A description of finite groups with \mathfrak{F} -abnormal or \mathfrak{F} -subnormal subgroups

V.N. SEMENCHUK

Dedicated to Professor Wolfgang Gaschütz on the occasion of his 80th birthday

In the paper we consider only finite groups. Let \mathfrak{F} be a non-empty hereditary formation. A subgroup H of a group G is said to be:

1) F-subnormal if there exists a maximal chain of subgroups

$$G = H_0 \supset H_1 \supset \ldots \supset H_n = H$$

such that for each $i \geq 1$, H_i is \mathfrak{F} -normal in H_{i-1} ;

2) F-abnormal if in any maximal chain of subgroups

$$G = H_0 \supset H_1 \supset \ldots \supset H_n = H$$

 H_i is \mathfrak{F} -abnormal in H_{i-1} for each $i \geq 1$.

In the paper we obtain the description of groups in which any proper subgroup is either \mathfrak{F} -subnormal or \mathfrak{F} -abnormal where \mathfrak{F} is an arbitrary soluble superradical formation. As a consequence of the obtained theorem, in the case when \mathfrak{F} is the formation of all nilpotent groups, all soluble p-nilpotent groups, every soluble \check{S} -formation, we have the results of [1–3].

We use standard notations [5, 7]. $\pi(\mathfrak{F})$ is the set of all prime divisors of groups in \mathfrak{F} . If $\mathfrak{F} = LF(F)$ then $\sigma(\mathfrak{F}) = \{p \in \pi(\mathfrak{F}) : F(p) \neq \mathfrak{F}\}$. $\pi'(\mathfrak{F}) = \mathbb{P} \setminus \pi(\mathfrak{F})$.

Lemma 1. Let 3 be a nonempty hereditary formation. Then the following assertions hold:

1) if H is a subgroup of G and $G^{\mathfrak{F}} \subseteq H$, then H is \mathfrak{F} -subnormal in G;

- 2) if H is an \mathfrak{F} -subnormal subgroup of G and K is a subgroup of G, then $H \cap K$ is \mathfrak{F} -subnormal in K;
- 3) if H_1 and H_2 are \mathfrak{F} -subnormal subgroups of a group G, then $H_1 \cap H_2$ is \mathfrak{F} -subnormal in G;
- 4) if H is \mathfrak{F} -subnormal in K and K is \mathfrak{F} -subnormal in G, then H is an \mathfrak{F} -subnormal subgroup of the group G.

A formation \mathfrak{F} is said to be superradical if it satisfies the following requirements:

1) 3 is a normally hereditary formation;

2) G = AB, where A and B are \mathfrak{F} -subnormal \mathfrak{F} -subgroups of G, always implies $G \in \mathfrak{F}$

Lemma 2. Let $\mathfrak{F} \neq \emptyset$ be a soluble hereditary superradical formation. Then \mathfrak{F} is a local formation.

Proof. Let G = AB, where A and B are normal \mathfrak{F} -subgroups of G. Since

$$G/A = AB/A \simeq A/A \cap B \in \mathfrak{F},$$

it follows that $G^{\mathfrak{F}} \subseteq A$ and $G^{\mathfrak{F}} \subseteq B$. Then, by lemma 1, A and B are \mathfrak{F} -subnormal subgroups of G. Since \mathfrak{F} is a superradical formation, it follows that $G \in \mathfrak{F}$. Thus, \mathfrak{F} is a radical formation. By theorem 1 of [4] \mathfrak{F} is a local formation. Lemma is proved.

Theorem. Let $\mathfrak{F} \neq \emptyset$ be a soluble hereditary superradical formation. Then any proper subgroup of a group G is either \mathfrak{F} -subnormal or \mathfrak{F} -abnormal if and only if G is a $\pi(\mathfrak{F})$ -soluble group of one of the following types:

1) $G \in \mathfrak{F}$;

her

ent

-3].

If

ld:

is

nal

ral

cal

al a

- 2) $G = [G_{q'}]G_q$, where $G_{q'} \in \mathfrak{F}$, G_q is an \mathfrak{F} -projector of G, G_q is a cyclic group, $\pi(G^{\mathfrak{F}}) \subseteq \mathfrak{F}$, $G_{q'} \times G_q^*$ is the unique normal maximal subgroup of the group G, G_q^* is a maximal suppose G_q ;
 - 3) G is a $\pi'(\mathfrak{F})$ -group;
- 4) $G = G_{p'}G_p$, where $p \in \pi(\mathfrak{F})$, $\pi(G_{p'}) \subseteq \pi'(\mathfrak{F})$, $|G_p| = p$, G_p is an \mathfrak{F} -projector of the G, $N_G(K)$ is a p'-group, where K is any p'-subgroup from G.
- Necessity. According to Lemma 2, \mathfrak{F} is a local formation. We consider the following cases.
- 1) $G^{\mathfrak{F}} \subset G$. Since $G^{\mathfrak{F}}$ is an \mathfrak{F} -subnormal subgroup, every subgroup from $G^{\mathfrak{F}}$ is \mathfrak{F} -subnormal in $G^{\mathfrak{F}}$. By Lemma 1, any subgroup from $G^{\mathfrak{F}}$ is \mathfrak{F} -subnormal in G. Since \mathfrak{F} is a soluble formation and $G \in \mathfrak{F}$, we obtain that G is a soluble group.

Let H be an \mathfrak{F} -projector of the group G. Let H_1 and H_2 be non-conjugate maximal coups of H. Then

$$G = G^{\mathfrak{F}} H_1 G^{\mathfrak{F}} H_2.$$

Lemma 1 in $G^{\mathfrak{F}}H_1$ and $G^{\mathfrak{F}}H_2$ are \mathfrak{F} -subnormal subgroups of the group G. Since \mathfrak{F} is a local and any subgroup in $G^{\mathfrak{F}}H_i$ (i=1,2) is a \mathfrak{F} -subnormal subgroup of the group G, then $G^{\mathfrak{F}}H_i$ it follows that $G^{\mathfrak{F}}H_i \in \mathfrak{F}$, i=1,2. Since \mathfrak{F} is a superradical formation, $G \in \mathfrak{F}$, a contradiction. Thus, $G \in \mathfrak{F}$ is a cyclic G-group. Obviously, $G_G \in \mathfrak{F}$ is an G-abnormal output of the group $G \in \mathfrak{F}$. By Theorem 15.1 of [5], $G_G \in \mathfrak{F}$ is an G-projector of the G-according to Theorem 15.3 of [5], we have $G \in G$ -according to Theorem 15.3 of [5], we have $G \in G$ -according to Theorem 15.3 of [5], we have $G \in G$ -according to Theorem 15.3 of [5], we have $G \in G$ -according to Theorem 15.3 of [5], we have $G \in G$ -according to Theorem 15.3 of [5], we have $G \in G$ -according to Theorem 15.3 of [5], we have

By induction on the order of the group one can show that $|G^{\mathfrak{F}}|$ is not divisible by q.

If $G/N \in \mathfrak{F}$, then $N = G^{\mathfrak{F}}$. Assume now that $G/N \notin \mathfrak{F}$. By induction, $|G^{\mathfrak{F}}/N|$ is sible by q. But then $|G^{\mathfrak{F}}|$ is not divisible by q. Assume now that N is a q-group. If n is induction, n is induction, n is not divisible by n is not divisible by n. If n is divisible by n is not divisible by n is not divisible by n. If n is divisible by n is not divisible by n is divisible by n is divisible by n. If n is divisible by n is not divisible by n is divisible by

$$(G/K)^{\mathfrak{F}} = QK/K \subseteq \Phi(G/K).$$

is saturated we have $G/K \in \mathfrak{F}$. But then $G^{\mathfrak{F}} \subseteq K$, a contradiction. Thus, $\Phi(G) = 1$.

$$G = N \times M = NM_q M_{q'}.$$

 $N \subseteq \Phi(G_q)$, we have G = M, a contradiction. Thus, $G^{\mathfrak{F}} = G_{q'}$.

show that the maximal subgroup G_q^* from G_q is normal in G. As above, it is easy to $G_q^*G_q^* \in \mathfrak{F}$. Obviously, $G_{q'}G_q^*$ is a normal subgroup in G. We consider the subgroup here $p \neq q$. Obviously, G_p is normal in $G_pG_q^*$ we assume that $N_G(G_q^*) \neq G$. Since \mathfrak{F} , we have

$$G_p G_q^* / F_p(G_p G_q^*) \in f(p),$$

f is the maximal integrated local screen of the formation \mathfrak{F} . From this it follows that f(p). Since \mathfrak{F} is an superradical formation, by Theorem 1 of [6] we have

$$\mathfrak{F} = \bigcap_{p \in \pi(\mathfrak{F})} \mathfrak{S}_{p'} \mathfrak{S}_{\pi(f(p))} \bigcap \mathfrak{S}_{\pi(\mathfrak{F})}.$$

a local screen h such that $h(p) = \mathfrak{S}_{\pi(f(p))}$. From this it is easy to show that $G_pG_q^* \in \mathfrak{F}$. G_q is \mathfrak{F} -abnormal in G, it follows that G_qG_p is \mathfrak{F} -abnormal in G. By Theorem 15.1

of [5], G_pG_q is a \mathfrak{F} -projector of the group G, a contradiction. Thus, G_q^* is normal in $G_pG_q^*$, where p is any prime number in $\pi(G)$. From this it follows that G_q^* is a normal subgroup of G.

We show that $\pi(G^{\mathfrak{F}}) \subseteq \sigma(\mathfrak{F})$. We assume the opposite. Then there exists a prime number $p \in \pi(G^{\mathfrak{F}})$ such that $f(p) = \mathfrak{F}$. We consider the subgroup G_pG_q . Obviously, G_p is normal in G_pG_q . Since $G_q \in \mathfrak{F}$ and

$$G_pG_q/F_p(G_pG_q) \in f(p), \qquad G_pG_q/F_q(G_pG_q) \in f(q),$$

it follows that $G_pG_q \in \mathfrak{F}$. As above, it is easy to show that this is impossible. We have a contradaction, i.e., $\pi(G^{\mathfrak{F}}) \subseteq \sigma(\mathfrak{F})$.

Assume now that $G^{\mathfrak{F}}=G$. We show that G is a $\pi(\mathfrak{F})$ -soluble group. Let p be any prime number from $\pi(G)$ such that $p\in\pi(\mathfrak{F})$. Obviously, any proper subgroup of G is \mathfrak{F} -abnormal in G. In view of the fact that $G_p\in\mathfrak{F}$, we obtain $|G_p|=p$. From this we have the $\pi(\mathfrak{F})$ -solubility of G.

We consider a subgroup G_p , where p is any prime number from $\pi(G) \cap \pi(\mathfrak{F})$. We have proved above that $|G_p| = p$. By Theorem 15.1 of [5] G_p is an \mathfrak{F} -projector of the group G. By Theorem 15.5 of [5] \mathfrak{F} -projectors of the group G are conjugate. This means that $G = G_{p'}G_p$, where $p \in \pi(\mathfrak{F})$, $\pi(G_{p'}) \subseteq \pi'(\mathfrak{F})$. Since all proper subgroups of the group G are \mathfrak{F} -abnormal in G, it follows that $N_G(K)$ is a p'-group, where K is a p'-subgroup.

Sufficiency. Let G be a group from 1). Since \mathfrak{F} is a hereditary formation, it follows that every proper subgroup in G is \mathfrak{F} -subnormal in G.

Let G be a group from 2). Let K be a proper subgroup of the group G. If |K| is not divisible by q, then $K \subseteq GF^{\mathfrak{F}}$. Since $G^{\mathfrak{F}}$ is \mathfrak{F} -subnormal in G, $G^{\mathfrak{F}} \in \mathfrak{F}$ and \mathfrak{F} is a local formation, it follows that K is an \mathfrak{F} -subnormal subgroup of the group G. Assume that |K| is divisible by q. If $G_q \subseteq K$, then from the fact G_q is an \mathfrak{F} -projector of G it follows that K is \mathfrak{F} -abnormal in G. Let $G_q \not\subseteq K$. Obviously, $K \subseteq G^{\mathfrak{F}} \times H^*$. Since $G^{\mathfrak{F}} \times H^*$ is \mathfrak{F} -subnormal in G and $G^{\mathfrak{F}} \times H^* \in \mathfrak{F}$, it follows that K is \mathfrak{F} -subnormal in G.

Let G be a group from 3). Obviously, every subgroup in G is \mathfrak{F} -abnormal in G.

Let G be a group from 4). Let K be a proper subgroup of the group G. If |K| is divisible by q, then $G_q \subseteq K$. Since G_p is \mathfrak{F} -abnormal in G, it follows that K is \mathfrak{F} -abnormal in G. Assume that |K| is not divisible by q. Then K is a $\pi'(\mathfrak{F})$ -group. Since $N_G(K)$ is a $\pi'(\mathfrak{F})$ -group, it is easy to prove that K is an \mathfrak{F} -abnormal subgroup of the group G. The theorem is proved.

Резюме. Пусть \mathfrak{F} — разрешимая наследственная сверхрадикальная формация. Получено описание конечной группы G, у которой каждая собственная подгруппа либо \mathfrak{F} -субнормальна, либо \mathfrak{F} -абнормальна.

References

- [1] G.Ebert, S.Bauman, A note on subnormal and abnormal chains, J. Algebra, 36:2 (1975), 287–293.
- [2] A.Fattachi, Groups with only normal and abnormal subgroups, J.Algebra, 28:1 (1974), 15–19.
- [3] V.N.Semenchuk, Finite groups with F-abnormal or F-subnormal subgroups, Mat. Zametki, 56:6 (1994), 111–115 (Russian).

- R.A.Bryce, J.Cossey, Fitting formations of finite soluble groups, Math. Z., 127:3 (1972), 217–233.
- L.A.Shemetkov, Formation of finite groups, Nauka, Moscow, 1978 (Russian).
- V.N.Semenchuk, Soluble F-radical formations, Mat. Zam., 59:2 (1996), 261–266.
- K.Doerk, T.Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992,

Mathemathics Department
Francisk Scorina Gomel State University
246019 Gomel, Belarus

Received April 2, 2000