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On c-supplemented primary subgroups of finite groups

Miao Long and Guo W enbin

1. Introduction. There has been much interest in the past in investigating the re-
lationship between the properties of some primary subgroups of a finite.group G and the
structure of G ([1-3]). In this aspect the concept of a c-supplemented.subgroup in a finite
group was introduced by Wang in [9] and he proved that a finite group. G is soluble if and
only if every Sylow subgroup of G is c-supplemented in G. As an~application of the above
result some well-known results were generalized by using the concept of c-supplementation.
Thus, c-supplementation provides a useful tool for the investigation of the structure of finite
groups which is shown in [10].

In this paper, we shall continue to study the c-supplemented subgroups in a finite group
G. Some theorems on soluble groups and p-nilpotent«roups are obtained by considering their
c-supplemented subgroups. Some results in [10] are extended and generalized.

All the groups considered in this paper are-finite. Most of the notations are standard
and can be found in [4] and [8]. We denote a semi-product of a subgroup H and K by
G = [H]K, where H is normal in G.

Let T be a set of primes. We, saysthat G € E>kif G has a Hall 7r-subgroup. We say
that G G Cwif any two Hall 7r-subgroups of G are conjugate in G. We say that G e Dn if
G € Cv and every 7r-subgroup of\G is contained in a Hall 7r-subgroup of G.

Definition 1.1. A subgreup H of G is called c-supplemented in G if there exists a
subgroup K of G such that.G — HK and H MK < Hg, where Ho — Coreo(H) is the
largest normal subgrouptof'G contained in H. Here, K is called a c-supplement of H in G.

2. Preliminarjes: For the sake of convenience, we first list here some known results
which will be useful inthe sequel.

Lemma 2.1\([10],Lemma 2.1). Let G be a group. Then

(1) If H_is.c-supplemented, in G, H < M < G, then Il is c-supplemented in M.

(2) Let N < G and N < Il. Then H is c-supplemented in G if and only if H/N is
c-supplemented in G/N.

(3) Let 7r be a set ofprimes. Let N be a normal -k'-subgroup and let H be a ir-subgroup
of G . If H is c-supplemented in G, then HN/N is c-supplemented in G/N. If furthermore
N normalizes H, then the converse also holds.

(4) LetH < G andL < ®(A). IfL isc-supplemented in G, thenL < G andL < ®(C).

Lemma 2.2 ([5], the main theorem). Suppose that a finite group G has a Hall ir-
subgroup, where rr is a set of primes not containing 2. Then all Hall ir-subgroups of G are
conjugate.

Lemma 2.3 ([9], Theorem 3.3). Let R be a soluble minimal normal subgroup of a
group G, R\ be a maximal subgroup of R. If Rj is c-supplemented in G, then R is a cyclic
group of prime order.
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Lemma 2.4 ([7], Lemma 2.6). Let N be a normal subgroup of a group G (N ~ 1). If
NO ®(C) = 1, then the Fitting subgroup F(N) of N is the direct product of minimal normal
subgroups of G which is contained in F(N).

Lemma 2.5 ([10], Theorem 3.3). Let G be a finite group and let N be a normal
subgroup of G such that G/N is supersoluble. If every maximal subgroup of every Sylow
subgroup of N is c-supplemented in G, then G is supersoluble.

Lemma 2.6. Let G be afinite group andp be aprime divisor of IG\ such that (| G\,p2—
- 1) — 1 Assume that the order of G is not divisible by p3. Then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal
order. Since every proper subgroup and every proper quotient group also satisfysthe hypoth-
esis of the lemma, the minimal choice of G implies that G is a minimal non-p-nilpotent group
but every proper subgroup and every proper quotient group of G is p-nilpatent. Therefore
G = |P]Q with Q cyclic (see [8]). Since both ®(P) and ®(C?) are in Z(G)\= "1, we have that
P is an elemenary abelian Sylow p-subgroup and Q is a cyclic group-of order . Q = GjP
and Ng(P)/Cg(P) is isomorphic to a subgroup of Aut(P). Hence, g-divides p(p+ I)(p—121).
Sincep ¢ gand (| G\,p2—1) —1, we have G is p-nilpotent, by Burnside p-nilpotent theorem,
a contradiction.

Final contradiction completes our proof.

Lemma 2.7 ([6]). Let G be afinite group and U any.p-subgroup of G. If Na(U)/cg(u)
is a p-subgroup, then G is p-nilpotent.

Lemma 2.8. ([11])." Let P be an elementary” abelian p-group with \P\ —pn, where p
is aprime. Then \Aut(P)| = kn mn(n~1%) where*kn = M"=1(pr—1).

Lemma 2.9. ([11])- Let G be a group~of order pn, where p is aprime. Then \Aut(G)\
is the factor of the order of Aut(P), where P is an elementary abelian p-group of order p™.

Lemma 2.10. Let G be a finite group and p be a prime divisor of jG\ such that
(| G|,p2—1) = 1 If G/L is p-nilpotent and p3\ |L\, then G is p-nilpotent.

Proof. By the hypothesis.'and Lemma 2.6, we know that L is p-nilpotent and L
has a normal p-complement-Lp>"Since Lp>char L and L is normal in G, we have that

Lp < G. Therefore G/L =/«(G/Lp>)/(L/Lp> is p-nilpotent. There exists a Hall p -subgroup
(H/Lpi)/(L/Lp> of (GILpY/(L/Lp/) and H/Lp>< G/Lp=> By Schur-Zassenhaus Theorem,
we have that H/Lp=="[L/Lp>]Hi/Lp> where H\/Lp>is a Hall p'-subgroup of LI/Lp>= Then
by Lemma 2.6, we have #i/Ly < LIl/Lp>and H\/Lp>char H/Lp>< G/Lp> Therefore
Hi/Lp/ < G/Lp= Hence, G/Lp<is p-nilpotent. Thus, G is p-nilpotent.

3. Main_results. Theorem 3.1. Let G be afinite group and p be a prime divisor
of |G\ with'(| G|,p —1) = 1. If there exists a normal subgroup N of G such that G/N is
p-nilpotent and every maximal subgroup of every Sylow subgroup of N is c-supplemented in
G, then G is p-nilpotent.

Proof. Assume that the theorem is false and choose G to be a counterexample of
minimal order. Moreover, we have

(1) G is soluble, G has a minimal normal subgroup L < N and L is an elementary
abelian r-group, where r is the largest prime number in ir(N).

By the hypothesis, every maximal subgroup of every Sylow subgroup of N is c-
supplemented in G, thus, it is e-supplernented in N, by Lemma 2.1. Applying Lemma 2.5
for the case G = N, we get that N is supersoluble and hence G is soluble. So, for the largest
prime number r in 7r(TV), a Sylow r-subgroup A of TVis normal in N. Obviously, A is a
characteristic subgroup of N. Therefore, A is normal in G as N is normal in G. Thus, G has
a minimal normal subgroup L < N and L is an elementary abelian r-group.

(2) G/L is p-nilpotent, L ft ®(G) and C*(L) = L —F(N), L =R e Sylp(N).
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In fact, (G/L)/{N/L) = G/N is p-nilpotent. Let R\/L be a maximal subgroup of a
Sylow r-subgroup of N/L. Then R\ is a maximal subgroup of a Sylow r-subgroup R of N.
By the hypothesis of the theorem, R\ is c-supplemented in G. By Lemma 2.1, R\/L is ¢-
supplemented in G/L. Let Qi/L be a maximal subgroup of a Sylow g-subgroup of N/L, where
q®r. Itis clear that Q\ — Q\L, where Q\ is a maximal subgroup of a Sylow g-subgroup
of N. By the hypothesis, Q\ is c-supplemented in G. Hence, Q\LjL is c-supplemented in
G/L, by Lemma 2.1. We have proved that G/L satisfies the hypothesis of the theorem.
Hence, G/L is p-nilpotent by the choice of G. We have that L is a p-group, otherwise, if
p\\N\, then G is p-nilpotent since G/N is p-nilpotent, a contradiction. If p ¢ r, then G is
p-nilpotent, since G/L is p-nilpotent, a contradiction. Since the class of all p-nilpotent groups
is a saturated formation, we can easily prove that L is the unique minimal normal subgroup
of G which is contained in N, L » ®(C). By Lemma 2.4, F(N) = L. The solubility of N
implies that L < Cn(F(N)) < F(N), and C*(L) = L = F(N), as L is an abelian group.
Since R < G and R < F{N), thus, L = R e Sylp(G).

(3) G is p-nilpotent.

Let Pi be a maximal subgroup of L, then Pj is c-supplemented in G, by (2), and hence
|L\ = p, by Lemma 2.3. We have that LH/L < G/L, since G/L is\p-nilpotent, where H is
a Hall p-subgroup of G. Since (| G\,p —1) = 1, we know that LH_is p-nilpotent. It follows
from HcharHL < G that H < G. Therefore, G is p-nilpotent:

The final contradiction completes our proof.

Corollary 3.2. Let G be afinite group. If every~maximal subgroup of every Sylow
subgroup of G is c-supplemented in G, then G has a Sylow tower of the supersoluble type.

Lemma 3.3. Let G be afinite group and p ‘he.a prime divisor of |G\ with (| G|,p2—
—1) = 1 Assume that every second maximal“subgroup of a Sylow p-subgroup of G is
c-supplemented in G. Then G/Op(G) is soluble‘and p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal
order. Furthermore, we have

(1) Op(G) = 1

If Op(G) —P, then G/Op(G)is‘a p'-group and, of course, it is p-nilpotent, a contradic-
tion. If Op(G) = Pi, where Pi<is the maximal subgroup of P, then G/Op(G) is p-nilpotent,
since (|G|,p2—1) = 1 and \G/Op(G)\p — p, a contradiction. If Op{G) = P2, where P2 is
the second maximal subgreup of P, then p3f \G/Op(G)\. Hence, G/Op(G) is p-nilpotent,
by Lemma 2.6. If 1 <, Op{G) < P2 then G/Op(G) satisfies the hypothesis and the minimal
choice of G implies-that G/Op(G) = G/Op(G)/Op(G/Op(G)) is p-nilpotent, a contradiction.

(2) |G| isdivisible by p3.

If p3\ |G); then G is p-nilpotent, by Lemma 2.6, a contradiction.

(3) For every second maximal subgroup Pi of a Sylow subgroup P of G, the c-
supplement of Pi is p-nilpotent.

Let P be a Sylow p-subgroup of G and Pi be a second maximal subgroup of P. By
the hypothesis, Pi is c-supplemented in G. So, there exists a subgroup K\ of G such that
Pi MKi < (Pi)g < Op(G) = 1L Now |Ki\p—p2, Lemma 2.6 implies that K is p-nilpotent.

(4) G is p-nilpotent.

Let N = NG(Klp/) and Kr - KlpKIp> By (3), Kx < N. So, we have G = PXJI=
= I\N.If N = G, then G is p-nilpotent, a contradiction. Let Pi < Pi < P, where P] is
a maximal subgroup of a Sylow subgroup P of G. Hence, G = I\Kx = P\KX= PX\. If
Pi < N, then G is p-nilpotent, a contradiction. So, we may assume Pi DN < P\. We may
choose a maximal subgroup P2 of Pi such that Pi MN < P2. It is clear that P2 is a second
maximal subgroup of P. By (3), P2is c-supplemented in G and the c-supplement K2of P2is
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p-nilpotent. We denote K 2 = K 2pK 2p> Since (| G\,p2- 1) = 1, Lemma 2.2 or the odd order
Theorem implies that G G Cy. Now both k\p>and K y are Hall /¥-subgroups of G, these
two subgroups are conjugate in G. Letk y - (Ky)9.Since G- pP2k2and Ko < NG(Ky),
we may choose g 6 P2. We also have that K 29 normalizes K y 9 = Ky, hence, K2g < N.
Now G = G9 — (P2K 2)9 — pP2N. Therefore P\ P\ lpP2n = P2(Pi M N) = P2, contrary to
the condition.

The final contradiction completes our proof.

Theorem 3.4. Let N be a normal subgroup of G andp be a prime divisor of | Gj such
that (| G\,p2—1) = 1. Assume that G/N is p-nilpotent and every second maximal subgroup
(if exists) of every Sylow subgroup of N is c-supplemented in G. Then G is p=pilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal
order. Then

(1) G is soluble.

By the hypothesis, every second maximal subgroup of every.Sylow subgroup of N is
c-supplemented in G, thus, is c-supplemented in N, by Lemma'2.2. By Lemma 3.3, we have
that N is soluble, and hence, G is soluble. Let L be a minimal normal subgroup of G which
is contained in N . Then L is an elementary abelian r-group‘for some prime r.

(2) G/L is p-nilpotent and L is the unique migimal normal subgroup of G which is
contained in N. Furthermore, L = F(N) = C~(L).

In fact, (G/L)/(N/L) = G/N is p-nilpotent. Let R\/L be a second maximal subgroup
of a Sylow r-subgroup of N/L. Then Ri is a seecond maximal subgroup of a Sylow r-subgroup
R of N. By the hypothesis of the theorem, RXis c-supplemented in G. By Lemma 2.1, R\/L
is c-supplemented in G/L. Let Qi/L be a'second maximal subgroup of a Sylow g-subgroup
of N/L, where q ® r. It is clear that Qx = Q\L, where Q* is a second maximal subgroup
of a Sylow g-subgroup of N. Since Q] is c-supplemented in G, we have that Q*L/L is c-
supplernented in G/L, by Lemma“2.1. We have proved that G/L satisfies the hypothesis
of the theorem, and hence, <G/L is p-nilpotent. Since the class of all p-nilpotent groups is
a saturated formation, we have that L is the unique minimal normal subgroup of G which
is contained in N, L ft ©(C). By Lemma 2.4, F(N) = L. The solubility of N implies that
L <Cn(F(N)) <E(N)'and CN(L) = F(N) = L.

(3) L is a/SSylow p-subgroup of N.

By (1), we-have known that G is soluble. If p f jN\, then, it is easy to see that
G is p-nilpotent, since G/N is p-nilpotent, a contradiction. Thus, p | \N\. If p * r, then
obviouslyy G'is p-nilpotent by (2), a contradiction. Therefore p = r and L is an elementary
abelian p-subgroup of G which is contained in N. Let D be a Hall p -subgroup of N. Then,
LD/L is a Hall p'-subgroup of N/L. Since N/L is p-nilpotent, we have LD/L < N/L and
hence LD < N. Let P be a Sylow p-subgroup of N. Assume that L < P. Then PD =
—PLD is a subgroup of N. Since every second maximal subgroup of a Sylow subgroup of
PD is c-supplemented in G, by Lemma 2.1, every second maximal subgroup of every Sylow
subgroup of PD is also c-supplemented in PD. Therefore, PD satisfies the hypothesis for G.
If PD < G, then, by the minimal choice of G, we have that PD is p-nilpotent, in particular,
D <LPD.Hence, LD —L x D and D < C*(L) —L, a contradiction. Now we may assume
that G = PD — N and L < P. Since N/L is p-nilpotent, LD < G — N. By the Frattini
argument, G = LNG(D). Since L is the unique minimal normal subgroup of G, D is not
normal in G and L 1 NG(D) — 1. Therefore, G — \L\NG(D). Let P2 be a Sylow p-subgroup
of NG(D). Then LP2is a Sylow p-subgroup of G. Choose a second maximal subgroup Px
of LP2 such that P2 < Px. Otherwise, if P2 is a maximal subgroup of LP2, thenjLj = p
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and hence G is p-nilpotent, by Lemma 2.10, a contradiction. Clearly, L ¢ P\ and hence
{P\)g = 1- By our hypothesis, Pi is c-supplemented in G. There exists a subgroup K of
G such that G = PX and Pi Mif < {PYG = 1. Now \K\P = \G : Pi\p = p2. By the
hypothesis and Lemma 2:6, we have that K is p-nilpotent. It follows that K has a normal
/"-complement which is in fact a Hall p-subgroup D\ of G. By the solubility of G, there
exists an element g e L such that D9 —D. Since Pi < Pf < LP2, where P* is the maximal
subgroup of LP2 which contains Px, we have that G = PX — P*K = (PfK)9 — P(Kg
and Pi MK = 1. Since K9 = K has a normal p-complement and D = D9< K9, it follows
that K9 < Ng(D). Since LP2= LP2MG = LP2MNMPfK9 = P((LP2IM K9), we have that
LP2M K9 b P2, otherwise, LP2 < P/P2 —P*, a contradiction. Therefore, P2 is a proper
subgroup of P3=< P2, LP2MK 9 > while P3is a subgroup of a Sylow p-subgroup LP2. Now,
both P2 and K9 are contained in NG{D) and we have that P3is a p-subgroup of NG(D)
which contains a Sylow subgroup P2 as a proper subgroup, a contradiction.

(4) G is p-nilpotent.

Let Li be a second maximal subgroup of L. If |L\ < p2 then G)is p-nilpotent by
Lemma 2.10, a contradiction. If |L\ ~ p3, then Lx ¢ 1, hence, L\ is(c-supplemented in G.
There exists a subgroup K of G such that L\K — G and LxMK«<.(LXYG — 1. It follows
that L —L\{L MK), hence, LMK <G. Since L is a unique minimal normal subgroup of G
contained in N, we have LC\K —L or Lf)K = I.If LMK = 1.then L = Lx, a contradiction.
Therefore, LHK = L, hence, G = K. This leads to that G is-p-nilpotent.

The final contradiction completes our proof.

Corollary 3.5. Let G be a finite group and.pbe*a prime divisor of \G| such that
(| G\,p2—1) = 1. Assume that every second maximal/subgroup of every Sylow subgroup of
G is c-supplemented in G. Then G is p-nilpotent.

Corollary 3.6. Let G be a finite group.and p be a prime divisor of |G\ such that
(| Gl,p2—1) = 1. Assume that every second maximal subgroup of every Sylow subgroup of
G' is c-supplemented in G. Then G is¢-nilpotent.

Lemma 3.7. Let G be a finite group with (|Gj,21) = 1 Assume that every third
maximal subgroup (if exists) of a.Sylow 2-subgroup of G is c-supplemented in G, then
G/02(G) is 2-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal
order. Let P be a Sylow.2=subgroup of G. Furthermore, we have

(1)0,(G) =1

If 02(G) = Pythen G/02(G) is a 2 -group and of course, it is 2-nilpotent, a contra-
diction. If 0 2(G)=-Pi, where Pxis a maximal subgroup of P, then G/02(G) is 2-nilpotent,
by Lemma 26, and |G/02(G)|2 = 2, a contradiction. If 02(G) = P2, where P2 is a second
maximal subgroup of P, then 23f |G /02(G)\. Hence, G/02(G) is 2-nilpotent by Lemma 2.6,
a contradiction. If 1 < 02(G) < P2, then G/02(G) satisfies the hypothesis and the minimal
choice of G implies that G/02{G) = G/02(G)/02(G/02(G)) is 2-nilpotent, a contradiction.

(2) |G\ is divisible by 24.

If 23\ |G\ and (|G|,21) = 1, then G is 2-nilpotent by Lemma 2.4, a contradiction.
If 23| |G] and 24\ \G|, then |G2| = 23. Next we consider NG{U)/CG(U), where U is any
2-subgroup of G. If U = P, then NG(P)/ CG(P) is isomorphic to the subgroup of Aut(P).
By Lemma 2.8 and Lemma 2.9, we have Ng(P)/Cg(P) is a 2-subgroup. If U/ P, it is easy
to know that NG{U)/CG{U) is also 2-group, according to Lemma 2.8 and Lemma 2.9 . Then
by Lemma 2.7, it is clear that G is 2-nilpotent in this case, a contradiction.

(3) For every third maximal subgroup P3 of a Sylow 2-subgroup P of G, the c-
supplement of P3 in G is 2-nilpotent.
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By the hypothesis, P3is c-supplemented in G. So, there exists a subgroup K3 of G
such that G = P3K3and K3MP3 < (P3)ge* By (2), we know that K3 is 2-nilpotent, since
K3nP3<(P3)G<Op(G) =1

(4) G is 2-nilpotent.

Let N = NG{{K3)2) and K3 = (K3)2(K3)2= By (3), K3 < N. So we have G = P3K3—
= P3N. If N = G, then G is 2-nilpotent, a contradiction. Let P3 < P2 < Pi < P, where P2
is a second maximal subgroup of P and Pj is a maximal subgroup of P. Hence, G = P3K3—
= P2K3—P2N. If P2< N, then G is 2-nilpotent, a contradiction. So, we may assume that
P2niV < P2. We may choose a maximal subgroup P3*of P2such that P2DN < P3* It is clear
that P3*is the third maximal subgroup of P. By (3), P¥is c-supplemented in G.and the c-
supplement K3 of P¥is 2-nilpotent. We denote K3* — (K 3*)2(K3*)2= Lemma 2.2.implies that
G E C2= Now, both (A'3)2 and (K3*)2>are the Hall 2-subgroups of G, thesetwo subgroups
are conjugate in G. Let (K3)2>= ((K3)2)9. Since G = P3*K3* and. K3* < NG((K3*)2),
we may choose g E P3* We also have that (K3*)9 normalizes ((P.3*)2)9 = (®I3)2; hence,
{K3 < N. Now, G = G9 = (P3*K3*)9 = P3*N. Therefore, P2=-P2TMP3*N = P3*{P2I
MN) = P3* contrary to the choice of G.

The final contradiction completes our proof.

Theorem 3.8. Let G be a finite group with (| G\;21)"= 1. Assume that there exists a
normal subgroup N of G such that G/N is 2-nilpotent and every third maximal subgroup (if
exists) of every Sylow subgroup of N is c-supplemented in G. Then G is 2-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal
order. Then:

(1) G is soluble and G has a minimal normal subgroup L such that L < N and L is
an elementary abelian r-group, for somie prime r.

By the hypothesis, every third, maximal subgroup of every Sylow subgroup of N is
c-supplemented in G\ thus, it is.c-supplemented in N, by Lemma 2.1. By the choice of G
and Lemma 3.7, we have that<N™is soluble; hence, G is soluble. Let L be a minimal normal
subgroup of G which is contained in N. Then L is an elementary abelian r-group for some
prime r.

(2) G/L is 2-nilpotent and L is the unique minimal normal subgroup of G which is
contained in N. Furthermore, L —F(N) —Cn{L).

In fact, (G7L)#N/L) = G/N is 2-nilpotent and (] G/L\, 21) = 1. Let R\/L be a third
maximal subgroup of a Sylow r-subgroup of N/L. Then Pi is a third maximal subgroup of
a Sylow r-subgroup P of N. By the hypothesis of the theorem, Pi is c-supplemented in G.
By Lemma 2.1, R\/L is c-supplemented in G/L. Let Q\/L be a third maximal subgroup of
a Sylow ~-subgroup of N/L, where q ¢ r. It is clear that Qi = Q\L, where Qj is a third
maximal subgroup of a Sylow 9-subgroup of N. By the hypothesis, QI is c-supplemented
in G. Hence, Q*L/L is c-supplemented in G/L, by Lemma 2.1. We have proved that G/L
satisfies the hypothesis of the theorem and hence G/L is 2-nilpotent. Since the class of all
2-nilpotent groups is a saturated formation, we have that L is the unique minimal normal
subgroup of G which is contained in TV, L ¢p ®(C). By Lemma 2.4, F(N) = L. The solubility
of N implies that L < Cn (F(N)) < F(N) and CN(L) = F{N) = L.

(3)L is a Sylow 2-subgroup of N.

By (1), we have known that G is soluble. If 2\ \T\, then G is 2-nilpotent by (2), a
contradiction. If 2 ¢ r, then G is 2-nilpotent by (2), a contradiction. Therefore, L is an
elementary abelian 2-subgroup of G which is contained in N. Let D be a Hall 2'-8ub8roup of
N. Obviously, LD/L is a Hall 2,-subgroup of N/L. Since N/L is 2-nilpotent, we have that
LD/L <N/L. So, LD < N. Let P be a Sylow 2-subgroup of N. Assume that L < P. Then
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PD = PLD is a subgroup of N. Since every third maximal subgroup of a Sylow subgroup
of PD is c-supplemented in G, by Lemma 2.1, every third maximal subgroup of every Sylow
subgroup of PD is also c-supplemented in PD. Therefore, PD satisfies the hypothesis for G.
If PD < G, the minimal choice of G implies that PD is 2-nilpotent, in particular, D < PD.
Hence, LD = L x D and D < Cpgr(T) —L, a contradiction. Now we assume that G =
—PD —N and L < P. Since N/L is 2-nilpotent, LD < N = G. By the Frattini argument,
G —LNg(D). Since L is the unique minimal normal subgroup of G, D is not normal in G
and L MNg(D) = 1. Therefore, G — \L\Ng(D). Let P. be a Sylow 2-subgroup of Ng (D).
Then LP. is a Sylow 2-subgroup of G. Choose a third maximal subgroup P3 of LP. such
that P. < Ps. Otherwise, if P. is a maximal subgroup of LP2, then |L\ = 2 and hence G is
2-nilpotent by Lemma 2.10, a contradiction. If P. is a second maximal subgroup of LP2, then
ILj = 22and hence G is 2-nilpotent by Lemma 2.10 and (2), a contradiction. Clearly;, L ™ Ps
and hence (-P3)g = 1- By our hypothesis, P3is c-supplemented in G. There exists.a’subgroup
K of G such that G = P;K and K NP3 < (P3)g = 1. It follows that.I<.has a normal
2-complement which is in fact a Hall 2'~subgroup D\ of G. By the hypathesis and Lemma
2.2, there exists an element g £ L such that D\ = D. Since P2 < PR3 < PZ < P\ < LP2,
where Pxis a maximal subgroup of LP2 which contains PZ, PZis a.second maximal subgroup
of LP. which contains P3, we have that G = PsK = PXX = (PXKyo/= PX9. Since K. = K
has a normal 2-complement D and D — Df < K9, it follews-that K. < Ng (D). Since
LP. = LP2DG = LP. NP:K. = Pi(LP2MKY9), we have.that LP. MK. £ P2. Otherwise,
LP. < PiP2= Pi, a contradiction. Therefore, P2 is a proper subgroup of P4 =< P, ,LP. I
MKs >, where P4 is a subgroup of the Sylow 2-subgroup LP2. Now both P2 and K. are
contained in NG(D) and we have that P4 is a 2-subgroup of NG(D) which contains a Sylow
subgroup P2 as a proper subgroup, a contradiction. Hence, L is a Sylow 2-subgroup of N.

(4) G is 2-nilpotent.

If IL\ < 4, then G is 2-nilpotent by. Lemma 2.10 and (2), a contradiction. If |Lj = 23,
then G is 2-nilpotent by Lemma 3.7."Let Lx be a nontrivial third maximal subgroup of
L.Then Li is c-supplemented in G.«There exists a subgroup K of G such that LXX = G and
KC\LX< (Li)g- It follows that k =~bXbIN\K) and LC\K < G. Since L is a unique minimal
normal subgroup of G contained in N, we have bl")K = L or LMK = 1. If L(~)K — 1, then
L = Lb a contradiction. Fherefore, L MK = L, and hence G = K. This leads to that G is
2-nilpotent.

The final contradiction completes our proof.

Corollary 8.9y Let G be afinite group with (|G|,21) = 1.1f every third maximal
subgroup of every“Sylow subgroup of G is c-supplemented in G, then G is 2-nilpotent.

Corolary 3.10. Let G be afinite group with (| G|,21) = 1. If every third maximal
subgroup of every Sylow subgroup of G' is c-supplemented in G, then G is 2-nilpotent.

Abstract. A subgroup H is called c-supplemented in a group G if there exists a subgroup
K of G such that G = HK and H MK is contained in HG- In this paper we investigate
the influence of e-supplementation of some primary subgroups in finite groups. Some recent
results are generalized.
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