УДК 512.544

ЛОКАЛЬНО РАЗРЕШИМЫЕ AFN-ГРУППЫ

О.Ю. Дашкова

Днепропетровский национальный университет им. О. Гончара, Днепропетровск, Украина

LOCALLY SOLUBLE AFN-GROUPS

O.Yu. Dashkova

O. Honchar Dnepropetrovsk National University, Dnepropetrovsk, Ukraine

В работе изучается $\mathbf{R}G$ -модуль A, такой, что \mathbf{R} – коммутативное нетерово кольцо с единицей, G – локально разрешимая группа, $C_G(A)=1$ и любая собственная подгруппа H группы G, для которой фактор-модуль $A/C_A(H)$ не является нетеровым \mathbf{R} -модулем, конечно порождена. Доказано, что локально разрешимая группа G, удовлетворяющая заданным условиям, гиперабелева. Описана структура рассматриваемой группы G в случае, когда G – конечно порожденная разрешимая группа и фактор-модуль $A/C_A(G)$ не является нетеровым \mathbf{R} -модулем.

Ключевые слова: групповое кольцо, локально разрешимая группа, нетеров R-модуль.

Let A be an $\mathbf{R}G$ -module, where \mathbf{R} is a commutative noetherian ring with the unit, G is a locally soluble group, $C_G(A)=1$, and each proper subgroup H of a group G for which $A/C_A(H)$ is not a noetherian \mathbf{R} -module, is finitely generated. It is proved that a locally soluble group G with these conditions is hyperabelian. It is described the structure of a group G under consideration if G is a finitely generated soluble group and the quotient module $A/C_A(G)$ is not a noetherian \mathbf{R} -module.

Keywords: group ring, locally soluble group, noetherian R-module.

Введение

Пусть A — векторное пространство над полем F. Подгруппы группы GL(F,A) всех автоморфизмов пространства А называются линейными группами. Если А имеет конечную размерность над полем F, GL(F,A) можно рассматривать как группу невырожденных $(n \times n)$ -матриц, где $n = dim_E A$. Конечномерные линейные группы изучались многими авторами. В случае, когда пространство A имеет бесконечную размерность над полем F, ситуация кардинально меняется. Бесконечномерные линейные группы исследовались мало. Изучение этого класса групп требует дополнительных ограничений. К таким ограничениям относятся различные условия конечности. Одним из условий конечности, которое достойно особого внимания, является финитарность линейной группы. Группа G называется финитарной, если для каждого ее элемента д подпространство $C_{\scriptscriptstyle A}(g)$ имеет конечную коразмерность **в** *A* (см., например, [1], [2]). Финитарные линейные группы изучались многими алгебраистами, и в этом направлении был получен ряд интересных результатов [2].

В [3] авторы ввели в рассмотрение антифинитарные линейные группы. Пусть $G \le GL(F,A)$, A(wFG) — фундаментальный идеал группового кольца FG. Авторы полагают

 $augdim_F(G) = dim_F(A(wFG))$. Линейная группа G называется антифинитарной, если каждая собственная подгруппа H группы G, для которой размерность $augdim_F(H)$ бесконечна, конечно порождена. В [3] исследовались антифинитарные локально разрешимые линейные группы.

Если $G \le GL(F,A)$, то A можно рассматривать как FG-модуль. Естественным обощением этого случая является рассмотрение $\mathbf{R}G$ -модуля A, где \mathbf{R} – кольцо. Б.А.Ф. Верфриц ввел в рассмотрение артиново-финитарные группы автоморфизмов модуля M над кольцом ${\bf R}$ и нетеровофинитарные группы автоморфизмов модуля Mнад кольцом R, являющиеся аналогами финитарных линейных групп [4]-[6]. Группа автоморфизмов $F_1Aut_{\mathbf{p}}M$ модуля M над кольцом \mathbf{R} называется артиново-финитарной, если A(g-1) является артиновым R-модулем для любого элемента $g \in F_1 Aut_{\mathbf{R}} M$. Группа автоморфизмов $FAut_{\mathbf{R}} M$ модуля M над кольцом \mathbf{R} называется нетеровофинитарной, если A(g-1) является нетеровым **R**-модулем для любого элемента $g \in FAut_{\mathbf{R}}M$. Б.А.Ф. Верфриц исследовал связь между группами $F_1 Aut_{\mathbf{p}} M$ и $FAut_{\mathbf{p}} M$ [6].

При изучении модулей над групповыми кольцами с различными условиями конечности важную роль играет понятие коцентрализатора подгруппы H в модуле A, введенное в [7].

Определение [7]. Пусть $A - \mathbf{R}G$ -модуль, где $\mathbf{R} - \kappa$ ольцо, $G - \mathit{группа}$. Если $H \leq G$, то фактор-модуль $A/C_A(H)$, рассматриваемый как \mathbf{R} -модуль, называется коцентрализатором подгруппы H в модуле A.

В настоящей работе рассматривается аналог антифинитарных линейных групп в теории модулей над групповыми кольцами. Пусть $A-\mathbf{R}G$ -модуль, $\mathbf{R}-$ кольцо, G-группа. Будем говорить, что группа G является AFN-группой, если любая собственная подгруппа H группы G, коцентрализатор которой в модуле A не является нетеровым \mathbf{R} -модулем, конечно порождена.

В работе изучаются локально разрешимые AFN-группы. Всюду рассматривается $\mathbf{R}G$ -модуль A, такой, что \mathbf{R} — ассоциативное кольцо, $C_G(A)=1$. Основные результаты работы — теоремы 2.1 и 2.2 — доказаны в случае, когда \mathbf{R} является коммутативным нетеровым кольцом с единицей. В теореме 2.1 установлена гиперабелевость локально разрешимой AFN-группы, а в теореме 2.2 описана структура конечно порожденной разрешимой AFN-группы G, в случае, когда коцентрализатор группы G в модуле A не является нетеровым \mathbf{R} -модулем.

1 Предварительные результаты

В настоящей главе мы сформулируем некоторые элементарные результаты, которые будут использоваться при доказательстве основных теорем.

Лемма 1.1. Пусть $A - \mathbf{R}G$ -модуль.

- (1) Если $L \le H \le G$ и коцентрализатор подгруппы H в модуле A является нетеровым \mathbf{R} -модулем, то и коцентрализатор подгруппы L в модуле A нетеров \mathbf{R} -модуль.
- (2) Если $L, H \leq G$ и коцентрализаторы подгрупп L и H в модуле A являются нетеровыми \mathbf{R} -модулями, то коцентрализатор подгруппы $\langle L, H \rangle$ в модуле A нетеров \mathbf{R} -модуль.

Спедствие 1.1. Пусть $A - \mathbf{R}G$ -модуль. Множество ND(G) всех элементов $x \in G$, таких, что коцентрализатор группы $\langle x \rangle$ в модуле A — нетеров \mathbf{R} -модуль, является нормальной подгруппой группы G.

Доказательство. Из леммы 1.1 вытекает, что ND(G) является подгруппой группы G. Так как $C_A(x^g) = C_A(x)g$ для всех $x,g \in G$, то подгруппа ND(G) нормальна в G. Следствие доказано.

Спедствие 1.2. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Если группа G содержит две собственные бесконечно порожденные подгруппы K и L, то коцентрализатор

подгруппы $\langle K, L \rangle$ в модуле A является нетеровым \mathbf{R} -модулем.

Лемма 1.2. Пусть $A-\mathbf{R}G$ -модуль, G является AFN-группой. Пусть $H \leq G$, K — нормальная подгруппа H, такая, что $H/K = Dr_{\lambda \in \Lambda}(H_{\lambda}/K)$, $H_{\lambda} \neq K$ для каждого $\lambda \in \Lambda$, и множество индексов Λ бесконечно. Тогда коцентрализатор подгруппы H в модуле A является нетеровым \mathbf{R} -модулем.

Доказательство. Фактор-группу H/K можно представить в виде прямого произведения $H/K = H_1/K \times H_2/K$, такого, что фактор-группы H_1/K и H_2/K бесконечно порождены. Так как G — AFN-группа, то коцентрализаторы подгрупп H_1 и H_2 в модуле A являются нетеровыми \mathbf{R} -модулями. Поскольку $H = \langle H_1, H_2 \rangle$, по лемме 1.1 коцентрализатор подгруппы H в модуле A является нетеровым \mathbf{R} -модулем. Лемма доказана.

Спедствие 1.3. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Пусть $H \leq G$, K — нормальная подгруппа H, такая, что $H/K = Dr_{\searrow \in \Lambda}(H_{\searrow}/K)$, $H_{\searrow} \neq K$ для каждого $\searrow \in \Lambda$, и множество индексов Λ бесконечно. Если g — элемент группы G, такой, что подгруппа $H_{\searrow} \setminus g$ -инвариантна для каждого $\searrow \in \Lambda$, то $g \in ND(G)$.

Доказательство. Отметим, что подгруппа $K \langle g \rangle$ -инвариантна. Поскольку множество индексов Λ бесконечно,

 $Dr_{\searrow \in \Lambda}(H_{\searrow}/K) \langle gK \rangle = (H_1/K)((H_2/K) \langle gK \rangle),$ где фактор-группы H_1/K и $(H_2/K) \langle gK \rangle$ — собственные и бесконечно порождены. Следовательно, коцентрализатор подгруппы $\langle H,g \rangle$ в модуле A является нетеровым \mathbf{R} -модулем. По лемме 1.1 коцентрализатор подгруппы $\langle g \rangle$ в модуле A является нетеровым \mathbf{R} -модулем. Следствие доказано.

Спедствие 1.4. Пусть $A-\mathbf{R}G$ -модуль, G является AFN-группой. Пусть $H \leq G$, K — нормальная подгруппа H, такая, что $H/K = Dr_{\searrow \in \Lambda}(H_{\searrow}/K)$, $H_{\searrow} \neq K$ для каждого $\searrow \in \Lambda$, и множество индексов Λ бесконечно. Если $H_{\searrow} - G$ -инвариантная подгруппа для каждого $\searrow \in \Lambda$, то G = ND(G).

Следствие 1.5. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Пусть $H \leq G$, $u \ K$ - нормальная подгруппа H, такая, что H/K - бесконечная элементарная абелева p-группа для некоторого простого числа p. Если g — элемент группы G, такой, что подгруппы H u K

 $\langle g \rangle$ -инвариантны и $g^k \in C_G(H/K)$ для некоторого $k \in \mathbb{N}$, то $g \in ND(G)$.

Доказательство. Пусть

$$1 \neq h_1 K \in H/K, \quad H_1/K = \langle h_1 K \rangle^{\langle gK \rangle}.$$

Поскольку элемент g индуцирует на факторгруппе H/K автоморфизм конечного порядка, фактор-группа H_1/K конечна. Так как факторгруппа H/K элементарная абелева, справедливо равенство $H/K = H_1/K \times C_1/K$. Отметим, что множество $\{C_1^y \mid y \in \langle g \rangle\}$ конечно. Пусть

$$\{C_1^y \mid y \in \langle g \rangle\} = \{U_1, \dots, U_m\}.$$

Тогда $\langle g \rangle$ -инвариантная подгруппа

$$D_1 = U_1 \cap \cdots \cap U_m = Core_{\{g\}}(C_1)$$

имеет конечный индекс в подгруппе H. Поскольку подгруппа $K \ \left\langle g \right\rangle$ -инвариантна, $K \leq D_1.$

Пусть
$$1 \neq h_2 K \in D_1/K, \ H_2/K = \left\langle h_2 K \right\rangle^{\left\langle gK \right\rangle}$$
. Тогда

$$\langle H_1/K, H_2/K \rangle = H_1/K \times H_2/K.$$

Следовательно, $H/K = (H_1/K \times H_2/K) \times C_2/K$ для некоторой подгруппы C_2 . Продолжив рассуждения аналогичным образом, мы построим бесконечное семейство $\{H_n/K \mid n \in \mathbb{N}\}$ неединичных $\langle g \rangle$ -инвариантных подгрупп, такое, что

$$\langle H_n/K \mid n \in \mathbb{N} \rangle = Dr_{n \in \mathbb{N}} H_n/K.$$

По следствию 1.3 $g \in ND(G)$. Следствие доказано.

2 Локально разрешимые AFN-группы

Напомним, что группа G имеет конечный 0-ранг $r_0(G) = r$, если G обладает конечным субнормальным рядом с r бесконечными циклическими факторами, все остальные факторы которого периодические. 0-ранг группы не зависит от выбора ряда и является числовым инвариантом.

Пемма 2.1. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Если группа G содержит нормальную подгруппу K, такую, что факторгруппа G/K абелева и имеет бесконечный 0-ранг, то коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем.

Доказательство. Пусть B/K — свободная абелева подгруппа фактор-группы G/K, такая, что фактор-группа G/B периодическая. Если $\pi(G/B)$ бесконечно, то по лемме 1.2 коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем. Предположим, что множество $\pi(G/B)$ конечно. Выберем такое простое число G, что G0 жиловская G1 пусть G2 «Подгруппа фактор-группы G3 жиловская G4 подгруппа фактор-группы

G/C. Если P/C — силовская q'-подгруппа G/C, то G/P является бесконечной элементарной абелевой q-группой, и по лемме 1.2 коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем. Лемма доказана.

Спедствие 2.1. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Предположим, что группа G содержит нормальную подгруппу K, такую, что фактор-группа G/K почти абелева и имеет бесконечный 0-ранг. Тогда коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем.

Доказательство. Пусть L/K – нормальная абелева подгруппа фактор-группы G/K, такая, что G/L конечна. Тогда ранг $r_0(L/K)$ бесконечен. Выберем элемент $g \in G(L)$ Пусть B/K свободная абелева подгруппа фактор-группы L/K, такая, что фактор-группа L/B периодическая. Ранг $r_0(B/K)$ бесконечен. Выберем элемент $a_1 \in B \setminus K$. Пусть $A_1/K = (\langle a_1 \rangle K/K)^{\langle gK \rangle}$. Поскольку фактор-группа G/L конечна, $A_{\scriptscriptstyle 1}/K$ – конечно порожденная абелева группа. Следовательно, подгруппа $A_1/K \cap B/K$ конечно порождена. Выберем максимальную подгруппу C_1/K фактор удовлетворяющую группы B/K, $(A_1/K \cap B/K) \cap C_1/K = \langle 1 \rangle$. Тогда фактор-группа L/C_1 имеет конечный 0-ранг. Так как факторгруппа G/L конечна, множество

$$\{(C_1/K)^{yK} \mid y \in \langle g \rangle\}$$

конечно. Пусть

$$\{(C_1/K)^{yK} \mid y \in \langle g \rangle\} = \{D_1/K, \dots, D_n/K\},\$$

и пусть

$$E/K = D_1/K \cap \cdots \cap D_n/K$$
.

Тогда фактор-группа $E/K \leq B/K$, $E/K \setminus g$ -инвариантна, и по теореме Ремака L/E имеет конечный 0-ранг. В частности, E/K имеет бесконечный 0-ранг. Выберем элемент $a_2 \in E \setminus K$. Пусть $A_2/K = (\langle a_2 \rangle K/K)^{\langle gK \rangle}$. Тогда $A_2/K \leq E/K$, $(A_1/K) \cap (A_2/K) = 1$. Продолжив рассуждения аналогичным образом, построим семейство $\{A_n/K \mid n \in \mathbb{N}\} \setminus g$ -инвариантных подгрупп, такое, что

$$\langle A_n/K \mid n \in \mathbb{N} \rangle = Dr_{n \in \mathbb{N}} (A_n/K).$$

Согласно следствию 1.3, $g \in ND(G)$. Можно выбрать конечно порожденную подгруппу $F \leq G$, такую, что G/K = (FK/K)(L/K), и для каждого элемента g подгруппы F $g \in ND(G)$. Поскольку подгруппа F конечно порождена, $F \leq ND(G)$. По лемме 2.1 коцентрализатор подгруппы L в модуле A является нетеровым

R-модулем. Поскольку G = FL, по лемме 1.1 коцентрализатор группы G в модуле A является нетеровым **R**-модулем. Следствие доказано.

Лемма 2.2. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Предположим, что группа G содержит подгруппы $L \leq K \leq H$, такие, что L и K – нормальные подгруппы H, K/L – делимая черниковская группа, H/K – почти полициклическая группа. Если коцентрализатор подгруппы H в модуле A не является нетеровым \mathbf{R} -модулем, то H = G. Более того, либо G = K, и тогда фактор-группа G/L — квазициклическая G/K — циклическая G/K — иклическая G/K — иклическая G/K — иклическая G/K — иклическая G/K — постого числа G/K

Доказательство. Предположим сначала, что фактор-группа H/L конечно порождена. По теореме Ф. Холла [8, теорема 5.34] H/L удовлетворяет условию максимальности для нормальных подгрупп. В частности, K/L удовлетворяет условию max-H. Противоречие с тем, что K/L – делимая черниковская группа. Следовательно, фактор-группа H/L бесконечно порождена, и поэтому подгруппа H бесконечно порождена. Поскольку коцентрализатор подгруппы H в модуле A не является нетеровым \mathbf{R} -модулем, то H=G.

Пусть $G \neq K$. Тогда $G = \langle K, M \rangle$ для некоторого конечного множества M. Поскольку множество M конечно, можно выбрать подмножество S множества M, такое, что $G = \langle K, S \rangle$ и $G \neq \langle K, X \rangle$ для любого собственного подмножества X множества S. Пусть

$$S = \{x_1, \dots, x_m\}.$$

Если m>1, то $\langle K, x_1, \cdots, x_{m-1} \rangle$ и $\langle K, x_m \rangle$ — собственные бесконечно порожденные подгруппы группы G. Так как G является AFN-группой, коцентрализаторы подгрупп $\langle K, x_1, \cdots, x_{m-1} \rangle$ и $\langle K, x_m \rangle$ в модуле A являются нетеровыми \mathbf{R} -модулями. Поскольку

$$G = \langle \langle K, x_1, \dots, x_{m-1} \rangle, \langle K, x_m \rangle \rangle,$$

то по лемме 1.1 коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем. Противоречие. Следовательно, m=1, и поэтому $G/K = \langle xK \rangle$ — циклическая фактор-группа. Если G/K бесконечна, то группу G можно представить в виде произведения двух собственных бесконечно порожденных подгрупп. Противоречие с леммой 1.1. Если фактор-группа G/K конечна, но $|\pi(G/K)| > 1$, вновь получаем противоречие с леммой 1.1. Следовательно, G/K — циклическая q-группа для некоторого простого числа q. Лемма доказана.

Лемма 2.3. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Пусть H — нормальная подгруппа группы G, такая, что G/H — бесконечная почти абелева периодическая факторгруппа. Если коцентрализатор группы G в модуле A не является нетеровым \mathbf{R} -модулем, то либо G/H — квазициклическая \mathbf{p} -группа для некоторого простого числа \mathbf{p} , либо группа G содержит нормальную подгруппу K, такую, что G/K — циклическая \mathbf{q} -группа для некоторого простого числа \mathbf{q} , $H \leq K$ и K/H — делимая черниковская \mathbf{p} -группа для некоторого числа \mathbf{p} .

Доказательство. Пусть L/H — нормальная абелева подгруппа фактор-группы G/H, такая, что фактор-группа G/L конечна. Если множество $\pi(L/H)$ бесконечно, то по лемме 1.2 коцентрализатор подгруппы L в модуле A является нетеровым R-модулем. По следствию G = ND(G). Поскольку фактор-группа G/L конечна, то с учетом леммы 1.1 коцентрализатор группы G в модуле A является нетеровым **R**-модулем. Противоречие. Следовательно, множество $\pi(L/H)$ конечно. Тогда существует простое число p, такое, что силовская p-подгруппа P/H фактор-группы L/H бесконечна. Пусть F/H – силовская p'-подгруппа L/H. Существует конечная фактор-группа S/H, такая, что G/H = (L/H)(S/H). Если фактор-группа F/Hбесконечна, то фактор-группы (P/H)(S/H) и (F/H)(S/H) бесконечно порождены, и поэтому коцентрализаторы подгрупп PS и FS в модуле A являются нетеровыми **R**-модулями. По лемме 1.1 коцентрализатор группы G в модуле A является нетеровым **R**-модулем. Противоречие. Следовательно, фактор-группа F/H конечна. Пусть $B/H = (P/H)^p$. Если фактор-группа P/Bбесконечна, то Р/В бесконечно порождена, и коцентрализатор подгруппы P в модуле A является нетеровым **R**-модулем. По следствию 1.5 G = ND(G). Поскольку фактор-группа G/P конечна, по лемме 1.1 коцентрализатор группы Gв модуле A является нетеровым \mathbf{R} -модулем. Снова получаем противоречие. Следовательно, фактор-группа (P/H)/(B/H) конечна. По лемме 3 [9] $P/H = (V/H) \times (D/H)$, где D/H – делимая подгруппа, а V/H конечна. Подгруппа Dявляется G-инвариантной. Положим K = D. Так как фактор-группа G/D конечна, применим лемму 2.2. Лемма доказана.

Лемма 2.4. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Предположим, что группа G содержит нормальные подгруппы $K \leq H$,

такие, что фактор-группа G/H конечна, а H/K — абелева группа без кручения. Если коцентрализатор группы G в модуле A не является нетеровым \mathbf{R} -модулем, то H/K конечно порождена.

Доказательство. По следствию 2.1 факторгруппа H/K имеет конечный 0-ранг. Пусть B/K- свободная абелева подгруппа фактор-группы H/K, такая, что фактор-группа H/B периодическая. Ввиду конечности ранга $r_0(H/K)$, B/Kконечно порождена. Предположим, что факторгруппа H/K бесконечно порождена. Так как G/H конечна, фактор-группа $C/K = (B/K)^{G/K}$ конечно порождена. По лемме 2.3 $|\pi(G/C)| \le 2$. Выберем два различных простых числа r, s, такие, что $r,s \notin \pi(G/C)$. Пусть $D/K = (C/K)^{rs}$. Тогда G/D – бесконечно порожденная периодическая почти абелева группа. По построению $|\pi(G/D)|$ ≥3. Противоречие с леммой 2.3. Следовательно, фактор-группа H/K конечно порождена. Лемма доказана.

Лемма 2.5. Пусть $A - \mathbf{R}G$ -модуль, G является AFN-группой. Предположим, что группа G содержит нормальные подгруппы $K \leq H$, такие, что фактор-группа G/H конечна, а H/K абелева и бесконечно порождена. Если коцентрализатор группы G в модуле A не является нетеровым \mathbf{R} -модулем, то H/K черниковская.

Доказательство. По следствию 2.1 факторгруппа H/K имеет конечный 0-ранг. Пусть T/K- периодическая часть фактор-группы H/K. По лемме 2.4 H/T конечно порождена. Тогда H/Kимеет конечно порожденную подгруппу B/K, такую, что фактор-группа H/B периодическая. конечна, Поскольку G/Hфактор-группа $C/K = (B/K)^{G/K}$ конечно порождена. По лемме 2.3 *G/С* черниковская. Отсюда вытекает, что фактор-группа T/K также черниковская. Пусть D/K – делимая часть фактор-группы T/K. Тогда G/D – конечно порожденная почти абелева группа. Применим лемму 2.2. Лемма доказана.

Лемма 2.6. Пусть $A - \mathbf{R}G$ -модуль, G - pаз-решимая AFN-группа, не являющаяся квазициклической р-группой для некоторого простого числа р. Тогда фактор-группа G/ND(G) является полициклической.

Доказательство. Пусть D = ND(G). Если коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем, то G = ND(G).

Предположим, что $G \neq ND(G)$. Пусть

$$D = D_0 \le D_1 \le \cdots \le D_n = G$$

— субнормальный ряд группы G с абелевыми факторами. Рассмотрим фактор $D_i/D_{i-1}, \quad j < n.$

Если этот фактор бесконечно порожден, то подгруппа D_i также бесконечно порождена, и поэтому коцентрализатор подгруппы D_i в модуле A является нетеровым **R**-модулем. В частности, $D_i \leq ND(G)$. Отсюда вытекает, что фактор D_i/D_{i-1} конечно порожден для $j = 1, \dots, n-1$. Пусть $K = D_{n-1}$. Если факторгруппа G/K конечно порождена, то G/D – полициклическая. Предположим, что факторгруппа G/K бесконечно порождена. По лемме 2.5 G/K — черниковская группа. Пусть P/K делимая часть G/K. Если $P/K \neq G/K$, то P – собственная бесконечно порожденная подгруппа группы G. Следовательно, коцентрализатор подгруппы P в модуле A является нетеровым **R**-модулем. Поэтому $P \le ND(G)$ и факторгруппа *G/P* конечна. Противоречие. Следовательно, G/K = P/K, и тогда G/K – квазициклическая р-группа для некоторого простого числа p. Пусть $g \in G \setminus K$. Так как $g \notin ND(G)$, подгруппа $\langle g, K \rangle$ конечно порождена. Из конечности фактор-группы $\langle g \rangle K/K$ вытекает, что подгруппа K конечно порождена [8, теорема 1.41]. Так как группа G не является квазициклической *p*-группой, $K \neq 1$. Следовательно, K содержит собственную G-инвариантную подгруппу L конечного индекса, такую, что фактор-группа G/Lчерниковская и не является делимой. Ранее было доказано, что в этом случае фактор-группа G/ND(G) конечна. Лемма доказана.

Определение 2.1 [10, глава 13]. Группа G называется квазилинейной, если она изоморфна подгруппе прямого произведения конечного множества конечномерных линейных групп.

Лемма 2.7. Пусть $A - \mathbf{R}G$ -модуль, G -ло-кально разрешимая группа, $\mathbf{R} -$ коммутативное нетерово кольцо c единицей. Если коцентрализатор группы G в модуле A является нетеровым \mathbf{R} -модулем, то группа G разрешима.

Доказательство. Отметим, что $A/C_A(G)$ — нетеров **R**-модуль. Пусть $C = C_A(G)$. A имеет конечный ряд **R**G-подмодулей $0 \le C \le A$, такой, что фактор A/C — конечно порожденный **R**-модуль.

По теореме 13.3 [10] фактор-группа $G_1 = G/C_G(A/C)$ содержит нормальную нильпотентную подгруппу U, такую, что G_1/U — квазилинейная группа. Следовательно,

$$G_1/U \hookrightarrow M_1 \times M_2 \times \cdots \times M_k$$

где M_i , $i=1,2,\cdots,k$, — конечномерные линейные группы. Пусть L_i , $i=1,2,\cdots,k$, — проекция G_i/U на M_i , $i=1,2,\cdots,k$. По следствию 3.8 [10]

подгруппа L_i разрешима для любого $i=1,2,\cdots,k$. По теореме А.И. Мальцева (теорема 3.6 [10]) $L_i, i=1,2,\cdots,k$, является расширением нильпотентной подгруппы при помощи почти абелевой. Следовательно, фактор-группа G_1/U является расширением нильпотентной подгруппы при помощи почти абелевой. Отсюда вытекает, что G_1/U разрешима, и поэтому разрешима факторгруппа $G/C_G(A/C)$. Из выбора подмодуля C вытекает, что фактор-группа $G/C_G(C)$ тривиальна.

Пусть

$$H = C_G(C) \cap C_G(A/C)$$
.

Подгруппа H действует тривиально в каждом факторе ряда $0 \le C \le A$. Следовательно, подгруппа H абелева. По теореме Ремака

$$G/H \hookrightarrow G/C_G(C) \times G/C_G(A/C)$$
.

Отсюда вытекает, что фактор-группа G/H разрешима. Поскольку подгруппа H абелева, группа G разрешима. Лемма доказана.

Теорема 2.1. Пусть $A - \mathbf{R}G$ -модуль, G - локально разрешимая AFN-группа, $\mathbf{R} -$ комму-тативное нетерово кольцо c единицей. Тогда группа G гиперабелева.

Доказательство. Достаточно рассмотреть случай, когда группа G не является разрешимой. Тогда G не является простой группой (следствие 1 к теореме 5.27 [8]). Следовательно, G содержит собственную нормальную нетривиальную подгруппу H_1 . Если подгруппа H_1 конечно порождена, то она разрешима. Если H_1 бесконечно порождена, то коцентрализатор подгруппы H_1 в модуле A является нетеровым \mathbf{R} -модулем, и по лемме 2.7 H_1 разрешима. Пусть d_1 – ступень разрешимости подгруппы H_1 и пусть W_1 – максимальная нормальная разрешимая подгруппа группы G ступени разрешимости d_1 . Так как группа G не является разрешимой, то факторгруппа G/W_1 также не является разрешимой. Как и ранее, G/W_1 содержит собственную нормальную нетривиальную подгруппу H_2/W_1 . Тогда H_2 – разрешимая подгруппа ступени разрешимости d_2 , причем $d_2 > d_1$. Пусть W_2 – максимальная нормальная разрешимая подгруппа ступени разрешимости d_2 , содержащая подгруппу W_1 . Продолжив рассуждения аналогичным образом, построим возрастающий ряд нормальных подгрупп группы G

$$\left<1\right>=W_0\leq W_1\leq\cdots\leq W_n\leq W_{n+1}\leq\cdots, \qquad (2.1)$$
 такой, что

1) для каждого $n \in \mathbb{N}$ W_n — разрешимая подгруппа ступени разрешимости d_n ;

2) $d_n < d_{n+1}$ для каждого $n \in \mathbb{N}$.

Пусть $W=\cup_{n\in\mathbb{N}}W_n$. Рассмотрим сначала случай, когда G=W. Тогда можно построить ряд нормальных подгрупп группы G

$$\langle 1 \rangle = L_0 \le L_1 \le \dots \le L_n \le L_{n+1} \le \dots,$$

являющийся уплотнением ряда (2.1), такой, что $G = \bigcup_{n \in \mathbb{N}} L_n$ и каждый фактор L_{i+1}/L_i , $i = 0,1,2,\cdots,n,\cdots$ абелев. Следовательно, группа G гиперабелева. Пусть теперь $G \neq W$. По построению подгруппа W не является разрешимой. Следовательно, W бесконечно порождена. Поэтому коцентрализатор подгруппы W в модуле A является нетеровым \mathbf{R} -модулем. По лемме 2.7 подгруппа W разрешима. Противоречие. Теорема доказана.

Лемма 2.8. Пусть $A - \mathbf{R}G$ -модуль, $G - \kappa$ онечно порожденная разрешимая AFN-группа. Тогда коцентрализатор подгруппы ND(G) в модуле A является нетеровым \mathbf{R} -модулем.

Доказательство. Пусть D = ND(G) и пусть

$$\langle 1 \rangle = D_0 \le D_1 \le \dots \le D_n = D$$

 производный ряд подгруппы D. Если каждый фактор D_{j+1}/D_{j} , $j=0,1,\cdots,n-1$, конечно порожден, то подгруппа D полициклическая, и поэтому D конечно порождена. По лемме 1.1 коцентрализатор подгруппы D в модуле A является нетеровым R-модулем. Пусть теперь для некоторого $j = 0, 1, \dots, n-1$ фактор D_{i+1}/D_i бесконечно порожден, и пусть t – такое число, что D_t/D_{t-1} бесконечно порожден, а факторы D_{i+1}/D_i конечно порождены для каждого $j \ge t$. Отсюда вытекает, что фактор-группа D/D_t – полициклическая. Поскольку группа G конечно порождена, бесконечно порожденная подгруппа D_t является собственной подгруппой G, и поэтому коцентрализатор D_t в модуле A является нетеровым \mathbf{R} -модулем. Так как фактор-группа D/D_t полициклическая, то $D = KD_t$ для некоторой конечно порожденной подгруппы К. Из включения $K \leq ND(G)$ следует, что коцентрализатор подгруппы K в модуле A является нетеровым R-модулем. По лемме 1.1 коцентрализатор подгруппы ND(G) в модуле A является нетеровым **R**-модулем. Лемма доказана.

Теорема 2.2. Пусть $A - \mathbf{R}G$ -модуль, $G - \kappa$ онечно порожденная разрешимая AFN-группа, \mathbf{R} - коммутативное нетерово кольцо c единицей. Если коцентрализатор группы G в модуле A не является нетеровым \mathbf{R} -модулем, справедливы следующие утверждения:

(1) коцентрализатор подгруппы ND(G) в модуле A является нетеровым \mathbf{R} -модулем;

(2) группа G обладает рядом нормальных подгрупп $H \le U \le N \le G$, таким, что подгруппа H — абелева, фактор-группы U/H и N/U — нильпотентны, а фактор-группа G/N — полициклическая.

Доказательство. Справедливость утверждения (1) следует из леммы 2.8. Докажем утверждение (2). Пусть $C = C_A(ND(G))$. Так как фактор-модуль A/C является нетеровым \mathbf{R} -модулем, A имеет конечный ряд $\mathbf{R}G$ -подмодулей $0 \le C \le A$,

такой, что фактор A/C — конечно порожденный \mathbf{R} -модуль.

По теореме 13.3 [10] фактор-группа $G_1 = G/C_G(A/C)$ содержит нормальную нильпотентную подгруппу U_1 , такую, что G_1/U_1 — квазилинейная группа. Следовательно,

$$G_1/U_1 \hookrightarrow M_1 \times M_2 \times \cdots \times M_k$$

где M_i , $i = 1, 2, \dots, k$ – конечномерные линейные группы. Пусть L_i , $i = 1, 2, \dots, k$ – проекция G_1/U_1 на $M_i, i = 1, 2, \dots, k$. По теореме А.И. Мальцева (теорема 3.6 [10]) L_i , $i = 1, 2, \dots, k$ является расширением нильпотентной подгруппы при помощи почти абелевой. Поскольку группа G конечно порождена, проекция L_i , $i = 1, 2, \dots, k$ является расширением нильпотентной группы при помощи полициклической. Следовательно, факторгруппа $G_1 = G/C_G(A/C)$ обладает рядом нормальных подгрупп $U_1 \le N_1 \le G$ таким, что фактор-группа N_1/U_1 и подгруппа U_1 – нильпотентны, а фактор-группа G/N_1 – полициклическая. Из выбора подмодуля C вытекает, что $C_G(C) \ge ND(G)$. По лемме 2.6 фактор-группа $G/C_G(C)$ является полициклической.

Пусть

$$H = C_G(C) \cap C_G(A/C).$$

Подгруппа H действует тривиально в каждом факторе ряда $0 \le C \le A$. Следовательно, подгруппа H абелева. По теореме Ремака

$$G/H \rightarrow G/C_G(C) \times G/C_G(A/C)$$
.

Отсюда вытекает, что группа G обладает рядом нормальных подгрупп $H \le U \le N \le G$, таким, что подгруппа H — абелева, фактор-группы

U/H и N/U — нильпотентны, а фактор-группа G/N — полициклическая. Теорема доказана.

ЛИТЕРАТУРА

- 1. *Phillips, R.E.* The structure of groups of finitary transformations / R.E. Phillips // J. Algebra. 1988. Vol. 119, \mathbb{N} 2. P. 400–448.
- 2. *Phillips, R.E.* Finitary linear groups: a survey. "Finite and locally finite groups" / R.E. Phillips // NATO ASI ser. C Math. Phys. Sci., Kluver Acad. Publ., Dordreht. 1995. Vol. 471. P. 111–146.
- 3. *Kurdachenko*, *L.A*. Antifinitary linear groups / L.A. Kurdachenko, J.M. Muñoz-Escolano, J. Otal // Forum Math. 2008. Vol. 20, № 1. P. 7–44.
- 4. Wehrfritz, B.A.F. Artinian-finitary groups over commutative rings / B.A.F. Wehrfritz // Illinois J. Math. 2003. Vol. 47, № 1–2. P. 551–565. 5. Wehrfritz, B.A.F. Artinian-finitary groups
- 5. Wehrfritz, B.A.F. Artinian-finitary groups over commutative rings and non-commutative rings / B.A.F. Wehrfritz // J. Lond. Math. Soc. (2). 2004. Vol. 70, № 2. P. 325–340.
- Vol. 70, № 2. P. 325-340. 6. *Wehrfritz, B.A.F.* Artinian-finitary groups are locally normal-finitary / B.A.F. Wehrfritz // J. Algebra. - 2005. - Vol. 287, № 2. - P. 417-431.
- 7. Курдаченко, Л.А. О группах с минимаксными классами сопряженных элементов / Л.А. Курдаченко // Бесконечные группы и примыкающие алгебраические структуры: науч. тр. / Академия наук Украины, под ред. Черникова Н.С. Киев, 1993. С. 160–177.
- 8. Robinson, D.J.S. Finiteness conditions and generalized soluble groups / D.J.S. Robinson // Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, Heidelberg, New York, 1972. Vols. 1, 2. 464 p.
- 9. *Курдаченко*, Л.А. Непериодические FC-группы и связанные классы локально нормальных групп и абелевых групп без кручения / Л.А. Курдаченко // Сиб. мат. журн. 1986. Т. 287, № 2. С. 227—236.
- 10. *Wehrfritz, B.A.F.* Infinite linear groups / B.A.F. Wehrfritz // Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York, Heidelberg, Berlin, 1973. 229 p.

Поступила в редакцию 09.02.12.