Занятие 2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НУКЛЕИ-НОВЫХ КИСЛОТ

<u>Цель занятия:</u> ознакомиться с физико-химическими свойствами нуклеиновых кислот, дать представление об уровнях компактизации молекулы ДНК.

- 1. Денатурация и ренатурация
- 2. Температура плавления
- 3. Гибридизация

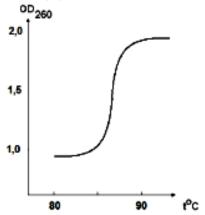
Тематика рефератов

- 1. Использование гибридизации ДНК для идентификации видов.
- 2. Уровни упаковки генетического материала

Вопросы для самоконтроля

- 1. Химическая организация нуклеиновых кислот: строение нуклеотидов.
 - 1. Первичная структура ДНК.
 - 2. Правила Э. Чаргаффа.
 - 3. Модель ДНК Дж. Уотсона и Ф. Крика.
- 4. Особенности молекулярной организации РНК. Виды РНК. Функции РНК в клетке.

Задание 1. По схемам и таблицам изучите упаковку ДНК. Заполните в таблицу «Компактизация ДНК» по предлагаемой схеме:


Уровень	Mexa-	Степень уко-	Толщина, нм	Возможность
упаковки	низм упаковки	рочения		транскрипции
		(по отноше-		(+/-)
		нию к исход-		
		ной длине)		

Задание 2. Расположите олигонуклеотиды по порядку возрастания температуры плавления:

AAATTGC GGG GCGCGCG AAAAAAAAAAAAAA

TTTAACG CCC CGCGCGC TTTTTTTTTTTTT

Задание 3. Используя данные, отображенные на графике, определите температуру плавления ДНК.

Задание 4. Решите следующие задачи:

- 1. Определите число водородных связей, образованных между цепями ДНК, в составе которой содержится 349 адениловых и 430 гуаниловых нуклеотидов.
- 2. Молекула ДНК, молярная масса которой равна 660 000 г/моль, содержит 750 адениловых нуклеотидов. Рассчитайте число всех остальных нуклеотидов в этой ДНК. Примите молярную массу одного нуклеотида равной 330 г/моль.