И. В. Балыкин¹, А. А. Рыжевич^{1,2}, А. А. Найдунов², Т. А. Железнякова²

¹Институт физики имени Б. И. Степанова НАН Беларуси, Минск, Беларусь

²Белорусский государственный университет, Минск, Беларусь

АНАЛИЗ КАЧЕСТВА БЕССЕЛЕВЫХ СВЕТОВЫХ ПУЧКОВ ВТОРОГО ПОРЯДКА, СФОРМИРОВАННЫХ С ПОМОЩЬЮ ОДНООСНЫХ КРИСТАЛЛОВ

Введение

В подавляющем большинстве случаев применения бесселевых световых пучков имеет значение их качество. В [1] были предложены объективные критерии для численной оценки качества бесселевых световых пучков нулевого порядка (БСП₀). Известно также, что параметры качества реальных, конечных в пространстве БСП обычно существенно зависят от продольной координаты [2], поэтому предложенные численные параметры качества можно использовать для определения оптимальной конфигурации оптической схемы, обеспечивающей наилучшее качество формируемого ею БСП. Настоящая работа посвящена рассмотрению параметров качества БСП 2-го порядка (БСП₂), формируемого с помощью одноосного кристалла дигидрофосфата (дигидроортофосфата) калия КН₂РО₄ (КDP).

1. Определение параметров качества БСП2

Параметры качества для БСП₂ можно ввести, исходя из методологии в [1], производя набор аппроксимаций для различных радиальных распределений интенсивности светового пучка, внеся следующие изменения:

1. Заменить вид аппроксимирующей функции для интенсивности на

$$\hat{I}(r) = aJ_2^2[b(r-c)]$$

где *r* – радиальная координата, *a*, *b*, *c* – параметры аппроксимации, *J*₂ – функция Бесселя второго порядка.

2. Значение r_1 следует определять как наименьший по модулю не-CKOPNY тривиальный корень уравнения

$$\frac{dJ_2^2(br)}{dr}\bigg|_{r=r_1} = 0$$

Этот корень будет соответствовать центральному кольцу БСП₂. Таким образом, приближенно

$$r_1(\phi) = 3,0542 / b(\phi),$$

где ф – азимутальная координата, вдоль которой проводится радиальное распределение. С учетом указанных замечаний формулы для непосредственного вычисления параметров качества БСП₂ совпадают с формулами для БСПо из [1]. Предложенная методология была практическим образом опробована на примере анализа качества БСП₂, формируемых из излучения полупроводникового лазерного модуля (ППЛМ) и гелий-неонового лазера (ЛГН) с использованием кристалла КDР методом, предложенным в [3] (таблица 1) посредством специально разработанной нами компьютерной программы. Расстояние между основанием аксикона и ССД-камерой (плоскостью регистрации) обозначается как координата z.

2. Обсуждение результатов

Проанализировав поперечные распределения интенсивности для различных z, мы получили пространственные распределения интенсивности, а также зависимости параметров качества БСП2 от продольной координаты для обоих источников излучения (таблица 2).

Координата <i>z</i> , мм	Вид БСП ₂ для ППЛМ	Вид БСП2 для ЛГН
0		
25		Of Ho
50		. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
75		
100	ORNACIO	

Таблица 1 – Вид распределения интенсивности БСП₂ в его поперечном сечении на различных расстояниях от аксикона

Из графиков в таблице 2 видно, что при использовании ЛГН распределения интенсивности в поперечных сечениях БСП₂ вдоль радиальных лучей гораздо лучше соответствуют квадрату функции Бесселя 2-го порядка, т. к. модифицированный коэффициент детерминации R^2 для ЛГН гораздо выше во всем исследуемом интервале *z*. Параметр постоянства k_{Π}^{σ} БСП₂ при использовании ЛГН также заметно выше, чем для ППЛМ, при малых *z*, хотя затем он постепенно уменьшается, и на расстоянства для ППЛМ. Во всем диапазоне *z* коэффициент круглости k_{K}^{σ} БСП₂ от ППЛМ претерпевает значительные несистем-

ные колебания, в то время как круглость БСП₂ от ЛГН изменяется незначительно.

Таблица 2 – Сравнение вида зависимостей различных параметров качества БСП₂ от продольной координаты *z* для ППЛМ и ЛГН

Заключение

В данной работе нами предложены дополнения к методологии оценки качества БСП₀, позволяющие производить анализ качества БСП₂. Экспериментально показано, что предложенная процедура позволяет характеризовать и сравнивать качество экспериментальных БСП₂. Построены экспериментальные зависимости параметров качества БСП₂ от продольной координаты для пучков, формируемых из

излучения ППЛМ и ЛГН с использованием кристалла KDP. Объективно определено, что БСП₂, сформированный из излучения ЛГН, по всем параметрам качественнее БСП₂ из излучения ППЛМ.

Работа выполнена в рамках задания 1.1 «Разработка методов и устройств диагностики материалов, процессов и изделий в оптическом и терагерцовом диапазонах спектра и их применение для оптической связи, микроскопии и определения характеристик различных объектов», № гос. рег. 20210300 от 23.03.2021 ГПНИ «Фотоника и электроника для инноваций» (2021–2025 г.г.)

Литература

1. Рыжевич, А. А. Параметры качества бесселевых световых пучков нулевого порядка / А. А. Рыжевич, И. В. Балыкин, Т. А. Железнякова // ЖПС. – 2018. – Т. 85, № 1. – С. 144–153.

2. Зависимость параметров качества неидеальных бесселевых световых пучков от продольной координаты / И. В. Балыкин [и др.] // «Современные проблемы физики», Междунар. школа-конф. молодых учёных и специалистов, Минск, 4-6 ноября 2020 г. / Институт физики им. Б. И. Степанова НАН Беларуси. – Минск, 2020. – С. 41–42.

3. Bessel Light Beam of the Second Order Formation with Uniaxial Crystal / I. V. Balykin [et al.] // Журнал прикладной спектроскопии. – 2016. – Т. 83, спецвыпуск 6-16, ч. 3. – С. 453–454.