УДК 535.42

БЕЗДИФРАКЦИОННЫЕ АСИММЕТРИЧНЫЕ ВОЛНОВЫЕ ПОЛЯ БЕССЕЛЯ НЕПРЕРЫВНОГО ПОРЯДКА

С.С. Гиргель

Гомельский государственный университет им. Ф. Скорины

DIFFRACTION FREE ASYMMETRIC BESSEL WAVE FIELDS OF THE CONTINUOUS ORDER

S.S. Girgel

F. Scorina Gomel State University

Предложены новые решения уравнения Гельмгольца, описывающие бездифракционные асимметричные волновые поля Бесселя непрерывного порядка. Они характеризуются пятью свободными непрерывными параметрами и обладают спиральным волновым фронтом. Установлены физические ограничения на возможные значения этих параметров. Проведено графическое моделирование таких пучков.

Ключевые слова: пучки, асимметричные пучки, пучки Бесселя.

The new solutions of the equation of Helmholtz describing diffraction free asymmetric wave fields of Bessel of a continuous order are offered. They are characterized by five continuous parameters and possess a spiral wavefront. Restrictions on these parameters at which explored fractional beams transfer terminating power are discovered. Pictorial modeling of such beams is fulfilled.

Keywords: beams, asymmetric beams, Bessel beams.

Введение

В настоящее время по-прежнему актуальны поиск и исследования новых типов световых пучков [1]-[4]. По-прежнему большой интерес привлекают пучки Бесселя [5]-[9]. Дурнин [5] впервые обратил внимание на то, что пучки Бесселя обладают уникальным свойством бездифракционности, и экспериментально подтвердил это. Впрочем, еще Стрэттон [10] в 1948 году описал решения уравнения Гельмгольца, содержащие функции Бесселя целочисленного порядка. Недавно, Тао и др. [3] ввели непрерывный индекс у для пучков Бесселя и описывали так называемые фракционные (fractional) пучки Бесселя. В наших работах [11]-[14] исследовались поляризационные и энергетические характеристики векторных пучков Бесселя. Совсем недавно, Ковалев и Котляр [6]-[8] ввели скалярные асимметричные моды Бесселя (аВ-моды) целочисленного индекса, у которых поперечные координаты х и у имеют дополнительные сдвиги (вещественные или комплексные). В [15] нами были введены асимметричные волновые поля непрерывного индекса.

В настоящей работе результаты работ [6]—[9], [15] обобщаются и вместо целочисленного порядка ν вводится непрерывный неотрицательный порядок $\nu \geq 0$ и обсуждается новый тип пучков — бездифракционные асимметричные волновые поля Бесселя непрерывного порядка.

1 Волновые поля Бесселя и их обобщения

Для монохроматического излучения $(E \sim \exp(-i\omega t))$ волновые поля описываются уравнением Гельмгольца, которое, в частности, имеет классическое решение [1], [2], [10]

$$E = A \exp[i(z\sqrt{k^2 - \alpha^2} + n\phi)] J_n(\alpha\rho),$$

выражающиеся через цилиндрические функции 1 рода — функции Бесселя $J_{\rm v}$. С физической точки зрения стандартный пучок Бесселя представляет суперпозицию плоских монохроматических волн, волновые векторы каждой из которых расположены по круговому конусу вокруг оси z. Для физических приложений в теории планарных и цилиндрических волноводов применяются также и цилиндрические функции третьего рода — функции Ханкеля H_n .

Ковалев и Котляр [6]–[8] ввели более общие асимметричные моды Бесселя (аВ-моды) целочисленного индекса, у которых поперечные координаты x и y имеют дополнительные сдвиги

$$E_{n}(x, y, z) = A \exp\left(iz\sqrt{k^{2} - \alpha^{2}}\right) \times \left[\frac{x_{1} + iy_{1}}{\sqrt{x_{1}^{2} + y_{1}^{2}}}\right]^{n} J_{n}\left(\alpha\sqrt{x_{1}^{2} + y_{1}^{2}}\right).$$
(1.1)

где $x_1 = x - x_0$, $y_1 = y - y_0$. Константы x_0 , y_0 — произвольные комплексные параметры комплексных смещений поперечных координат x и y. Вместе с тем, в работах [6]—[9] обсуждаются частные случаи аВ-мод. Практически авторы

применяли вещественный x_0 сдвиг по x и чисто мнимый сдвиг по y, т. е. $y_0 = -ix_0$, чтобы упростить получающиеся выражения. В поперечном сечении аВ-мод (при определенном соотношении между параметрами) распределение интенсивности имеет вид полумесяца [7], [8]. Экспериментально наблюдали острую фокусировку аВ-мод с помощью жидкокристаллического дисплея и зонной пластинки (см. также недавнюю экспериментальную работу [9]).

Сначала [6]–[7] авторы получили аВ-моды путем суперпозиции обычных мод Бесселя. Позже они заметили [8], что выражения для аВ-мод можно также получить путем комплексных смещений поперечных координат x и y. Авторы отметили, что когда $x_1^2 + y_1^2 \rightarrow 0$ в (1.1), тогда одновременно и аргумент функции Бесселя стремится к нулю и неопределенность раскрывается.

Следует заметить, что прием записи набега комплексной фазы в (1.1), использующий формулу

$$arctg(t) = \left(-\frac{i}{2}\right) \ln \left[\frac{1+it}{1-it}\right],$$

не нов и использовался ранее в работе [4] для описания 2-D волнового пакета X-волн Бесселя.

Выражения для асимметричных волновых полей Бесселя (1.1) можно обобщить, если вместо целочисленного индекса n взять непрерывный индекс v. Какие ограничения следует наложить на свободный параметр v? Известно, что, c математической точки зрения, в общем случае, согласно [16], у функции Бесселя 1 рода аргумент u и порядок (или индекс) v могут быть произвольными комплексными числами. Однако мы ищем физически приемлемые решения. Тогда функция $E_v(x,y,z)$ должна быть регулярной функцией комплексной переменной $\left(\alpha\sqrt{x_1^2+y_1^2}\right)$. Известно [16], что при фиксированном v функция $J_v(u)$ является аналитической. Для произвольных порядков v при $|u| \rightarrow 0$

$$J_{v}(u) = \frac{(u/2)^{v}}{0! \Gamma(v+1)} + \frac{(u/2)^{v+2}}{1! \Gamma(v+2)} + ...,$$

поэтому функция $J_{_{\mathrm{V}}}(u)$ ограничена только при $\mathrm{Re}(u)\geq 0$. Как показывают анализ и графическо моделирование, наличие мнимой части порядка ν приводит к разрывам в графиках интенсивности для функции $E_{_{\mathrm{V}}}(x,y,z)$ (1.1), что недопустимо. Отсюда следует, что индекс ν должен быть неотрицательным, т. е. $\nu\geq 0$.

В итоге получаем пяти-параметрические асимметричные бездифракционные непараксиальные волновые поля Бесселя непрерывного порядка [15]

$$E_{\nu}(x,y,z) = A \exp\left(iz\sqrt{k^2 - \alpha^2}\right) \times \left[\frac{x_1 + iy_1}{\sqrt{x_1^2 + y_1^2}}\right]^{\nu} J_{\nu}\left(\alpha\sqrt{x_1^2 + y_1^2}\right). \tag{1.2}$$

Итак, следует использовать $v \ge 0$. Асимптотическое значение $J_v(u)$ при $|u| \to \infty$

$$J_{v}(u) = \sqrt{\frac{2}{\pi u}} \cos\left(u - \frac{v\pi}{2} - \frac{\pi}{4}\right) + ...,$$
$$\arg(u) < \pi.$$

Поскольку индекс ν может принимать непрерывные значения, то фаза при полном обороте вокруг оси пучка также является непрерывной и не обязана быть равной 2π . Пучки, характеризуемые нецелыми индексами ν , называются фракционными [2], [3], [17]. Поэтому обсуждаемые нами пучки являются также фракционными и имеют спиральный волновой фронт.

2 Обсуждение результатов

В давней работе Валдрона [18] использовалась неортогональная спиральная (цилиндрическая вращающаяся) система координат. Для уравнения Гельмгольца получено решение в виде спиральных волновых полей Бесселя. В отличие от обычных световых полей Бесселя индекс (порядок) ν таких полей не обязан быть целым числом, а может пробегать непрерывный спектр значений: $\nu \ge 0$. Согласно интерпретации Оверфельт [19] в таких случаях непрерывный индекс ν связан не только с угловой фазой, но также является функцией шага спирали волнового фронта и продольной фазовой скорости волны Бесселя. Эти аргументы справедливы и для исследуемых нами аВ-мод непрерывного индекса ν .

Бездифракционные аВ-моды (1.2) непрерывного порядка зависят от трех переменных (x, y, z) и пяти параметров (k, α, x_0, y_0, v) . Нами было проведено графическое моделирование интенсивности в поперечных сечениях асимметричных волновых полей Бесселя непрерывного порядка в зависимости от нескольких свободных параметров в 2D и 3D форматах. Использовались безразмерные параметры и координаты. В качестве примеров на рисунках 2.1 и 2.2 изображены графики интенсивности асимметричных аВ-мод непрерывного порядка в поперечном сечении с общими параметрами: v = 1.5; $x_0 = 0$; $y_0 = 0.05i$. Интенсивность пучка в каждой точке поперечного сечения рисунка 2.1 пропорциональна ординате пространственной фигуры.

Из рисунков 2.1 и 2.2 видно, что комплексное смещение координаты y приводит к нарушению цилиндрической симметрии волновых полей Бесселя и возникновению асимметрии интенсивности. При увеличении параметра смещения y_0

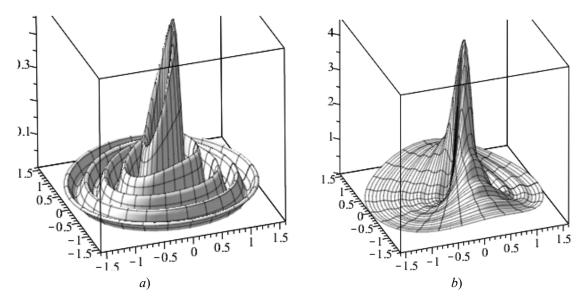


Рисунок 2.1– 3D графики интенсивности аВ-мод при $\nu=1.5,\ x_0=0;\ \alpha=10.$ Слева $a)\ y_0=0.05i;$ справа $b)\ y_0=0.2i$

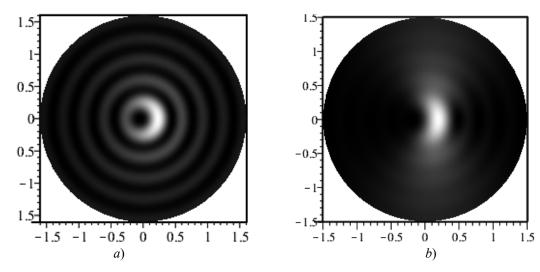


Рисунок 2.2 – 2D графики интенсивности аВ-мод при $\nu=1.5,\ x_0=0;\ \alpha=10.$ Слева $a)\ y_0=0.05i;$ справа $b)\ y_0=0.2i$

пик интенсивности относительно увеличивается и картина качественно видоизменяется (рисунки справа).

Основным результатом настоящей работы является выражение (1.2). Непрерывный порядок v дает основание полученные пучки (1.2) трактовать, как фракционные асимметричные волновые поля Бесселя, которые обладают спиральным волновым фронтом. В частных случаях, когда неотрицательный индекс (порядок) v фракционных пучков (1.2) становится целым числом, наши выражения (1.2) эквивалентны выражениям для аВ-мод, обсуждаемых в работах [6]—[9].

Заключение

В работе вводится новый тип пучков (асимметричные волновые поля Бесселя непрерывного

порядка), найдены условия их физической реализуемости. Моды характеризуются пятью свободными непрерывными параметрами: тремя вещественными непрерывными (k,α,ν) и двумя комплексными параметрами (x_0,y_0) . При целочисленных значениях порядка ν введенные здесь моды сводятся к аВ-модам Котляра и Ковалева [6]–[8]. Показано, что физически приемлем непрерывный индекс $\nu \ge 0$. Эти аВ-моды являются фракционными волновыми полями непрерывного порядка, обладающими спиральным волновым фронтом.

Варьирование новых свободных параметров таких пучков, несомненно, расширяет и предоставляет новые дополнительные возможности

создания и исследования пучков с заданными свойствами для последующих практических применений.

Проведенное графическое моделирование интенсивности аВ-мод нецелочисленных порядков показало резкую асимметрию таких мод, которая сильно возрастает при увеличении комплексного смещения поперечных координат.

Для экспериментального получения спиральных обобщенных ПБГ могут, в принципе, быть использованы после модернизации некоторые методики получения аВ-мод Бесселя целочисленных порядков и фракционных пучков. Так, в работах Тао и др. рассматривались возможности экспериментального получения и изучения фракционных пучков Бесселя (см., напр., [3]).

ЛИТЕРАТУРА

- 1. *Киселев*, *А.П.* Локализованные световые волны: параксиальные и точные решения волнового уравнения (обзор) / А.П. Киселев // Оптика и спектроскопия. -2007. Т. 102, № 4. С. 661-681
- 2. *Gutierrez-Vega*, *J.C.* Nondiffracting vortex beams with continuous orbital angular momentum order dependence / Julio C. Gutierrez-Vega, C. Lopez-Mariscal // J. Opt. A. Pure Appl. Opt. 2008.– 10015009 (8 pp.).
- 3. *Tao*, *S.H*. Experimental study of holographic generation of fractional Bessel beams / Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan // Applied Optics. 2004. Vol. 43, № 1. P. 122–126.
- 4. Bessel X waves in two- and three-dimensional bidispersive optical systems / D.N. Christodoulides, N.K. Efremidis, P.D. Trapani, B.A. Malomed // Opt. Lett. − 2004. − Vol. 29, № 13. − P. 1446–1448.
- 5. *Durnin*, *J*. Exact solutions for nondiffracting beams. I. The scalar theory / J. Durnin // JOSA A. 1987. Vol. 4, No. 4. P. 651-654.
- 6. *Kotlyar*, *V.V.* Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Optics Letters. 2014. Vol. 39, № 8. P. 2395–2398.
- 7. *Kotlyar*, *V.V.* Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Computer Optics. 2014. Vol. 38 (1). P. 4–10.
- 8. Ковалев, А.А. Асимметричные моды Бесселя первого и второго типа и их суперпозиции /

- А.А. Ковалев // Компьютерная оптика. 2016.— Т. 39, № 1. — С. 5—10.
- 9. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device / Lei Gong [et. al.] // Optics Express. 2014. Vol. 22, № 22. C. 26763–26776.
- 10. *Стрэттон*, Дж.А. Теория электромагнетизма / Дж.А. Стрэттон // М.: ОГИЗ. ГИТТЛ. 1948. 539 с.
- 11. *Girgel, S.S.* Vectorial of Bessel light beams / S.S. Girgel, S.N. Kurilkina // Proc. SPIE. 2001. Vol. 4358. P. 258–264.
- 12. *Гиргель*, *С.С.* Поляризационные и энергетические свойства бесселевых волновых полей / С.С. Гиргель // Известия Гомельского госуниверситета им. Ф. Скорины. 2001. № 6 (9). С. 142—145.
- 13. *Гиргель*, С.С. Бесселевы световые пучки / С.С. Гиргель // Известия Гомельского государственного университета им. Ф. Скорины. -2005. -№ 3 (30). -C. 93–98.
- 14. *Гиргель*, *С.С.* Модовые и энергетические характеристики векторных бесселевых световых полей / С.С. Гиргель // Известия Гомельского госуниверситета им. Ф. Скорины. 2006. № 6 (39), ч. 1. C. 49-52.
- 15. Гиргель, С.С. Асимметричные волновые поля Бесселя непрерывного порядка / С.С. Гиргель // Проблемы взаимодействия излучения с веществом: материалы IV Международной научной конференции, посвященной 90-летию со дня рождения Б.В. Бокутя, Гомель, 9–10 ноября 2016 г. Ч. 1. / Электронное издание. Гомель, ГГУ им. Ф. Скорины. С. 18–24.
- 16. Янке, Е. Специальные функции / Е. Янке, Ф. Эмде, Ф. Лёш // М.: Наука, 1977. 342 с.
- 17. *Berry*, *M.V.* Optical vortices evolving from helicoidal integer and fractional phase steps / M.V. Berry // Journal of Optics. − 2003, № 6. − P. 259–268.
- 18. Waldron, R.A. A helical coordinate system and its applications in electromagnetic theory / R.A. Waldron // Quart. Journ. Mech. and Applied Math. 1958. Vol. XI, Pt. 4. P. 438–461.
- 19. *Overfelt*, *P.L.* Scalar optical beams with helical symmetry / P.L. Overfelt // Phys. Rev. A. 1992. Vol. 46, № 6. P. 3516–3522.

Поступила в редакцию 21.02.17.