Colorings of groups without big monochrome symmetric subsets

I.V.PROTASOV

Let G be a group, $g \in G$. A mapping $s_g : G \to G$, $s_g(x) = gx^{-1}g$ is called a symmetry. A subset $A \subseteq G$ is called *symmetric* if $s_q(A) = A$ for some element $g \in G$.

Let G be an Abelian group of cardinality $\gamma > \aleph_0$. Suppose that the subgroup $\{y \in G : g \in G : g \in G \}$ 2g=0 is of cardinality $\langle \gamma \rangle$. By [1, Theorem 3], there exists a coloring $\xi: G \to \{0,1\}$ such that every ξ -monochrome symmetric subset of G is of cardinality $< \gamma$.

We prove the following non-abelian version of the above statement.

Theorem. Let G be a group of cardinality $\gamma > \aleph_0$. Suppose that there exists a cardinal $\delta < \gamma$ such that

 $card\{g \in G : g^2 = a\} \leq \delta$ for every element $a \in G$. Then there exists a coloring $\xi : G \to \{0,1\}$ without ξ -monochrome symmetric subsets of cardinality γ .

We shall extract the proof from three Lemmas.

Lemma 1. Let G be a group and let $\{G_{\alpha} : \alpha < \gamma\}$ be a family of its subgroups with the following properties

(i) $G = \bigcup \{G_{\alpha} : \alpha < \gamma\},$

(ii) $G_{\alpha} \subset G_{\alpha+1}$ for every ordinal $\alpha < 1$

(iii) $G_{\beta} = \bigcup \{G_{\alpha} : \alpha < \beta\}$ for every limit ordinal $\beta < \gamma$,

(iv) $g^2 \notin G_{\alpha}$ for every ordinal $\alpha < \gamma$ and for every element $g \notin G_{\alpha}$.

Then there exists a coloring $\xi : G \to \{0,1\}$ such that

$$\xi(g) \neq \xi(ag^{-1}b)$$

whenever $a, b \in G_{\alpha}$, $g \notin G_{\alpha}$, $\alpha < \gamma$.

Proof. Fix any ordinal $\alpha < \gamma$ and take any double coset $K = G_{\alpha} \times G_{\alpha}$ of $G_{\alpha+1}$ by G_{α} , $K \neq G_{\alpha}$ By (iv), $K^{-1} \neq K$. Hence, we can partition $G_{\alpha+1} \setminus G_{\alpha}$ into the pairs K^+, K^- of double cosets such that

$$(K^+)^{-1} = K^-.$$

Denote by G_{α}^{+} and G_{α}^{-} the unions of the positive and negative double cosets respectively.

$$G^+=\cup\{G^+_\alpha:\alpha<\gamma\},\ G^-=\cup\{G^-_\alpha:\alpha<\gamma\}.$$

By (i), (ii), (iii), for every element $x \in G \setminus G_0$, there exists an ordinal $\alpha < \gamma$ such that $x \in G_{\alpha+1} \setminus G_{\alpha}$. Thus $G = G_0 \cup G^+ \cup G^-$. Define the coloring ξ as follows

$$\xi(x) = \begin{cases} 1, & \text{if } x \in G_0 \cup G^+, \\ 0, & \text{if } x \in G^- \end{cases}$$

Lemma 2. Let G be a group, $X \subseteq G$ and let δ be a cardinal such that

$$card\{g \in G : g^2 = a\} \le \delta$$

f every element $a \in G$. Then there exists a subgroup S of G such that

$$cardS \le \max\{\xi_0, \delta, cardX\}$$

 $\implies g \notin S$ for every element $g \notin S$.

Denote by S_0 the subgroup generated by X. Suppose that we have chosen the groups S_0, \ldots, S_n . Denote by S_{n+1} the subgroup generated by the subset $S_n \cup \{g \in G: F \in S_n\}$. Put $S = \cup \{S_n : n < \omega\}$.

Lemma 3. Let G be a group of cardinality $\gamma > \aleph_0$. Suppose that there exists a cardinal such that

$$cardg \in G : g^2 = a \} \le \delta$$

Lemma 1 and having the additional property

(c) $\operatorname{card} G_{\alpha} < \gamma$ for every ordinal $\alpha < \gamma$.

Fix a minimal well-ordering $\{g_{\alpha}: \alpha < \gamma\}$ of G. Put $X = \{g_0\}$ and use Lemma 2 to subgroup G_0 such that $\operatorname{card} G_0 = \max\{\aleph_0, \delta\}$ and $g^2 \in G_0$ implies $g \in G_0$. Suppose have constructed the family $\{G_{\alpha}: \alpha < \beta\}$ for some ordinal $\beta < \gamma$. If β is a limit put $G_{\beta} = \bigcup \{G_{\alpha}: \alpha < \beta\}$. If $\beta = \alpha + 1$ take a minimal element $g_{\mu} \notin G_{\alpha}$ and $X = G_{\alpha} \cup \{g_{\mu}\}$. By Lemma 2, there exists a subgroup $G_{\alpha+1}$ such that $X \subseteq G_{\alpha+1}$ and $G_{\alpha} = \operatorname{card} G_{\alpha+1}$.

Proof of Theorem. By Lemma 3, there exists a family $\{G_{\alpha} : \alpha < \gamma\}$ of subgroups of G with point (i)-(v). Apply Lemma 1 to point out the desired coloring $\xi : G \to \{0,1\}$.

The above arguments work also in some countable cases. Let G be a countable case finite group without an element of order 2. Choose an increasing sequence of $\{G_n : n < \omega\}$ with $G = \bigcup \{G_n : n < \omega\}$. By Lemma 1, there exists a coloring $G \to \{0,1\}$ with only finite monochrome symmetric subsets.

Benark 2. Suppose that a group G satisfies the assumptions of Theorem. Let $\{G_{\alpha}: \alpha < \gamma\}$ satisfies the assumptions of Theorem. Let $\{G_{\alpha}: \alpha < \gamma\}$ satisfies the assumptions of Theorem. Let $\{G_{\alpha}: \alpha < \gamma\}$ satisfies the assumptions of Theorem. Let $\{G_{\alpha}: \alpha < \gamma\}$ such that the properties (i)-(v). Consider the coloring $\xi: G \to \{0,1\}$ by Lemma 1. Put $D_0 = \xi^{-1}(0)$, $D_1 = \xi^{-1}(1)$. Then the subsets D_0 , D_1 are dense in topology on G such that the mappings $x \mapsto x^{-1}$, $x \mapsto gx$, $g \in G$ are continuous and nonempty open subset of G has cardinality g.

Abstract. A subset A of group G is called symmetric if $A = gA^{-1}g$ for some element $G \in G$. For a wide class of groups, we construct the colorings $\xi : G \to \{0,1\}$ such that every monochrome symmetric subset of G is of cardinality $\leq cardG$

References

II I.V.Protasov, Monochromatic symmetric subsets in the colorings of Abelian groups, Dokl. NAN Ukr., 1999, №11, 54–57.

Киевский Национальный университет им. Тараса Шевченко

Поступило 20.03.2001

O3MIOPMINITY WHEIM D. CROPHING