of one-generated ω -saturated formations

WADDW SEL'KIN, ALEXANDER SKIBA

All growns considered in this paper are finite.

The product \mathfrak{MH} of the formations \mathfrak{M} and \mathfrak{H} is the class $(G|G^{\mathfrak{H}} \in \mathfrak{M})$.

 $G = G \subseteq P$. A formation \mathfrak{F} is called ω -saturated if \mathfrak{F} contains every group G with $G = G \cap \Phi(G) \cap \Phi(G) \in \mathfrak{F}$. A formation \mathfrak{F} is called \mathfrak{N}_p -saturated [2] if \mathfrak{F} contains every group $G = G \cap G \cap G \cap G$

The intersection of all ω -saturated formations which contain some fixed group G is called a one-generated ω -saturated formation.

A non-trivial factorization of a formation $\mathfrak{F}[1]$ is a product $\mathfrak{F} = \mathfrak{F}_1 \mathfrak{F}_2 \dots \mathfrak{F}_t$, $t \geq 2$, where $\mathfrak{F}_i \neq (1)$ for all $i = 1, 2, \ldots, t$. In this note answering Question 19 from [1] we give the description of non-trivial factorizations of one-generated ω -saturated formations.

Lemma 1. Let \mathfrak{M} , \mathfrak{H} be non-empty formations such that $\mathfrak{M}\mathfrak{H} \subseteq \mathfrak{F}$ for some one-generated saturated formation \mathfrak{F} . Assume that $\mathfrak{M} \neq (1)$. Then every simple group $A \in \mathfrak{M}$ is abelian.

Lemma 2. Suppose that \mathfrak{MH} is a \mathfrak{N}_q -saturated formation where $q \in \omega$ such that $\mathfrak{MH} \subseteq \mathfrak{F}$ for some one-generated ω -saturated formation \mathfrak{F} . Suppose that for some prime p we have $\mathfrak{N}_p \subseteq S(\mathfrak{H})$. And let $\mathfrak{M} \neq (1)$. Then $|A| \Rightarrow p$ for each simple group A in \mathfrak{M} .

Lemma 3. Let $\mathfrak{F}=\mathfrak{MH}$ be a product of formations \mathfrak{M} and \mathfrak{H} . Suppose that each simple group in \mathfrak{M} is abelian. Suppose that there are a group $A\in\mathfrak{M}$ and a natural number m such that for all groups $B\in\mathfrak{H}$ with $|B|\geq m$ the \mathfrak{H} -residual of the wreath product $T=A\wr B$ is not contained subdirectly in the base group of T. Then there is a group Z_p of prime order p such that $Z_p\in\mathfrak{M}\cap\mathfrak{H}$ and $\mathfrak{N}_p\subseteq S(\mathfrak{H})$.

Lemma 4. Let $\mathfrak{F}=\mathfrak{MH}$ where every simple group in \mathfrak{M} has a prime order p. Then $D=A^{\mathfrak{H}}\wr (A/A^{\mathfrak{H}})\in \mathfrak{F}$ for all groups $A\in \mathfrak{F}$.

Lemma 5. Let $\mathfrak{F}=\mathfrak{MH}$. And let $\mathfrak{N}_p\mathfrak{H}=\mathfrak{H}$ for some prime p. If for every simple group $A\in\mathfrak{M}$ we have |A|=p, then $\mathfrak{F}=\mathfrak{H}$.

Lemma 6. Let $\mathfrak{MH}\subseteq\mathfrak{F}$ where \mathfrak{F} is a one-generated ω -saturated formation, \mathfrak{M} is a

A such that $A \in m(p)$ and $|A| \neq p$. Then $A \notin \mathfrak{H}$ and the simple group A such that $A \in m(p)$ and $|A| \neq p$. Then $A \notin \mathfrak{H}$ and the simple group A such that $|A| \notin \omega$. Then \mathfrak{H} is abelian.

I with prime order such that $|A| \notin \omega$. Then \mathfrak{H} is abelian.

I with prime order such that $|A| \notin \omega$. Then \mathfrak{H} is abelian.

I with prime order such that $|A| \notin \omega$. Then \mathfrak{H} is abelian.

I with prime order such that $|A| \notin \omega$. Then \mathfrak{H} is abelian.

I with prime order such that for all groups $A \in \mathfrak{H}$ the \mathfrak{H} -residual of \mathfrak{H} -residual of

In a consequence of the consequ

Lemma 2 = 100 is the product of non-identity formations \mathfrak{M} and $\mathfrak{H} \neq \mathfrak{F}$. Suppose the \mathfrak{H} is a non-generalised \mathfrak{u} -subtracted formation if and only if the follows:

(b) \mathfrak{H} is an abelian one-generated formation and $\pi(\mathfrak{H}) \cap \omega \subseteq \pi(\mathfrak{M})$; (c) for all groups $A \in \mathfrak{M}$ and $B \in \mathfrak{H}$ we have $(|A/F_{\omega}(A)|, |B|) = 1$, $(|A/O_{\omega}(A)|, |B|) = 1$.

Lemma 11. Let $\mathfrak{F} = \mathfrak{MH}$ be the product of non-identity formations \mathfrak{M} and $\mathfrak{H} \neq \mathfrak{F}$. Suppose $\mathfrak{M} \subseteq \mathfrak{N}_{\omega}$. Then \mathfrak{F} is a one-generated ω -saturated formation if and only if $|\pi(\mathfrak{M})| < \infty$, $\pi(\mathfrak{H}) \cap \omega \subseteq \pi(\mathfrak{M})$, $\mathfrak{H}(\omega')$ is a one-generated formation and either $|\pi(\mathfrak{M})| > 1$ and \mathfrak{H} is a one-generated formation or $\pi(\mathfrak{M}) = \{p\}$ for some prime p and $\mathfrak{H}(p)$ is a one-generated formation.

We use $F_{\omega}(G)$ to denote the intersection $\bigcap_{p \in \omega} O_{p',p}(G)$ Theorem 1. The product

$$\mathfrak{F} = \mathfrak{F}_1 \mathfrak{F}_2 \dots \mathfrak{F}_t$$

is a non-trivial factorization of some one-generated ω -saturated formation \mathfrak{F} if and only if $\mathfrak{F}_i \neq (1)$ for all $i=1,2,\ldots,t$ and one of the following statements is true:

(1) there exist an index i, a prime $p \in \omega$ and a one-generated formation \mathfrak{H} such that

$$\mathfrak{F} = \mathfrak{F}_i \dots \mathfrak{F}_t = \mathfrak{N}_p \mathfrak{H}$$

 $\pi(\mathfrak{F}) \cap \omega = \{p\} \text{ and if } i > 1, \text{ there } |A| = p \text{ for all groups } A \text{ in } \mathfrak{F}_1, \mathfrak{F}_{i-1};$

(2) there exist an index i < t and a prime $p \in \omega$ such that $\mathfrak{F}_1 \dots \mathfrak{F}_i = \mathfrak{N}_p$ and if $\mathfrak{H} = \mathfrak{F}_{i+1} \dots \mathfrak{F}_t$, then $\pi(\mathfrak{H}) \cap \omega \subseteq \{p\}$ and the formations $\mathfrak{H}(p)$ and $\mathfrak{H}(p')$ are one-generated;

(3) $t=2,\mathfrak{F}_1\subseteq\mathfrak{N}_{\omega},\mathfrak{F}_2$ is a one-generated formation and $1<|\pi(\mathfrak{F}_1)|<\infty;$

(4) t=2, \mathfrak{F}_1 is a one-generated ω -local formation in $\mathfrak{N}_{\omega}\mathfrak{N}\setminus\mathfrak{N}_o$ mega; \mathfrak{F}_2 is an abelian one-generated formation such that $\pi(\mathfrak{H})\cap\omega\subseteq\pi(\mathfrak{F}_1)$ and for all groups $A\in\mathfrak{F}_1$ and $B\in\mathfrak{F}_2$ it is true that $(|A/F_{\omega}(A)|,|B|=1,|(A/O_{\omega}(A))|,|B|=1;$

(5) $t = 3, \mathfrak{F}_1 \subseteq \mathfrak{N}_{\omega}, \ 1 < |\pi(\mathfrak{F}_1)| < \infty, \ \mathfrak{F}_3$ is a one-generated abelian formation and for every $p \in \pi(\mathfrak{F}_1)$ the formation $\mathfrak{F}_2(p)$ is a one-generated nipotent formation and for all

groups $A \in \mathfrak{F}_2$ and $B \in \mathfrak{F}_3$ it is true that $\pi(A/O_p(A)) \cap \pi(B) = \varnothing$.

Резюме. Нетривиальная факторизация формации \mathfrak{F} [1]— это произведение $\mathfrak{F}=\mathfrak{F}_1\mathfrak{F}_2\ldots\mathfrak{F}_t,\ t\geq 2$, где $\mathfrak{F}_i\neq (1)$ для всех $i=1,2,\ldots,t$. В этой заметке, отвечая на вопрос 19 из [1], мы даём описание нетривиальных факторизаций однопорожденных ω -насыщенных формаций.

References

- [1] L.A.Shemetkov, A.N.Skiba, Multiply ω -local formations and Fitting classes of finite groups, Siberian Advances in Mathematics, 10(2) (2000), 112–141.
- [2] L.A. Shemetkov, Frattini extensions of finite groups and formations, Comm. Algebra 25:3 (1997), 955-964.

Francisk Scorina Gomel State University 246699 Gomel, Belarus skiba@gsu.unibel.by

Received 26.05.2001