где исследовались их свойства и приложения для изучения произведений групп.

В работе [12] был рассмотрен класс $\overline{W}_{\pi}U$ всех групп, у которых все силовские p-подгруппы являются K-P-субнормальными для p из некоторого множества простых чисел π . В частности, установлены некоторые свойства класса групп $\overline{W}_{\pi}U$ для множества $p = P \setminus \{r\}, r$ простое число. Из отмеченных выше свойств K-U-субнормальных и K-P-субнормальных подгрупп следует, что $\overline{W}_{\pi}U \subseteq \overline{W}_{\pi}U$.

В связи с полученными результатами возникает следующая естественная

Проблема. Для множества простых чисел π и непустой формации F установить свойства и связь классов групп $W_{\pi}F$ и $\overline{W}_{\pi}F$.

Решению этой проблемы посвящено данное сообщение.

Теорема 1. Пусть **F** – наследственная формация и $\pi \subseteq P$. Тогда справедливы следующие утверждения:

- 1) если $\pi_1 \subseteq \mathbf{P}$ и $\pi \subseteq \pi_1$, то $W_{\pi_i} \mathbf{F} \subseteq W_{\pi} \mathbf{F}$ и $\overline{W}_{\pi_i} \mathbf{F} \subseteq \overline{W}_{\pi} \mathbf{F}$;
- 2) $F \subseteq WF \subseteq W_{\pi}F \subseteq \overline{W}_{\pi}F \ u \ \pi(W_{\pi}F) = \pi(F);$
- 3) $N_{\pi \cap \pi(F)} \subseteq W_{\pi} F u N_{\pi} \subseteq \overline{W}_{\pi} F$;
- 4) $W_{\pi} \mathbf{F} = W_{\pi \cap \pi(\mathbf{F})} \mathbf{F}$;
- 5) $W_{\pi}F$ и $\overline{W}_{\pi}F$ наследственные формации;
- 6) $W_{\pi}(W_{\pi}F) = W_{\pi}F \text{ M } \overline{W}_{\pi}(\overline{W}_{\pi}F) = \overline{W}_{\pi}F;$
- 7) если H наследственная формация и $F \subseteq H$, то $W_{\pi}F \subseteq W_{\pi}H$ и $\overline{W}_{\pi}F \subseteq \overline{W}_{\pi}H$.

Теорема 2. Пусть **F** – наследственная формация и $\pi \subseteq P$. Тогда справедливы следующие утверждения:

- 1) $\overline{\mathbf{W}}_{\pi} \mathbf{F} \cap \mathbf{G}_{\pi \cup \pi(\mathbf{F})} \supseteq N_{\pi \setminus \pi(\mathbf{F})} \times \mathbf{W}_{\pi} \mathbf{F};$
- 2) если $\pi(F) \subseteq \pi$, то $\overline{W}_{\pi}F \cap G_{\pi} = N_{\pi \setminus \pi(F)} \} \times W_{\pi}F$.

Следствие **2.1** [10, теорема 2.2]. *Если* F – наследственная формация u π = $\pi(F)$, то $WF = N_{\pi'} \times WF$.

Следствие 2.2. Если F – наследственная формация и $\pi(F) = \mathbf{P}$, то $\overline{\mathbf{W}} F = \mathbf{W} F$.

Заметим, что условие $\pi(F) \subseteq \pi$ в 2) теоремы 3.3 существенно. Например, пусть $\pi = \{7\}$, $F = N_{\pi(F)}$, где $\pi(F) = \{2, 3, 5, 7\}$, и $G = A_5$ – знакопеременная группа на 5 символах. Тогда $G \in \overline{W}_{\pi}F$. Из $G = G^F$ следует, что $G \notin W_{\pi}F$.

Теорема 3. Пусть F – наследственная насыщенная формация и $\pi \subseteq P$. Тогда $W_{\pi}F$ является наследственной насыщенной формацией.

Следствие 3.1 [7, теорема B]. Пусть F – наследственная насыщенная формация. Тогда WF – наследственная насыщенная формация.

Следствие 3.2. Если F — наследственная насыщенная формация, то класс групп с F-субнормальной единичной подгруппой является наследственной насыщенной формацией.

Пусть F – локальная формация, h – ее максимальный внутренний локальный экран и $\pi \subseteq \mathbf{P}$. Для любого простого p обозначим через $h_{\pi}^*(p)$ следующий класс групп: $h_{\pi}^*(p) = (G \mid 1 \ F$ -sn G, Q F-sn G и $Q \in h(p)$ для любой $Q \in \mathrm{Syl}_q(G)$ и $q \in \pi \cap \pi(G)$).

Если $\pi = \mathbf{P}$, то вместо $h_{\pi}^*(p)$ будем писать $h^*(p)$.

Теорема 4. Пусть F – наследственная насыщенная формация, h – ее максимальный внутренний локальный экран и $\pi \subseteq \mathbf{P}$. Тогда $\mathbf{W}_{\pi}F = \mathrm{LF}(f)$, где f – максимальный внутренний локальный экран формации $\mathbf{W}_{\pi}F$ такой, что $f(p) = h_{\pi}^*(p)$, если $p \in \pi(F)$; $h_{\pi}^*(p) = \emptyset$, если $p \in \mathbf{P} \setminus \pi(F)$.

Следствие 4.1. Пусть F – наследственная насыщенная формация, h – ее максимальный внутренний локальный экран и $\pi \subseteq \pi(F) = P$. Тогда $W_{\pi}F = LF(h_{\pi}^*)$, где h_{π}^* – максимальный внутренний локальный экран формации $W_{\pi}F$.

Следствие 4.2. Пусть F – наследственная насыщенная формация, h – ее максимальный внутренний локальный экран. Тогда WF = LF(f), где f – максимальный внутренний локальный экран формации WF такой, что $f(p) = h^*(p)$, если $p \in \pi(F)$; $f(p) = \emptyset$, если $p \in P \setminus \pi(F)$.

Следствие 4.3. Если F – наследственная насыщенная формация, h – ее максимальный внутренний локальный экран и $\pi(F) = \mathbf{P}$, то $\mathbf{W}F = \mathbf{L}\mathbf{F}(h^*)$, где h^* – максимальный внутренний локальный экран формации $\mathbf{W}F$.

Согласно [16, гл. IV, пример 3.4 (f)] формация U всех сверхразрешимых групп имеет внутренний локальный экран f такой, что f(p)=A(p-1) — класс всех абелевых групп экспоненты, делящей (p-1), для любого простого p. Ввиду леммы 1.6 формация U имеет максимальный внутренний локальный экран h такой, что h(p)= $N_pA(p-1)$. В работе [11] был найден локальный экран формации wU, который не является максимальным внутренним. Используя теорему 3.6, нетрудно найти максимальный внутренний локальный экран формации wU.

Следствие 4.4. Формация $wU = \overline{W} U$ имеет максимальный внутренний локальный экран h^* такой, что $h^*(p) = (G \mid Q \mathbf{P}$ -субнормальна в $G u Q \in N_p A(p-1)$ для всякой силовской подгруппы Q группы G) для любого простого p.

Теорема 5. Если F – наследственная насыщенная формация и $\pi(F) \subseteq \pi$, то $\overline{W}_{\pi}F \cap G_{\pi}$ – наследственная насыщенная формация.

Следствие 5.1 [10, следствие 2.3]. Если F – наследственная насыщенная формация, то $\overline{\mathbb{W}} F$ – наследственная насыщенная формация.

Теорема 6. Пусть F — наследственная насыщенная формация, h — ее максимальный внутренний локальный экран и $\pi(F) \subseteq \pi$. Тогда $\overline{\mathbb{W}}_{\pi} F \cap G_{\pi} = \mathrm{LF}(g)$, где g — максимальный внутренний локальный экран формации $\overline{\mathbb{W}}_{\pi} F \cap G_{\pi}$ такой, что $g(p) = h_{\pi}^*(p)$, если $p \in \pi(F)$; $g(p) = N_p$, если $p \in \pi \setminus \pi(F)$; $g(p) = \emptyset$, если $p \in P \setminus (\pi \cup \pi(F))$.

Теорема 5 позволяет строить новые примеры насыщенных формаций.

Предложение 7. Пусть A — формация всех разрешимых групп c абелевыми силовскими подгруппами. Тогда $W(NA) = \overline{W}(NA) = NA$.

Список использованных источников

- 1 Hawkes, T. On formation subgroups of a finite soluble group / T. Hawkes // J. London Math. Soc. $1969. Vol.\ 44. P.\ 243-250.$
 - 2 Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М.: Наука, 1978. 278 с.

- 3 Kegel, O. H. Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten / O. H. Kegel // Arch. Math. 1978. Bd. 30, № 3. S. 225–228.
- 4 Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L. M. Ezquerro. Dordrecht: Springer-Verl, 2006. 385 p.
- 5 Каморников, С. Ф. Подгрупповые функторы и классы конечных групп / С. Ф. Каморников, М. В. Селькин. Минск : Бел. навука, 2003. 254 с.
- 6 Васильев, А. Ф. О влиянии примарных *F*-субнормальных подгрупп на строение группы / А. Ф. Васильев // Вопросы алгебры. 1995. Вып. 8. С. 31–39.
- 7 Васильев, А. Ф. О конечных группах с обобщенно субнормальными силовскими подгруппами / А. Ф. Васильев, Т. И. Васильева // Проблемы физики, математики и техники. 2011. № 4. С. 86–91.
- 8 Васильева, Т. И. Конечные группы с формационно субнормальными подгруппами / Т. И. Васильева, А. И. Прокопенко // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2006. № 3. С. 25–30.
- 9 Вегера, А. С. О насыщенных формациях конечных групп, определяемых свойствами вложения силовских подгрупп / А. С. Вегера // Известия Гомельского государственного университета имени Франциска Скорины. 2012. № 6. С. 154–158.
- 10 Вегера, А. С. О конечных группах с заданными К-*F*-субнормальными силовскими подгруппами / А. С. Вегера // Проблемы физики, математики и техники. 2014. № 3. С. 53–57.
- 11 Васильев, А. Ф. О конечных группах сверхразрешимого типа / А. Ф. Васильев, Т. И. Васильева, В. Н. Тютянов // Сибирский математический журнал. 2010. Т. 51, № 6. С. 1270–1281.
- 12 Васильев, А. Ф. О К-**P**-субнормальных подгруппах конечных групп / А. Ф. Васильев, Т. И. Васильева, В. Н. Тютянов // Математические заметки. 2014. Т. 95, № 4. С. 517–528.
- 13 Васильев, А. Ф. О произведениях **Р**-субнормальных подгрупп в конечных группах / А. Ф. Васильев, Т. И. Васильева, В. Н. Тютянов // Сибирский матем. журнал. 2012. Т. 53, № 1. С. 59–67.
- 14 Monakhov, V. S. Finite groups with **P**-subnormal subgroups / V. S. Monakhov, V. N. Kniahina // Ricerche mat. 2013. Vol. 62. P. 307–322.
- 15 Ballester-Bolinches, A. Some Results on Products of Finite Groups / A. Ballester-Bolinches, L. M. Ezquerro, A. A. Heliel, M. M. Al-Shomrani // Bull. Malays. Math. Sci. Soc. 2015. DOI 10.1007/s40840-015-0111-7.
- 16 Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes. Berlin ; New York : Walter de Gruyter, 1992. 898 p.