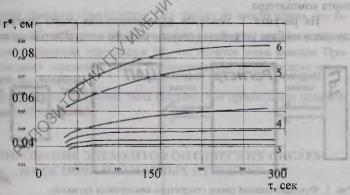
АНАЛИЗ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ ПРИ ЛАЗЕРНОМ ЭЛЕКТРОХИМИЧЕСКОМ ОСАЖДЕНИИ СЕРЕБРА НА МЕДНУЮ ПОДОЖКУ

А.Н. Купо


Одним из новейших направлений лазерной технологии является лазерная гальваностегия (ЛГ), позволяющая получать локальные электролитические осадки металлов из растворов их солей при совместном действии катодного напряжения и остросфокусированного лазерного луча.

8 Творчество молодых '2001

В данной работе экспериментально получены радиально-временные растемения температуры на поверхности катода в окрестности локального серебра при лазерном электрохимическом осаждении на медные подваже в диапазоне плотности мощности лазерного излучения W = (1 - 4,5)•10⁶

Использовалось лазерное излучение с $\lambda=1,06$ мкм в импульсноодическом режиме генерации с частотой следования импульсов f=5 Гц и тельного импульса $\tau_0=4\ 10^{-3}$ с. Толщина рабочего слоя электролита состав-

Были проведены измерения радиуса локального осадка в процессе его этомирования. На рисунке показана динамика роста радиуса локального осадка этом различных плотностях мощности лазерного излучения.

На рисунке: 1,0 10⁶ Вт/см² (1); 1,5 10⁶ Вт/см² (2); 2,0 10⁶ Вт/см² (3); 2,6 10⁶ Вт/см (4), 3,2 10⁶ Вт/см (5); 4,5 10⁶ Вт/см² (6). Из рисунка следует, что с ростати мощности время достижения стационарного размера локального ссадка существенно увеличивается. Кроме того, увеличение плотности мощностей приводит к увеличению скорости роста локального осадка.