Вопросы алгебры – 19

УДК 512.542

On c-supplemented primary subgroups of finite groups

MIAO LONG AND GUO WENBIN

1. Introduction. There has been much interest in the past in investigating the relationship between the properties of some primary subgroups of a finite group G and the structure of G ([1-3]). In this aspect the concept of a c-supplemented subgroup in a finite group was introduced by Wang in [9] and he proved that a finite group G is soluble if and only if every Sylow subgroup of G is c-supplemented in G. As an application of the above result some well-known results were generalized by using the concept of c-supplementation. Thus, c-supplementation provides a useful tool for the investigation of the structure of finite groups which is shown in [10].

In this paper, we shall continue to study the c-supplemented subgroups in a finite group G. Some theorems on soluble groups and p-nilpotent groups are obtained by considering their c-supplemented subgroups. Some results in [10] are extended and generalized.

All the groups considered in this paper are finite. Most of the notations are standard and can be found in [4] and [8]. We denote a semi-product of a subgroup H and K by G = [H]K, where H is normal in G.

Let π be a set of primes. We say that $G \in E_{\pi}$ if G has a Hall π -subgroup. We say that $G \in C_{\pi}$ if any two Hall π -subgroups of G are conjugate in G. We say that $G \in D_{\pi}$ if $G \in C_{\pi}$ and every π -subgroup of G is contained in a Hall π -subgroup of G.

Definition 1.1. A subgroup H of G is called *c*-supplemented in G if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_G$, where $H_G = Core_G(H)$ is the largest normal subgroup of G contained in H. Here, K is called a *c*-supplement of H in G.

2. Preliminaries. For the sake of convenience, we first list here some known results which will be useful in the sequel.

Lemma 2.1 ([10], Lemma 2.1). Let G be a group. Then

(1) If H is c-supplemented in G, $H \leq M \leq G$, then H is c-supplemented in M.

(2) Let $N \leq G$ and $N \leq H$. Then H is c-supplemented in G if and only if H/N is c-supplemented in G/N.

(3) Let π be a set of primes. Let N be a normal π' -subgroup and let H be a π -subgroup of G. If H is c-supplemented in G, then HN/N is c-supplemented in G/N. If furthermore N normalizes H, then the converse also holds.

(4) Let $H \leq G$ and $L \leq \Phi(H)$. If L is c-supplemented in G, then $L \leq G$ and $L \leq \Phi(G)$.

Lemma 2.2 ([5], the main theorem). Suppose that a finite group G has a Hall π -subgroup, where π is a set of primes not containing 2. Then all Hall π -subgroups of G are conjugate.

Lemma 2.3 ([9], Theorem 3.3). Let R be a soluble minimal normal subgroup of a group G, R_1 be a maximal subgroup of R. If R_1 is c-supplemented in G, then R is a cyclic group of prime order.

Lemma 2.4 ([7], Lemma 2.6). Let N be a normal subgroup of a group G $(N \neq 1)$. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which is contained in F(N).

Lemma 2.5 ([10], Theorem 3.3). Let G be a finite group and let N be a normal subgroup of G such that G/N is supersoluble. If every maximal subgroup of every Sylow subgroup of N is c-supplemented in G, then G is supersoluble.

Lemma 2.6. Let G be a finite group and p be a prime divisor of |G| such that $(|G|, p^2 - 1) = 1$. Assume that the order of G is not divisible by p^3 . Then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Since every proper subgroup and every proper quotient group also satisfy the hypothesis of the lemma, the minimal choice of G implies that G is a minimal non-*p*-nilpotent group but every proper subgroup and every proper quotient group of G is *p*-nilpotent. Therefore G = [P]Q with Q cyclic (see [8]). Since both $\Phi(P)$ and $\Phi(G)$ are in Z(G) = 1, we have that P is an elemenary abelian Sylow *p*-subgroup and Q is a cyclic group of order q. $Q \cong G/P$ and $N_G(P)/C_G(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P)$. Hence, q divides p(p+1)(p-1). Since $p \neq q$ and $(|G|, p^2 - 1) = 1$, we have G is *p*-nilpotent, by Burnside *p*-nilpotent theorem, a contradiction.

Final contradiction completes our proof.

Lemma 2.7 ([6]). Let G be a finite group and U any p-subgroup of G. If $N_G(U)/C_G(U)$ is a p-subgroup, then G is p-nilpotent.

Lemma 2.8. ([11]). Let P be an elementary obelian p-group with $|P| = p^n$, where p is a prime. Then $|Aut(P)| = k_n \cdot p^{n(n-1)/2}$, where $k_n = \prod_{i=1}^n (p^i - 1)$.

Lemma 2.9. ([11]). Let G be a group of order p^n , where p is a prime. Then |Aut(G)| is the factor of the order of Aut(P), where P is an elementary abelian p-group of order p^n .

Lemma 2.10. Let G be a finite group and p be a prime divisor of |G| such that $(|G|, p^2 - 1) = 1$. If G/L is p-nilpotent and $p^3 \nmid |L|$, then G is p-nilpotent.

Proof. By the hypothesis and Lemma 2.6, we know that L is p-nilpotent and L has a normal p-complement $L_{p'}$. Since $L_{p'}$ char L and L is normal in G, we have that $L_{p'} \trianglelefteq G$. Therefore $G/L \cong (G/L_{p'})/(L/L_{p'})$ is p-nilpotent. There exists a Hall p-subgroup $(H/L_{p'})/(L/L_{p'})$ of $(G/L_{p'})/(L/L_{p'})$ and $H/L_{p'} \trianglelefteq G/L_{p'}$. By Schur-Zassenhaus Theorem, we have that $H/L_{p'} = [L/L_{p'}]H_1/L_{p'}$, where $H_1/L_{p'}$ is a Hall p'-subgroup of $H/L_{p'}$. Then by Lemma 2.6, we have $H_1/L_{p'} \trianglelefteq H/L_{p'}$ and $H_1/L_{p'}$ char $H/L_{p'} \trianglelefteq G/L_{p'}$. Therefore $H_1/L_{p'} \oiint G/L_{p'}$.

3. Main results. Theorem 3.1. Let G be a finite group and p be a prime divisor of |G| with (|G|, p-1) = 1. If there exists a normal subgroup N of G such that G/N is p-nilpotent and every maximal subgroup of every Sylow subgroup of N is c-supplemented in G, then G is p-nilpotent.

Proof. Assume that the theorem is false and choose G to be a counterexample of minimal order. Moreover, we have

(1) G is soluble, G has a minimal normal subgroup $L \leq N$ and L is an elementary abelian r-group, where r is the largest prime number in $\pi(N)$.

By the hypothesis, every maximal subgroup of every Sylow subgroup of N is csupplemented in G, thus, it is c-supplemented in N, by Lemma 2.1. Applying Lemma 2.5 for the case G = N, we get that N is supersoluble and hence G is soluble. So, for the largest prime number r in $\pi(N)$, a Sylow r-subgroup R of N is normal in N. Obviously, R is a characteristic subgroup of N. Therefore, R is normal in G as N is normal in G. Thus, G has a minimal normal subgroup $L \leq N$ and L is an elementary abelian r-group.

(2) G/L is p-nilpotent, $L \not\leq \Phi(G)$ and $C_N(L) = L = F(N)$, $L = R \in Syl_p(N)$.

In fact, $(G/L)/(N/L) \cong G/N$ is *p*-nilpotent. Let R_1/L be a maximal subgroup of a Sylow *r*-subgroup of N/L. Then R_1 is a maximal subgroup of a Sylow *r*-subgroup R of N. By the hypothesis of the theorem, R_1 is *c*-supplemented in G. By Lemma 2.1, R_1/L is *c*supplemented in G/L. Let Q_1/L be a maximal subgroup of a Sylow *q*-subgroup of N/L, where $q \neq r$. It is clear that $Q_1 = Q_1^*L$, where Q_1^* is a maximal subgroup of a Sylow *q*-subgroup of N. By the hypothesis, Q_1^* is *c*-supplemented in G. Hence, Q_1^*L/L is *c*-supplemented in G/L, by Lemma 2.1. We have proved that G/L satisfies the hypothesis of the theorem. Hence, G/L is *p*-nilpotent by the choice of G. We have that L is a *p*-group, otherwise, if $p \nmid |N|$, then G is *p*-nilpotent since G/N is *p*-nilpotent, a contradiction. If $p \neq r$, then G is *p*-nilpotent, since G/L is *p*-nilpotent, a contradiction. Since the class of all *p*-nilpotent groups is a saturated formation, we can easily prove that L is the unique minimal normal subgroup of G which is contained in N, $L \notin \Phi(G)$. By Lemma 2.4, F(N) = L. The solubility of Nimplies that $L \leq C_N(F(N)) \leq F(N)$, and $C_N(L) = L = F(N)$, as L is an abelian group. Since $R \leq G$ and $R \leq F(N)$, thus, $L = R \in Syl_p(G)$.

(3) G is p-nilpotent.

Let P_1 be a maximal subgroup of L, then P_1 is c-supplemented in G, by (2), and hence |L| = p, by Lemma 2.3. We have that $LH/L \leq G/L$, since G/L is p-nilpotent, where H is a Hall p-subgroup of G. Since (|G|, p-1) = 1, we know that LH is p-nilpotent. It follows from $HcharHL \leq G$ that $H \leq G$. Therefore, G is p-nilpotent.

The final contradiction completes our proof.

Corollary 3.2. Let G be a finite group. If every maximal subgroup of every Sylow subgroup of G is c-supplemented in G, then G has a Sylow tower of the supersoluble type.

Lemma 3.3. Let G be a finite group and p be a prime divisor of |G| with $(|G|, p^2 - 1) = 1$. Assume that every second maximal subgroup of a Sylow p-subgroup of G is c-supplemented in G. Then $G/O_p(G)$ is soluble and p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Furthermore, we have

(1) $O_p(G) = 1$.

If $O_p(G) = P$, then $G/O_p(G)$ is a p'-group and, of course, it is p-nilpotent, a contradiction. If $O_p(G) = P_1$, where P_1 is the maximal subgroup of P, then $G/O_p(G)$ is p-nilpotent, since $(|G|, p^2 - 1) = 1$ and $|G/O_p(G)|_p = p$, a contradiction. If $O_p(G) = P_2$, where P_2 is the second maximal subgroup of P, then $p^3 \nmid |G/O_p(G)|$. Hence, $G/O_p(G)$ is p-nilpotent, by Lemma 2.6. If $1 < O_p(G) < P_2$, then $G/O_p(G)$ satisfies the hypothesis and the minimal choice of G implies that $G/O_p(G) \cong G/O_p(G)/O_p(G/O_p(G))$ is p-nilpotent, a contradiction.

(2) |G| is divisible by p^3 .

If $p^3 \nmid |G|$, then G is p-nilpotent, by Lemma 2.6, a contradiction.

(3) For every second maximal subgroup P_1 of a Sylow subgroup P of G, the c-supplement of P_1 is p-nilpotent.

Let P be a Sylow p-subgroup of G and P_1 be a second maximal subgroup of P. By the hypothesis, P_1 is c-supplemented in G. So, there exists a subgroup K_1 of G such that $P_1 \cap K_1 \leq (P_1)_G \leq O_p(G) = 1$. Now $|K_1|_p = p^2$, Lemma 2.6 implies that K is p-nilpotent. (4) G is p-nilpotent.

Let $N = N_G(K_{1p'})$ and $K_1 = K_{1p}K_{1p'}$. By (3), $K_1 \leq N$. So, we have $G = P_1K_1 = P_1N$. If N = G, then G is p-nilpotent, a contradiction. Let $P_1 \leq \overline{P_1} \leq P$, where $\overline{P_1}$ is a maximal subgroup of a Sylow subgroup P of G. Hence, $G = P_1K_1 = \overline{P_1}K_1 = \overline{P_1}N$. If $\overline{P_1} \leq N$, then G is p-nilpotent, a contradiction. So, we may assume $\overline{P_1} \cap N < \overline{P_1}$. We may choose a maximal subgroup P_2 of $\overline{P_1}$ such that $\overline{P_1} \cap N \leq P_2$. It is clear that P_2 is a second maximal subgroup of P. By (3), P_2 is c-supplemented in G and the c-supplement K_2 of P_2 is

p-nilpotent. We denote $K_2 = K_{2p}K_{2p'}$. Since $(|G|, p^2 - 1) = 1$, Lemma 2.2 or the odd order Theorem implies that $G \in C_{p'}$. Now both $K_{1p'}$ and $K_{2p'}$ are Hall p'-subgroups of G, these two subgroups are conjugate in G. Let $K_{1p'} = (K_{2p'})^g$. Since $G = P_2K_2$ and $K_2 \leq N_G(K_{2p'})$, we may choose $g \in P_2$. We also have that K_2^g normalizes $K_{2p'}^g = K_{1p'}$, hence, $K_2^g \leq N$. Now $G = G^g = (P_2K_2)^g = P_2N$. Therefore $\overline{P_1} = \overline{P_1} \cap P_2N = P_2(\overline{P_1} \cap N) = P_2$, contrary to the condition.

The final contradiction completes our proof.

Theorem 3.4. Let N be a normal subgroup of G and p be a prime divisor of |G| such that $(|G|, p^2 - 1) = 1$. Assume that G/N is p-nilpotent and every second maximal subgroup (if exists) of every Sylow subgroup of N is c-supplemented in G. Then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Then

(1) G is soluble.

By the hypothesis, every second maximal subgroup of every Sylow subgroup of N is *c*-supplemented in G, thus, is *c*-supplemented in N, by Lemma 2.1. By Lemma 3.3, we have that N is soluble, and hence, G is soluble. Let L be a minimal normal subgroup of G which is contained in N. Then L is an elementary abelian r-group for some prime r.

(2) G/L is p-nilpotent and L is the unique minimal normal subgroup of G which is contained in N. Furthermore, $L = F(N) = C_N(L)$.

In fact, $(G/L)/(N/L) \cong G/N$ is *p*-nilpotent. Let R_1/L be a second maximal subgroup of a Sylow *r*-subgroup of N/L. Then R_1 is a second maximal subgroup of a Sylow *r*-subgroup R of N. By the hypothesis of the theorem, R_1 is *c*-supplemented in G. By Lemma 2.1, R_1/L is *c*-supplemented in G/L. Let Q_1/L be a second maximal subgroup of a Sylow *q*-subgroup of N/L, where $q \neq r$. It is clear that $Q_1 = Q_1^*L$, where Q_1^* is a second maximal subgroup of a Sylow *q*-subgroup of N. Since Q_1^* is *c*-supplemented in G, we have that Q_1^*L/L is *c*supplemented in G/L, by Lemma 2.1. We have proved that G/L satisfies the hypothesis of the theorem, and hence, G/L is *p*-nilpotent. Since the class of all *p*-nilpotent groups is a saturated formation, we have that L is the unique minimal normal subgroup of G which is contained in N, $L \notin \Phi(G)$. By Lemma 2.4, F(N) = L. The solubility of N implies that $L \leq C_N(F(N)) \leq F(N)$ and $C_N(L) = F(N) = L$.

(3) L is a Sylow p-subgroup of N.

By (1), we have known that G is soluble. If $p \nmid |N|$, then, it is easy to see that G is p-nilpotent, since G/N is p-nilpotent, a contradiction. Thus, $p \mid |N|$. If $p \neq r$, then obviously, G is p-nilpotent by (2), a contradiction. Therefore p = r and L is an elementary abelian p-subgroup of G which is contained in N. Let D be a Hall p'-subgroup of N. Then, LD/L is a Hall p'-subgroup of N/L. Since N/L is p-nilpotent, we have $LD/L \leq N/L$ and hence $LD \leq N$. Let P be a Sylow p-subgroup of N. Assume that L < P. Then PD == PLD is a subgroup of N. Since every second maximal subgroup of a Sylow subgroup of PD is c-supplemented in G, by Lemma 2.1, every second maximal subgroup of every Sylow subgroup of PD is also c-supplemented in PD. Therefore, PD satisfies the hypothesis for G. If PD < G, then, by the minimal choice of G, we have that PD is p-nilpotent, in particular, $D \leq PD$. Hence, $LD = L \times D$ and $D \leq C_N(L) = L$, a contradiction. Now we may assume that G = PD = N and L < P. Since N/L is p-nilpotent, $LD \leq G = N$. By the Frattini argument, $G = LN_G(D)$. Since L is the unique minimal normal subgroup of G, D is not normal in G and $L \cap N_G(D) = 1$. Therefore, $G = [L]N_G(D)$. Let P_2 be a Sylow p-subgroup of $N_G(D)$. Then LP_2 is a Sylow p-subgroup of G. Choose a second maximal subgroup P_1 of LP_2 such that $P_2 \leq P_1$. Otherwise, if P_2 is a maximal subgroup of LP_2 , then |L| = p

and hence G is p-nilpotent, by Lemma 2.10, a contradiction. Clearly, $L \nleq P_1$ and hence $(P_1)_G = 1$. By our hypothesis, P_1 is c-supplemented in G. There exists a subgroup K of G such that $G = P_1 K$ and $P_1 \cap K \leq (P_1)_G = 1$. Now $|K|_p = |G : P_1|_p = p^2$. By the hypothesis and Lemma 2.6, we have that K is p-nilpotent. It follows that K has a normal p-complement which is in fact a Hall p'-subgroup D_1 of G. By the solubility of G, there exists an element $g \in L$ such that $D_1^q = D$. Since $P_1 < P_1^* \leq LP_2$, where P_1^* is the maximal subgroup of LP_2 which contains P_1 , we have that $G = P_1K = P_1^*K = (P_1^*K)^g = P_1^*K^g$ and $P_1 \cap K = 1$. Since $K^g \cong K$ has a normal p-complement and $D = D_1^g \leq K^g$, it follows that $K^g \leq N_G(D)$. Since $LP_2 = LP_2 \cap G = LP_2 \cap P_1^*K^g = P_1^*(LP_2 \cap K^g)$, we have that $LP_2 \cap K^g \nleq P_2$, otherwise, $LP_2 \leq P_1^*P_2 = P_1^*$, a contradiction. Therefore, P_2 is a proper subgroup of $P_3 = < P_2, LP_2 \cap K^g >$ while P_3 is a subgroup of a Sylow p-subgroup LP_2 . Now, both P_2 and K^g are contained in $N_G(D)$ and we have that P_3 is a p-subgroup of $N_G(D)$

(4) G is p-nilpotent.

Let L_1 be a second maximal subgroup of L. If $|L| \leq p^2$, then G is *p*-nilpotent by Lemma 2.10, a contradiction. If $|L| \geq p^3$, then $L_1 \neq 1$, hence, L_1 is *c*-supplemented in G. There exists a subgroup K of G such that $L_1K = G$ and $L_1 \cap K \leq (L_1)_G = 1$. It follows that $L = L_1(L \cap K)$, hence, $L \cap K \leq G$. Since L is a unique minimal normal subgroup of Gcontained in N, we have $L \cap K = L$ or $L \cap K = 1$. If $L \cap K = 1$, then $L = L_1$, a contradiction. Therefore, $L \cap K = L$, hence, G = K. This leads to that G is *p*-nilpotent.

The final contradiction completes our proof.

Corollary 3.5. Let G be a finite group and p be a prime divisor of |G| such that $(|G|, p^2 - 1) = 1$. Assume that every second maximal subgroup of every Sylow subgroup of G is c-supplemented in G. Then G is p-nilpotent.

Corollary 3.6. Let G be a finite group and p be a prime divisor of |G| such that $(|G|, p^2 - 1) = 1$. Assume that every second maximal subgroup of every Sylow subgroup of G' is c-supplemented in G. Then G is p-nilpotent.

Lemma 3.7. Let G be a finite group with (|G|, 21) = 1. Assume that every third maximal subgroup (if exists) of a Sylow 2-subgroup of G is c-supplemented in G, then $G/O_2(G)$ is 2-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Let P be a Sylow 2-subgroup of G. Furthermore, we have

 $(1)O_p(G) = 1.$

If $O_2(G) = P$, then $G/O_2(G)$ is a 2'-group and of course, it is 2-nilpotent, a contradiction. If $O_2(G) = P_1$, where P_1 is a maximal subgroup of P, then $G/O_2(G)$ is 2-nilpotent, by Lemma 2.6, and $|G/O_2(G)|_2 = 2$, a contradiction. If $O_2(G) = P_2$, where P_2 is a second maximal subgroup of P, then $2^3 \nmid |G/O_2(G)|$. Hence, $G/O_2(G)$ is 2-nilpotent by Lemma 2.6, a contradiction. If $1 < O_2(G) < P_2$, then $G/O_2(G)$ satisfies the hypothesis and the minimal choice of G implies that $G/O_2(G) \cong G/O_2(G)/O_2(G/O_2(G))$ is 2-nilpotent, a contradiction.

(2) |G| is divisible by 2^4 .

If $2^3 \nmid |G|$ and (|G|, 21) = 1, then G is 2-nilpotent by Lemma 2.4, a contradiction. If $2^3 \mid |G|$ and $2^4 \nmid |G|$, then $|G_2| = 2^3$. Next we consider $N_G(U)/C_G(U)$, where U is any 2-subgroup of G. If U = P, then $N_G(P)/C_G(P)$ is isomorphic to the subgroup of Aut(P). By Lemma 2.8 and Lemma 2.9, we have $N_G(P)/C_G(P)$ is a 2-subgroup. If $U \neq P$, it is easy to know that $N_G(U)/C_G(U)$ is also 2-group, according to Lemma 2.8 and Lemma 2.9. Then by Lemma 2.7, it is clear that G is 2-nilpotent in this case, a contradiction.

(3) For every third maximal subgroup P_3 of a Sylow 2-subgroup P of G, the c-supplement of P_3 in G is 2-nilpotent.

By the hypothesis, P_3 is c-supplemented in G. So, there exists a subgroup K_3 of G such that $G = P_3K_3$ and $K_3 \cap P_3 \leq (P_3)_G$. By (2), we know that K_3 is 2-nilpotent, since $K_3 \cap P_3 \leq (P_3)_G \leq O_p(G) = 1$.

(4) G is 2-nilpotent.

Let $N = N_G((K_3)_{2'})$ and $K_3 = (K_3)_2(K_3)_{2'}$. By (3), $K_3 \leq N$. So we have $G = P_3K_3 = P_3N$. If N = G, then G is 2-nilpotent, a contradiction. Let $P_3 \leq P_2 \leq P_1 \leq P$, where P_2 is a second maximal subgroup of P and P_1 is a maximal subgroup of P. Hence, $G = P_3K_3 = P_2K_3 = P_2N$. If $P_2 \leq N$, then G is 2-nilpotent, a contradiction. So, we may assume that $P_2 \cap N < P_2$. We may choose a maximal subgroup P_3^* of P_2 such that $P_2 \cap N \leq P_3^*$. It is clear that P_3^* is the third maximal subgroup of P. By (3), P_3^* is c-supplemented in G and the c-supplement K_3^* of P_3^* is 2-nilpotent. We denote $K_3^* = (K_3^*)_2(K_3^*)_{2'}$. Lemma 2.2 implies that $G \in C_{2'}$. Now, both $(K_3)_{2'}$ and $(K_3^*)_{2'}$ are the Hall 2'-subgroups of G, these two subgroups are conjugate in G. Let $(K_3)_{2'} = ((K_3^*)_{2'})^g$. Since $G = P_3^*K_3^*$ and $K_3^* \leq N_G((K_3^*)_{2'})$, we may choose $g \in P_3^*$. We also have that $(K_3^*)^g$ normalizes $((K_3^*)_{2'})^g = (K_3)_{2'}$; hence, $(K_3^*)^g \leq N$. Now, $G = G^g = (P_3^*K_3^*)^g = P_3^*N$. Therefore, $P_2 = P_2 \cap P_3^*N = P_3^*(P_2 \cap N) = P_3^*$, contrary to the choice of G.

The final contradiction completes our proof.

Theorem 3.8. Let G be a finite group with (|G|, 21) = 1. Assume that there exists a normal subgroup N of G such that G/N is 2-nilpotent and every third maximal subgroup (if exists) of every Sylow subgroup of N is c-supplemented in G. Then G is 2-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Then:

(1) G is soluble and G has a minimal normal subgroup L such that $L \leq N$ and L is an elementary abelian r-group, for some prime r.

By the hypothesis, every third maximal subgroup of every Sylow subgroup of N is c-supplemented in G; thus, it is c-supplemented in N, by Lemma 2.1. By the choice of G and Lemma 3.7, we have that N is soluble; hence, G is soluble. Let L be a minimal normal subgroup of G which is contained in N. Then L is an elementary abelian r-group for some prime r.

(2) G/L is 2-nilpotent and L is the unique minimal normal subgroup of G which is contained in N. Furthermore, $L = F(N) = C_N(L)$.

In fact, $(G/L)/(N/L) \cong G/N$ is 2-nilpotent and (|G/L|, 21) = 1. Let R_1/L be a third maximal subgroup of a Sylow r-subgroup of N/L. Then R_1 is a third maximal subgroup of a Sylow r-subgroup R of N. By the hypothesis of the theorem, R_1 is c-supplemented in G. By Lemma 2.1, R_1/L is c-supplemented in G/L. Let Q_1/L be a third maximal subgroup of a Sylow q-subgroup of N/L, where $q \neq r$. It is clear that $Q_1 = Q_1^*L$, where Q_1^* is a third maximal subgroup of a Sylow q-subgroup of N. By the hypothesis, Q_1^* is c-supplemented in G. Hence, Q_1^*L/L is c-supplemented in G/L, by Lemma 2.1. We have proved that G/L satisfies the hypothesis of the theorem and hence G/L is 2-nilpotent. Since the class of all 2-nilpotent groups is a saturated formation, we have that L is the unique minimal normal subgroup of N is contained in $N, L \not\leq \Phi(G)$. By Lemma 2.4, F(N) = L. The solubility of N implies that $L \leq C_N(F(N)) \leq F(N)$ and $C_N(L) = F(N) = L$.

(3)L is a Sylow 2-subgroup of N.

By (1), we have known that G is soluble. If $2 \nmid |N|$, then G is 2-nilpotent by (2), a contradiction. If $2 \neq r$, then G is 2-nilpotent by (2), a contradiction. Therefore, L is an elementary abelian 2-subgroup of G which is contained in N. Let D be a Hall 2'-subgroup of N. Obviously, LD/L is a Hall 2'-subgroup of N/L. Since N/L is 2-nilpotent, we have that $LD/L \leq N/L$. So, $LD \leq N$. Let P be a Sylow 2-subgroup of N. Assume that L < P. Then

9

PD = PLD is a subgroup of N. Since every third maximal subgroup of a Sylow subgroup of PD is c-supplemented in G, by Lemma 2.1, every third maximal subgroup of every Sylow subgroup of PD is also c-supplemented in PD. Therefore, PD satisfies the hypothesis for G. If PD < G, the minimal choice of G implies that PD is 2-nilpotent, in particular, $D \leq PD$. Hence, $LD = L \times D$ and $D \leq C_N(L) = L$, a contradiction. Now we assume that G == PD = N and L < P. Since N/L is 2-nilpotent, $LD \leq N = G$. By the Frattini argument, $G = LN_G(D)$. Since L is the unique minimal normal subgroup of G, D is not normal in G and $L \cap N_G(D) = 1$. Therefore, $G = [L]N_G(D)$. Let P_2 be a Sylow 2-subgroup of $N_G(D)$. Then LP_2 is a Sylow 2-subgroup of G. Choose a third maximal subgroup P_3 of LP_2 such that $P_2 \leq P_3$. Otherwise, if P_2 is a maximal subgroup of LP_2 , then |L| = 2 and hence G is 2-nilpotent by Lemma 2.10, a contradiction. If P_2 is a second maximal subgroup of LP_2 , then $|L| = 2^2$ and hence G is 2-nilpotent by Lemma 2.10 and (2), a contradiction. Clearly, $L \nleq P_3$ and hence $(P_3)_G = 1$. By our hypothesis, P_3 is c-supplemented in G. There exists a subgroup K of G such that $G = P_3 K$ and $K \cap P_3 \leq (P_3)_G = 1$. It follows that K has a normal 2-complement which is in fact a Hall 2'-subgroup D_1 of G. By the hypothesis and Lemma 2.2, there exists an element $g \in L$ such that $D_1^g = D$. Since $P_2 \leq P_3 \neq P_2^* < P_1 < LP_2$, where P_1 is a maximal subgroup of LP_2 which contains P_2^* , P_2^* is a second maximal subgroup of LP_2 which contains P_3 , we have that $G = P_3K = P_1K = (P_1K)^g = P_1K^g$. Since $K^g \cong K$ has a normal 2-complement D and $D = D_1^g \leq K^g$, it follows that $K^g \leq N_G(D)$. Since $LP_2 = LP_2 \cap G = LP_2 \cap P_1 K^g = P_1 (LP_2 \cap K^g)$, we have that $LP_2 \cap K^g \not\leq P_2$. Otherwise, $LP_2 \leq P_1P_2 = P_1$, a contradiction. Therefore, P_2 is a proper subgroup of $P_4 = \langle P_2, LP_2 \cap$ $\cap K^g >$, where P_4 is a subgroup of the Sylow 2-subgroup LP_2 . Now both P_2 and K^g are contained in $N_G(D)$ and we have that P_4 is a 2-subgroup of $N_G(D)$ which contains a Sylow subgroup P_2 as a proper subgroup, a contradiction. Hence, L is a Sylow 2-subgroup of N.

(4) G is 2-nilpotent.

If $|L| \leq 4$, then G is 2-nilpotent by Lemma 2.10 and (2), a contradiction. If $|L| = 2^3$, then G is 2-nilpotent by Lemma 3.7. Let L_1 be a nontrivial third maximal subgroup of L.Then L_1 is c-supplemented in G. There exists a subgroup K of G such that $L_1K = G$ and $K \cap L_1 \leq (L_1)_G$. It follows that $L = L_1(L \cap K)$ and $L \cap K \leq G$. Since L is a unique minimal normal subgroup of G contained in N, we have $L \cap K = L$ or $L \cap K = 1$. If $L \cap K = 1$, then $L = L_1$, a contradiction. Therefore, $L \cap K = L$, and hence G = K. This leads to that G is 2-nilpotent.

The final contradiction completes our proof.

Corollary 3.9. Let G be a finite group with (|G|, 21) = 1. If every third maximal subgroup of every Sylow subgroup of G is c-supplemented in G, then G is 2-nilpotent.

Corollary 3.10. Let G be a finite group with (|G|, 21) = 1. If every third maximal subgroup of every Sylow subgroup of G' is c-supplemented in G, then G is 2-nilpotent.

Abstract. A subgroup H is called *c*-supplemented in a group G if there exists a subgroup K of G such that G = HK and $H \cap K$ is contained in H_G . In this paper we investigate the influence of *c*-supplementation of some primary subgroups in finite groups. Some recent results are generalized.

References

1. M.Asaad, On maximal subgroups of Sylow subgroups of finite groups, Communications in Algebra, 26, No. 11 (1998), 3647-3652.