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On c-supplemented primary subgroups of finite groups 

M i a o  L o n g  a n d  G u o  W e n b i n

1. Introduction. There has been much interest in the past in investigating the re
lationship between the properties of some primary subgroups of a finite group G and the 
structure of G ([1-3]). In this aspect the concept of a с-supplemented subgroup in a finite 
group was introduced by Wang in [9] and he proved that a finite group G is soluble if and 
only if every Sylow subgroup of G is с-supplemented in G. As an application of the above 
result some well-known results were generalized by using the concept of c-supplementation. 
Thus, с-supplementation provides a useful tool for the investigation of the structure of finite 
groups which is shown in [10].

In this paper, we shall continue to study the с-supplemented subgroups in a finite group 
G. Some theorems on soluble groups and p-nilpotent groups are obtained by considering their 
с-supplemented subgroups. Some results in [10] are extended and generalized.

All the groups considered in this paper are finite. Most of the notations are standard 
and can be found in [4] and [8]. We denote a semi-product of a subgroup H  and К  by 
G = [H]K,  where H  is normal in G.

Let 7Г be a set of primes. We say that G € Еж if G has a Hall 7r-subgroup. We say 
that G G Cw if any two Hall 7r-subgroups of G are conjugate in G. We say that G e Dn if 
G € Cv and every 7r-subgroup of G is contained in a Hall 7r-subgroup of G.

D efinition  1.1. A subgroup H  of G is called с-supplemented in G if there exists a 
subgroup К  of G such that G — H K  and H  П К  < H g , where Ho — Coreo(H) is the 
largest normal subgroup of G contained in H. Here, К  is called a с-supplement of H  in G.

2. Prelim inaries. For the sake of convenience, we first list here some known results 
which will be useful in the sequel.

L em m a 2.1 ([10],Lemma 2.1). Let G be a group. Then
(1) I f  H  is с-supplemented, in G, H  < M  < G, then II is с-supplemented in M.
(2) Let N  <  G and N  < I I . Then H is с-supplemented in G if and only if H /N  is 

с-supplemented in G / N .
(3) Let 7r be a set of primes. Let N  be a normal -к'-subgroup and let H be a ir-subgroup 

of G . I f  H  is с-supplemented in G, then H N / N  is с-supplemented in G / N . I f  furthermore 
N  normalizes H , then the converse also holds.

(4) Let H < G and L < Ф(Я). I f  L is с-supplemented in G, then L < G and L  < Ф(С).
L em m a 2.2 ([5], the main theorem). Suppose that a finite group G has a Hall  ir-

subgroup, where rr is a set of primes not containing 2. Then all Hall ir-subgroups of G are 
conjugate.

L em m a 2.3 ([9], Theorem 3.3). Let R be a soluble minimal normal subgroup of a 
group G, R\ be a maximal subgroup of R. I f  Rj is с-supplemented in G, then R  is a cyclic 
group of prime order.
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4 Miao Long and Guo Wenbin

Lemma 2.4 ([7], Lemma 2.6). Let N  be a normal subgroup of a group G (N  ^  1). I f  
NO  Ф(С) =  1, then the Fitting subgroup F(N) of N  is the direct product of minimal normal 
subgroups of G which is contained in F(N).

Lemma 2.5 ([10], Theorem 3.3). Let G be a finite group and let N  be a normal 
subgroup of G such that G /N  is supersoluble. I f  every maximal subgroup of every Sylow 
subgroup of N  is c-supplemented in G, then G is supersoluble.

Lemma 2.6. Let G be a finite group andp be a prime divisor of I G\ such that (| G\,p2— 
-  1) — 1. Assume that the order of G is not divisible by p3. Then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal 
order. Since every proper subgroup and every proper quotient group also satisfy the hypoth
esis of the lemma, the minimal choice of G implies that G is a minimal non-p-nilpotent group 
but every proper subgroup and every proper quotient group of G is p-nilpotent. Therefore 
G = |P]Q with Q cyclic (see [8]). Since both Ф(Р) and Ф(С?) are in Z(G) =  1, we have that 
P  is an elemenary abelian Sylow p-subgroup and Q is a cyclic group of order q. Q =  G jP  
and Ng(P ) /C g(P) is isomorphic to a subgroup of A ut(P). Hence, q divides p (p+  l ) ( p — 1). 
Since p ф q and (| G\,p2 — 1) — 1, we have G is p-nilpotent, by Burnside p-nilpotent theorem, 
a contradiction.

Final contradiction completes our proof.
Lemma 2.7 ([6]). Let G be a finite group and U any p-subgroup of G. I f  Na(U )/ C g ( U ) 

is a p-subgroup, then G is p-nilpotent.
Lemma 2.8. ([11]).' Let P  be an elementary abelian p-group with \ P\ — p n, where p 

is a prime. Then \ A u t(P ) | =  kn ■ pn(n~1'>/2) where kn = П"=1(рг — 1).
Lemma 2.9. ([11])- Let G be a group of order pn, where p is a prime. Then \ Aut(G) \ 

is the factor of the order of Aut(P), where P  is an elementary abelian p-group of order p".
Lemma 2.10. Let G be a finite group and p be a prime divisor of j G\ such that 

(| G |,p2 — 1) =  1. I f  G /L  is p-nilpotent and p3 \ | L\, then G is p-nilpotent.
Proof. By the hypothesis and Lemma 2.6, we know that L is p-nilpotent and L 

has a normal p-complement Lp>. Since Lp> char L and L is normal in G, we have that 
Lp' <  G. Therefore G /L  = (G /L p>)/(L/Lp>) is p-nilpotent. There exists a Hall p -subgroup 
(H /Lpi) / (L /L p>) of (G /L p') / (L /L p/) and H /L p> < G /L p>. By Schur-Zassenhaus Theorem, 
we have that H /L p> = [L/Lp>]Hi/Lp>, where H \/L p> is a Hall p'-subgroup of LI/Lp>. Then 
by Lemma 2.6, we have # i /L y  < LI/Lp> and H \/L p> char H /L p> <  G /L p>. Therefore 
Hi/ Lp/ < G /L p>. Hence, G /Lp< is p-nilpotent. Thus, G is p-nilpotent.

3. M ain results. Theorem  3.1. Let G be a finite group and p be a prime divisor 
of | G\ with (| G |,p  — 1) =  1. I f  there exists a normal subgroup N  of G such that G /N  is 
p-nilpotent and every maximal subgroup of every Sylow subgroup of N  is c-supplemented in 
G, then G is p-nilpotent.

Proof. Assume that the theorem is false and choose G to be a counterexample of 
minimal order. Moreover, we have

(1) G is soluble, G has a minimal normal subgroup L < N  and L is an elementary 
abelian r-group, where r is the largest prime number in ir(N).

By the hypothesis, every maximal subgroup of every Sylow subgroup of N  is c- 
supplemented in G, thus, it is e-supplernented in N, by Lemma 2.1. Applying Lemma 2.5 
for the case G = N, we get that N  is supersoluble and hence G is soluble. So, for the largest 
prime number r  in 7r(TV), a Sylow r-subgroup Я of TV is normal in N. Obviously, Я is a 
characteristic subgroup of N. Therefore, Я is normal in G as N  is normal in G. Thus, G has 
a minimal normal subgroup L < N  and L is an elementary abelian r-group.

(2) G /L  is p-nilpotent, L ft Ф(G) and C^(L) = L — F(N) ,  L = R  e  Sylp(N).

РЕПОЗИТОРИЙ ГГ
У И

МЕНИ Ф
. С

КО
РИНЫ



On с-supplemented primary subgroups of finite groups 5

In fact, (G /L ) / { N / L ) =  G / N  is p-nilpotent. Let R \ / L  be a maximal subgroup of a 
Sylow r-subgroup of N/L.  Then R\  is a maximal subgroup of a Sylow r-subgroup R  of N. 
By the hypothesis of the theorem, R\  is с-supplemented in G. By Lemma 2.1, R \ / L  is c- 
supplemented in G/L.  Let Q i /L  be a maximal subgroup of a Sylow g-subgroup of N/L,  where 
q Ф r. It is clear that Q\ — Q \L , where Q\ is a maximal subgroup of a Sylow g-subgroup 
of N.  By the hypothesis, Q\ is с-supplemented in G. Hence, Q \L jL  is с-supplemented in 
G/L,  by Lemma 2.1. We have proved that G /L  satisfies the hypothesis of the theorem. 
Hence, G /L  is p-nilpotent by the choice of G. We have that L is a p-group, otherwise, if 
p \ \ N \ ,  then G is p-nilpotent since G / N  is p-nilpotent, a contradiction. If p ф r, then G is 
p-nilpotent, since G /L  is p-nilpotent, a contradiction. Since the class of all p-nilpotent groups 
is a saturated formation, we can easily prove that L is the unique minimal normal subgroup 
of G which is contained in N, L ^  Ф(С). By Lemma 2.4, F(N) = L. The solubility of N  
implies that L < Cn (F(N))  < F(N),  and C^(L) = L = F(N),  as L is an abelian group. 
Since R  <  G and R  <  F{N),  thus, L =  R  e  Sylp(G).

(3) G is p-nilpotent.
Let Pi be a maximal subgroup of L, then Pj is с-supplemented in G, by (2), and hence 

| L\ =  p, by Lemma 2.3. We have that L H /L  <  G/L,  since G/L  is p-nilpotent, where H is 
a Hall p-subgroup of G. Since (| G\,p — 1) =  1, we know that LH  is p-nilpotent. It follows 
from HcharHL < G that H  <  G. Therefore, G is p-nilpotent.

The final contradiction completes our proof.
Corollary 3.2. Let G be a finite group. I f  every maximal subgroup of every Sylow 

subgroup of G is c-supplemented in G, then G has a Sylow tower of the supersoluble type.
Lemma 3.3. Let G be a finite group and p be a prime divisor of | G\ with (| G |,p2 — 

— 1) =  1. Assume that every second maximal subgroup of a Sylow p-subgroup of G is 
c-supplemented in G. Then G/Op(G) is soluble and p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal 
order. Furthermore, we have

(1) Op(G) =  1.
If Op(G) — P, then G/Op(G) is a p'-group and, of course, it is p-nilpotent, a contradic

tion. If Op(G) =  Pi, where Pi is the maximal subgroup of P , then G/Op(G) is p-nilpotent, 
since (|G |,p2 — 1) =  1 and \G/Op(G)\p — p, a contradiction. If Op{G) =  P2, where P2 is 
the second maximal subgroup of P , then p3 f \G/Op(G)\. Hence, G/Op(G) is p-nilpotent, 
by Lemma 2.6. If 1 < Op{G) < P2, then G/Op(G) satisfies the hypothesis and the minimal 
choice of G implies that G/Op(G) =  G/Op(G)/Op(G/Op(G)) is p-nilpotent, a contradiction.

(2) |G| is divisible by p3.
If p3 \ |G|, then G is p-nilpotent, by Lemma 2.6, a contradiction.
(3) For every second maximal subgroup Pi of a Sylow subgroup P of G, the c- 

supplement of Pi is p-nilpotent.
Let P  be a Sylow p-subgroup of G and Pi be a second maximal subgroup of P. By 

the hypothesis, Pi is с-supplemented in G. So, there exists a subgroup K\  of G such that 
Pi П Ki < ( P i ) g  < Op(G) =  1. Now | Ki\p — p2, Lemma 2.6 implies that К  is p-nilpotent.

(4) G is p-nilpotent.
Let N  = NG(K lp/) and К г -  K lpK lp>. By (3), K x < N. So, we have G =  РХК Л =  

=  I \ N . If N  =  G, then G is p-nilpotent, a contradiction. Let Pi < Pi < P , where P] is 
a maximal subgroup of a Sylow subgroup P  of G. Hence, G =  l \ К x =  P \K X =  PXN . If 
Pi < N,  then G is p-nilpotent, a contradiction. So, we may assume Pi D N  < P\. We may 
choose a maximal subgroup P2 of Pi such that Pi П N  < P2. It is clear that P2 is a second 
maximal subgroup of P. By (3), P2 is с-supplemented in G and the с-supplement K 2 of P2 is
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6 Miao Long and Guo Wenbin

p-nilpotent. We denote K 2 =  K 2pK 2p>. Since (| G\,p2 -  1) =  1, Lemma 2.2 or the odd order 
Theorem implies that G G Cy. Now both K \ p> and K y  are Hall /У-subgroups of G, these 
two subgroups are conjugate in G. Let K y  =  ( K y ) 9. Since G =  P 2K 2 and К о  <  N G ( K y ) ,  
we may choose g 6 P2. We also have that K 29 normalizes K y 9 =  K y ,  hence, K 2g < N. 
Now G =  G9 — (P 2K 2)9 — P 2N .  Therefore P\ P\  Гi P2N  = P2(Pi П N )  = P2, contrary to 
the condition.

The final contradiction completes our proof.
T h eo rem  3.4. Let N  be a normal subgroup of G andp be a prime divisor of | Gj such 

that (| G\,p2 — 1) =  1. Assume that G /N  is p-nilpotent and every second maximal subgroup 
(if exists) of every Sylow subgroup of N  is c-supplemented in G. Then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal 
order. Then

(1) G is soluble.
By the hypothesis, every second maximal subgroup of every Sylow subgroup of N  is 

с-supplemented in G, thus, is с-supplemented in N,  by Lemma 2.1. By Lemma 3.3, we have 
that N  is soluble, and hence, G is soluble. Let L be a minimal normal subgroup of G which 
is contained in N  . Then L is an elementary abelian r-group for some prime r.

(2) G /L  is p-nilpotent and L is the unique minimal normal subgroup of G which is 
contained in N.  Furthermore, L = F(N) = C^(L).

In fact, (G /L ) / (N /L )  =  G / N  is p-nilpotent. Let R \ / L  be a second maximal subgroup 
of a Sylow r-subgroup of N/L.  Then Ri is a second maximal subgroup of a Sylow r-subgroup 
R  of N. By the hypothesis of the theorem, R x is с-supplemented in G. By Lemma 2.1, R \ /L  
is с-supplemented in G/L.  Let Q i /L  be a second maximal subgroup of a Sylow g-subgroup 
of N/L,  where q Ф r. It is clear that Qx =  Q \L , where Q* is a second maximal subgroup 
of a Sylow g-subgroup of N. Since Q] is с-supplemented in G, we have that Q*L/L  is c- 
supplernented in G/L,  by Lemma 2.1. We have proved that G /L  satisfies the hypothesis 
of the theorem, and hence, G/L  is p-nilpotent. Since the class of all p-nilpotent groups is 
a saturated formation, we have that L is the unique minimal normal subgroup of G which 
is contained in N, L ft Ф(С). By Lemma 2.4, F(N)  =  L. The solubility of N  implies that 
L < Cn (F(N)) < F(N )  and CN(L) = F(N)  =  L.

(3) L is a Sylow p-subgroup of N.
By (1), we have known that G is soluble. If p f j N\, then, it is easy to see that 

G is p-nilpotent, since G /N  is p-nilpotent, a contradiction. Thus, p | \N\. If p ^  r, then 
obviously, G is p-nilpotent by (2), a contradiction. Therefore p =  r  and L is an elementary 
abelian p-subgroup of G which is contained in N. Let D be a Hall p -subgroup of N. Then, 
L D /L  is a Hall p'-subgroup of N/L.  Since N / L  is p-nilpotent, we have L D / L < N / L  and 
hence LD  <  N. Let P  be a Sylow p-subgroup of N.  Assume that L < P. Then PD  = 
— PL D  is a subgroup of N.  Since every second maximal subgroup of a Sylow subgroup of 
PD  is с-supplemented in G, by Lemma 2.1, every second maximal subgroup of every Sylow 
subgroup of P D  is also с-supplemented in PD. Therefore, PD  satisfies the hypothesis for G. 
If PD < G, then, by the minimal choice of G, we have that PD  is p-nilpotent, in particular, 
D <1 PD.Hence, LD — L x D and D < C^(L) — L, a contradiction. Now we may assume 
that G = P D  — N  and L < P. Since N / L  is p-nilpotent, LD < G — N.  By the Frattini 
argument, G =  L N G(D). Since L  is the unique minimal normal subgroup of G, D is not 
normal in G and L Л NG(D) — 1. Therefore, G — \L\NG(D). Let P2 be a Sylow p-subgroup 
of NG(D). Then LP2 is a Sylow p-subgroup of G. Choose a second maximal subgroup Px 
of LP2 such that P2 < Px. Otherwise, if P2 is a maximal subgroup of LP2, thenjLj =  p
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On с-supplemented primary subgroups of finite groups 7

and hence G is p-nilpotent, by Lemma 2.10, a contradiction. Clearly, L ф P\ and hence 
{P\)g =  1- By our hypothesis, Pi is с-supplemented in G. There exists a subgroup К  of 
G such that G = PXK  and Pi П i f  < {PX)G =  1. Now \K \P = \ G : Pi\p = p2. By the 
hypothesis and Lemma 2:6, we have that К  is p-nilpotent. It follows that К  has a normal 
/^-complement which is in fact a Hall p-subgroup D\ of G. By the solubility of G, there 
exists an element g e  L  such that D 9 — D. Since Pi < Pf < LP2, where P* is the maximal 
subgroup of LP2 which contains Px, we have that G =  PXK  — P*K  =  ( P f K) 9 — P ( K g 
and Pi П К  =  1. Since К 9 =  К  has a normal p-complement and D =  D9 < K 9, it follows 
that К 9 < Ng(D). Since LP2 =  LP2 П G =  LP2 П P f K 9 = P((LP2 П K 9), we have that 
LP2 П K 9 ф P 2, otherwise, LP2 <  P /P 2 — P*, a contradiction. Therefore, P2 is a proper 
subgroup of P3 = <  P2, LP2 П К 9 > while P3 is a subgroup of a Sylow p-subgroup LP2. Now, 
both P2 and K 9 are contained in NG{D) and we have that P3 is a p-subgroup of NG(D) 
which contains a Sylow subgroup P2 as a proper subgroup, a contradiction.

(4) G is p-nilpotent.
Let Li be a second maximal subgroup of L. If | L\ < p2, then G is p-nilpotent by 

Lemma 2.10, a contradiction. If | L\ ^  p3, then L x ф 1, hence, L\ is с-supplemented in G. 
There exists a subgroup К  of G such that L \K  — G and L x П К  < (LX)G — 1. It follows 
that L — L\{L  П K),  hence, L П К  < G .  Since L is a unique minimal normal subgroup of G 
contained in N, we have LC\K — L or L f ) K  = l . l f  L ПК  =  1, then L = L x, a contradiction. 
Therefore, L H K  =  L, hence, G = K. This leads to that G is p-nilpotent.

The final contradiction completes our proof.
Corollary 3.5. Let G be a finite group and p be a prime divisor of \ G| such that 

(| G\,p2 — 1) =  1. Assume that every second maximal subgroup of every Sylow subgroup of 
G is с-supplemented in G. Then G is p-nilpotent.

Corollary 3.6. Let G be a finite group and p be a prime divisor of | G\ such that 
(| G |,p2 — 1) =  1. Assume that every second maximal subgroup of every Sylow subgroup of 
G' is с-supplemented in G. Then G is p-nilpotent.

Lemma 3.7. Let G be a finite group with (|G j,21) =  1. Assume that every third 
maximal subgroup (if exists) of a Sylow 2-subgroup of G is c-supplemented in G, then 
G /0 2(G) is 2-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal 
order. Let P  be a Sylow 2-subgroup of G. Furthermore, we have

(1)0,(G) = 1.
If 0 2(G) =  P, then G / 0 2(G) is a 2 -group and of course, it is 2-nilpotent, a contra

diction. If 0 2(G) =  Pi, where Px is a maximal subgroup of P , then G / 0 2(G) is 2-nilpotent, 
by Lemma 2.6, and | G / 0 2(G) |2 =  2, a contradiction. If 0 2(G) = P2, where P2 is a second 
maximal subgroup of P , then 23 f | G / 0 2(G)\. Hence, G / 0 2(G) is 2-nilpotent by Lemma 2 .6, 
a contradiction. If 1 <  0 2(G) < P2, then G / 0 2(G) satisfies the hypothesis and the minimal 
choice of G implies that G / 0 2{G) = G/ 0 2(G)/ 0 2(G/ 0 2(G)) is 2-nilpotent, a contradiction.

(2) | G\ is divisible by 24.
If 23 \  | G\ and (|G |,21) =  1, then G is 2-nilpotent by Lemma 2.4, a contradiction. 

If 23 | | G] and 24 \ \ G|, then | G2| =  23. Next we consider NG{U)/CG(U), where U is any 
2-subgroup of G. If U = P , then NG(P)/ CG(P) is isomorphic to the subgroup of Aut(P). 
By Lemma 2.8 and Lemma 2.9, we have N g(P )/C g(P ) is a 2-subgroup. If U /  P , it is easy 
to know that NG{U)/CG{U) is also 2-group, according to Lemma 2.8 and Lemma 2.9 . Then 
by Lemma 2.7, it is clear that G is 2-nilpotent in this case, a contradiction.

(3) For every third maximal subgroup P3 of a Sylow 2-subgroup P  of G, the c- 
supplement of P3 in G is 2-nilpotent.
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By the hypothesis, P3 is с-supplemented in G. So, there exists a subgroup K 3 of G 
such that G =  P3K 3 and K 3 П P3 < (P 3) g • By (2), we know that K 3 is 2-nilpotent, since 
K 3 n P 3 < ( P 3)G < O p(G) = l.

(4) G is 2-nilpotent.
Let N  = NG{{K3)2>) and K 3 = (K3)2(K3)2>. By (3), K 3 < N. So we have G = P3K 3 — 

= P3N. If N  =  G, then G is 2-nilpotent, a contradiction. Let P3 < P2 < Pi < P , where P 2 
is a second maximal subgroup of P  and Pj is a maximal subgroup of P . Hence, G =  P3K 3 — 
= P2K 3 — P2N. If P2 <  N,  then G is 2-nilpotent, a contradiction. So, we may assume that 
P2niV < P2. We may choose a maximal subgroup P3* of P2 such that P2D N < P3*. It is clear 
that P3* is the third maximal subgroup of P . By (3), P3* is с-supplemented in G and the c- 
supplement K 3 of P3* is 2-nilpotent. We denote K 3* — (K3*)2(K3*)2>. Lemma 2.2 implies that 
G E C2>. Now, both (A'3)2' and (K 3*)2> are the Hall 2-subgroups of G, these two subgroups 
are conjugate in G. Let (K3)2> =  ((K 3 )2t)9. Since G = P3*K3* and K 3* < NG((K3*)2>), 
we may choose g E P3*. We also have that (K3*)9 normalizes ( (P 3*)2') 9 =  (PsT3)2/ ; hence, 
{K3y  < N. Now, G = G9 = (.P3*K3*)9 = P3*N. Therefore, P2 =  P2 П P3*N = P3*{P2 П 
П N) =  P3*, contrary to the choice of G.

The final contradiction completes our proof.
Theorem  3.8. Let G be a finite group with (| G\,21) =  1. Assume that there exists a 

normal subgroup N  of G such that G /N  is 2-nilpotent and every third maximal subgroup (if 
exists) of every Sylow subgroup of N  is с-supplemented in G. Then G is 2-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal 
order. Then:

(1) G is soluble and G has a minimal normal subgroup L such that L < N  and L is 
an elementary abelian r-group, for some prime r.

By the hypothesis, every third maximal subgroup of every Sylow  subgroup of N  is 
с-supplemented in G\ thus, it is с-supplemented in N, by Lemma 2.1. By the choice of G 
and Lemma 3.7, we have that N  is soluble; hence, G is soluble. Let L be a minimal normal 
subgroup of G which is contained in N. Then L is an elementary abelian r-group for some 
prime r.

(2) G /L  is 2-nilpotent and L is the unique minimal normal subgroup of G which is 
contained in N. Furthermore, L — F(N)  — Cn {L).

In fact, (G / L ) / ( N / L ) =  G / N  is 2-nilpotent and (| G/L\,  21) =  1 . Let R \ / L  be a third 
maximal subgroup of a Sylow r-subgroup of N/L.  Then P i is a third maximal subgroup of 
a Sylow r-subgroup P  of N.  By the hypothesis of the theorem, P i is с-supplemented in G. 
By Lemma 2.1, R \ /L  is с-supplemented in G/L.  Let Q\ / L  be a third maximal subgroup of 
a Sylow ^-subgroup of N /L ,  where q ф r. It is clear that Q i =  Q \L , where Q j is a third 
maximal subgroup of a Sylow 9-subgroup of N. By the hypothesis, Ql is c-supplemented 
in G. Hence, Q*L/L  is с-supplemented in G/L,  by Lemma 2.1. We have proved that G/ L  
satisfies the hypothesis of the theorem and hence G/ L  is 2-nilpotent. Since the class of all 
2-nilpotent groups is a saturated formation, we have that L is the unique minimal normal 
subgroup of G which is contained in TV, L ф Ф(С). By Lemma 2.4, F(N)  = L. The solubility 
of N  implies that L < Cn (F(N))  < F(N)  and CN(L) =  F{N)  = L.

(3)L is a Sylow 2-subgroup of N.
By (1), we have known that G is soluble. If 2 \ \ TVj, then G is 2-nilpotent by (2), a 

contradiction. If 2 ф r, then G is 2-nilpotent by (2), a contradiction. Therefore, L is an 
elementary abelian 2-subgroup of G which is contained in N. Let D  be a Hall 2'-8иЬ§гоир of 
N. Obviously, L D / L  is a Hall 2,-subgroup of N/L.  Since N / L  is 2-nilpotent, we have that 
LD/ L  < N/ L.  So, LD  <  N.  Let P  be a Sylow 2-subgroup of N.  Assume that L < P.  Then
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PD  =  P LD  is a subgroup of N. Since every third maximal subgroup of a Sylow subgroup 
of PD  is с-supplemented in G, by Lemma 2.1, every third maximal subgroup of every Sylow 
subgroup of PD  is also с-supplemented in PD. Therefore, PD  satisfies the hypothesis for G. 
If PD < G, the minimal choice of G implies that PD  is 2-nilpotent, in particular, D < PD. 
Hence, LD  =  L  x D  and D < С'дг(Т) — L, a contradiction. Now we assume that G = 
— PD — N  and L < P. Since N /L  is 2-nilpotent, LD < N  = G. By the Frattini argument, 
G — L N g (D). Since L  is the unique minimal normal subgroup of G, D  is not normal in G 
and L П Ng(D) =  1. Therefore, G — \L\Ng(D). Let P2  be a Sylow 2-subgroup of N g ( D ) .  

Then LP 2  is a Sylow 2-subgroup of G. Choose a third maximal subgroup Рз of LP 2  such 
that P2  < P3 . Otherwise, if P2  is a maximal subgroup of LP2, then | L\ =  2 and hence G is 
2-nilpotent by Lemma 2.10, a contradiction. If P2  is a second maximal subgroup of LP2, then 
I Lj =  22 and hence G is 2-nilpotent by Lemma 2.10 and (2), a contradiction. Clearly, L  ^  P3  

and hence (-P3)g =  1- By our hypothesis, P3 is с-supplemented in G. There exists a subgroup 
К  of G such that G =  P3 K  and К  П P3 < (P3)g =  1 . It follows that I< has a normal 
2-complement which is in fact a Hall 2'~subgroup D\ of G. By the hypothesis and Lemma 
2.2 , there exists an element g £ L such that D\ = D. Since P2 <  P3 <  P2* < P\ < LP2, 
where Px is a maximal subgroup of LP2 which contains P2*, P2* is a second maximal subgroup 
of LP2  which contains P3, we have that G =  P3 K  =  PXK  =  (PXK ) 9  =  PXK 9. Since К 9  =  К  
has a normal 2-complement D and D — Df  < K 9, it follows that К 9  < N g ( D ) .  Since 
LP2  = LP2 D G  = LP 2  П P1 K 9  =  P i(LP2 П K 9), we have that LP2  П K 9  £  P2. Otherwise, 
LP2  <  P iP2 =  Pi, a contradiction. Therefore, P2 is a proper subgroup of P4 = <  P2 ,LP 2  П 
П К 9  > , where P4 is a subgroup of the Sylow 2-subgroup LP2. Now both P2 and К 9  are 
contained in NG(D ) and we have that P4 is a 2-subgroup of NG(D) which contains a Sylow 
subgroup P2 as a proper subgroup, a contradiction. Hence, L is a Sylow 2-subgroup of N.

(4) G is 2-nilpotent.
If I L\ < 4, then G is 2-nilpotent by Lemma 2.10 and (2), a contradiction. If | Lj =  23, 

then G is 2-nilpotent by Lemma 3.7. Let L x be a nontrivial third maximal subgroup of 
L.Then Li is с-supplemented in G. There exists a subgroup К  of G such that L XK  = G and 
KC\LX < (Li)g- It follows that L =  ЬХ(ЬГ\К)  and LC\K < G. Since L is a unique minimal 
normal subgroup of G contained in N, we have ЬГ) К = L or L ПК  = 1. If L(~)K — 1, then 
L =  Lb a contradiction. Therefore, L П К  =  L, and hence G = K. This leads to that G is 
2-nilpotent.

The final contradiction completes our proof.
C oro lla ry  3.9. Let G be a finite group with ( |G |,21) =  1 . I f  every third maximal 

subgroup of every Sylow subgroup of G is c-supplemented in G, then G is 2-nilpotent.
C oro llary  3.10. Let G be a finite group with (| G|,21) =  1. I f  every third maximal 

subgroup of every Sylow subgroup of G' is с-supplemented in G, then G is 2-nilpotent.

A b strac t. A subgroup H  is called с-supplemented in a group G if there exists a subgroup 
К  of G such that G =  H К  and H П К  is contained in HG- In this paper we investigate 
the influence of e-supplementation of some primary subgroups in finite groups. Some recent 
results are generalized.
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