УДК 658.012.011.56

Об одной методике принятия решений в иерархической структуре предприятия

А. И. Якимов

Введение. На развитом промышленном предприятии руководитель не может самостоятельно принять решение ввиду сложности и многообразия вопросов, подлежащих анализу. Декомпозиция функциональных задач приводит к созданию структуры управления, включающей различные отделы: производственный, отдел сбыта, финансовый, отдел кадров и пр. При этом отделы имеют разные цели функционирования, во многом взаимно противоположные [3, с. 8].

Для повышения эффективности системы управления промышленным предприятием используют имитационные модели. В разработанной модели производственно-экономической системы представлен уровень технологического процесса с процессами обеспечения контроля и регулирования технологических параметров в соответствии с регламентом, производственный уровень с распределением материальных потоков между подразделениями завода, уровень трудовых ресурсов с распределением заработной платы, финансовый уровень с денежными потоками, маркетинговый уровень с потоком заявок на продукцию и предложениями сырьевых ресурсов. При этом ставится проблема распределения задач вышестоящих уровней для обеспечения эффективной работы нижестоящих уровней [2].

Координация задач в иерархической структуре предприятия. Деятельность промышленных предприятий М. Месарович и др. представляют многоуровневой иерархической структурой, в которой вводится понятие координации [4].

Координация подсистем означает такое воздействие на подсистемы, которое заставляет действовать их согласованно. Вводятся два понятия координируемости на примере двухуровневой системы. Первое — это координируемость по отношению к задаче вышестоящей системы, второе — координируемость по отношению к решаемой в настоящий момент глобальной задаче.

Пусть определен предикат

$$\forall (x, D) P(x, D) \equiv x \text{ åñòü ðåøåíèå} D$$
,

где D — произвольная решаемая задача. Следовательно, предикат P(x, D) является истинным тогда и только тогда, когда D — решаемая задача, а x — одно из ее решений.

Пусть D_0 — конкретная задача, решаемая вышестоящей системой, и каждый координирующий сигнал $g \in G$ уточняет задачу D(g), которую будет решать координатор на ℓ -уровне. Задачи, решаемые нижестоящими элементами, координируемы тогда и только тогда, когда истинным является следующий предикат:

$$\exists g \exists x P(x, D(g)) \land P(g, D_0),$$

т.е. координируемость требует, чтобы задача D_0 имела решение g и для этого координирующего воздействия множество D(g) задач, решаемых нижестоящими элементами, также имело решение x.

Ни один из координаторов внутри иерархии не облечен специально полномочиями решать глобальную задачу и тем самым преследовать общую (глобальную) цель. Задачи, которые решаются нижестоящими решающими элементами, координируемы относительно глобальной задачи D^* , если справедливо следующее предложение:

$$\exists g \exists x P(x, D(g)) \land P(g, D^*).$$

М. Месарович ввел постулат совместимости [4, с. 122], в соответствии с которым для совместимости (согласования) решаемых задач, а тем самым и целей внутри двухуровневой системы, координация задач, решаемых нижестоящими элементами относительно задачи вышестоящего координатора, должна быть соответствующим образом связана с подлежащей решению глобальной задачей.

Высокий уровень абстракции введенного предложения не дает конкретных рекомендаций для применения его на практике. Были сделаны попытки разработки подобных рекомендаций. Например, А. Е. Алтуниным и др. на основе теории нечетких множеств разработаны рекомендации для иерархических технологических объектов [1]. Однако в целом задача осталась нерешенной.

Решение многокритериальных задач в управлении предприятием. Постановка всякой задачи многокритериального выбора содержит три объекта: множество возможных решений, векторный критерий и отношение предпочтения лица, принимающего решение. Решить эту задачу: означает на основе векторного критерия и отношения предпочтения найти множество выбираемых решений.

В рассматриваемой модели принцип Эджворта-Парето (принцип Парето) формулируется в виде утверждения о том, что множество выбираемых решений содержится в множестве Парето, т.е. каждое выбираемое решение является Парето-оптимальным [7].

Принцип Парето применяется не для всех многокритериальных задач. Ногиным В. Д. определен класс задач многокритериального выбора, для которого применение принципа Парето является обоснованным [6, с. 9].

Прежде всего должен быть задан набор решений X (вариантов), из которого следует осуществлять выбор. Выбор решения состоит в указании среди всех возможных такого решения, которое объявляется выбранным. Может быть сформировано множество выбираемых решений $Sel\ X$:

Sel
$$X \subset X$$
.

Имеется несколько числовых функций $f_1, f_2, ..., f_m \mid m \ge 2$, заданных на множестве возможных решений X и именуемых целевыми функциями (критериями оптимальности, критериями эффективности, показателями или критериями качества). Числовые функции $f_1, f_2, ..., f_m$ образуют векторный критерий $f = (f_1, f_2, ..., f_m)$, который принимает значения в пространстве m-мерных векторов R^m Это пространство называют критериальным пространством или пространством оценок, а всякое значение $f(x) = (f_1(x), f_2(x), ..., f_m(x)) \in R^m$ векторного критерия f при определенном $x \in X$ именуют векторной оценкой возможного решения x. Все возможные векторные оценки образуют множество возможных оценок [6, c.18]:

$$Y = f(X) = \{ y \in R^m \mid y = f(x), x \in X \}.$$

Рассматривая Sel $X \subset X$, можно ввести множество выбираемых оценок:

Sel
$$Y = f(\text{Sel } X) = \{ y \in R^m \mid y = f(x), x \in \text{Sel } X \}.$$

Рассмотрим два возможных решения *х'* и *х"*. Предположим, что координатор (лицо, принимающее решение (ЛПР)) выбирает (отдает предпочтение) первое из них, тогда записывают:

$$x' \succ_X x''$$
.

Знак \succ_X называют отношением предпочтения [6, с.20]. Отношение предпочтения обладает свойствами антирефлексивности, антисимметричности и транзитивности [5, с.46].

Отношение предпочтения \succ_X , заданное на множестве возможных решений, естественным образом порождает отношение предпочтения \succ_Y на множестве возможных векторов Y:

$$f(x') \succ_Y f(x'') \iff x' \succ_X x'' \mid \forall x', x'' \in X.$$

Тем самым вектор y' = f(x') предпочтительнее вектора y'' = f(x''):

$$v' \succ_V v''$$

134 А. И. Якимов

тогда и только тогда, когда решение x' предпочтительнее решения x'':

$$x' \succ_X x''$$

Ногиным В. Д. на основе аксиоматического подхода строго сформулирован принцип Парето и установлено, при выполнении каких требований применение этого принципа оправдано [6, с.27].

Аксиома 1 (исключение доминируемых решений). Любое множество выбираемых решений не должно содержать ни одного такого решения, для которого может найтись более предпочтительное решение:

$$\forall x', x'' \in X \exists x' \succ_X x'' \Longrightarrow x'' \notin X$$
.

В соответствии с аксиомой 1 любое доминируемое решение следует исключать из списка решений, претендующих на роль выбираемых. Множество недоминируемых решений обозначается $N ext{dom } X$ и определяется равенством:

Ndom
$$X = \{x^* \in X \mid \neg \exists x \in X, x \succ_X x^* \}.$$

Тогда для любого непустого множества выбираемых решений Sel X, удовлетворяющих аксиоме 1, справедливо включение:

Sel
$$X \subset \operatorname{Ndom} X$$
,

которое устанавливает, что для класса задач, удовлетворяющих аксиоме 1, выбор решений следует производить только среди недоминируемых решений.

Аксиома 2 (продолжение отношения предпочтения). Существует продолжение \succ на все критериальное пространство R^m отношения \succ_Y , причем это продолжение \succ является антирефлексивным и транзитивным отношением.

Суть этого требования заключается в постулировании расширенных возможностей ЛПР сравнивать оценки по предпочтительности. В соответствии с ним выполняется одно и только одно из следующих трех соотношений:

1)
$$y' \succ y'';$$

2) $y'' \succ y';$
3) $\neg \exists y' \succ y'' \lor y'' \succ y'.$

В задаче многокритериального выбора отношение предпочтения, равно как и критерии оптимальности, выражают интересы одного и того же ЛПР. Поэтому они должны быть согласованы друг с другом. Критерий f_i согласован с отношением предпочтения \succ , если для любых двух векторов $y', y'' \in R^m$, таких, что

$$y' = (y'_1, ..., y'_{i+1}, y'_{i+1}, ..., y'_m), y'' = (y'_1, ..., y'_{i-1}, y''_{i,1}, y'_{i+1}, ..., y'_m), y' > y'' \implies y' > y''.$$

Взаимосвязь отношения предпочтения данного ЛПР с критериями оптимальности выражается следующим требованием.

Аксиома 3 (согласование критериев с отношением предпочтения). Каждый из критериев $f_1, f_2, ..., f_m$ согласован с отношением предпочтения \succ .

Заинтересованность $\Pi\Pi P$ в получении по возможности больших значений всех компонент векторного критерия f выражается в терминах аксиомы Парето.

Аксиома Парето (в терминах решений). Для всех пар решений $x', x'' \in X$, для которых имеет место неравенство $f(x') \ge f(x'')$ выполняется соотношение $x' \succ_X x''$.

При этом запись $f(x') \ge f(x'')$ означает выполнение покомпонентных отношений $f_i(x') > f_i(x'') \lor f_i(x') = f_i(x'')$ для всех i = 1, 2, ..., m, причем $f(x') \ne f(x'')$.

Если для некоторой пары возможных решений имеет место неравенство $f(x') \ge f(x'')$, то благодаря аксиоме Парето первое решение будет предпочтительнее второго, т. е. $x' \succ_X x''$. Тогда в соответствии с аксиомой 1 второе решение ни при каких обстоятельствах не может оказаться выбранным и его можно исключить из последующего учета в процессе принятия решений. Исключение всех подобного рода решений приводит к множеству Парето. Множество Парето-оптимальных решений обозначается $P_f(X)$ и определяется равенством

$$P_f(X) = \{x^* \in X \mid \neg \exists \ x \in X, \ f(x) > f(x^*)\}.$$

При выполнении аксиом 2 и 3 множество недоминируемых решений Ndom X удовлетворяет включению Ndom $X \subset P_f(X)$.

В условиях выполнения аксиом 1 – 3 для любого непустого множества выбираемых решений Sel X справедливо включение Sel $X \subset P_f(X)$. Это включение выражает собой принцип Парето, согласно которому если ЛПР ведет себя в соответствии с аксиомами 1 – 3, то выбираемые им решения обязательно являются парето-оптимальными.

Вектор $f(x^*)$ при Парето-оптимальном решении x^* называют Парето-оптимальным вектором решения x^* или просто Парето-оптимальным вектором. Для множества таких векторов используют обозначение P(Y). Таким образом,

$$P(Y) = f(P_f(X)) = \{f(x^*) \in Y \mid \forall x^* \in P_f(X)\}.$$

В случае конечного множества возможных векторов У (в частности, если конечно множество решений X) существует хотя бы одно Парето-оптимальное решение и, соответственно, хотя бы один Парето-оптимальный вектор.

При выполнении аксиомы Парето в терминах векторов для любой пары векторов у', у" $\in R^m$, таких, что y' > y", имеет место соотношение y' > y", т. е.

$$y' > y'' \implies y' \succ y'$$

Введенные ранее подмножества множества возможных решений связаны следующими включениями

Sel
$$X \subset \operatorname{Ndom} X \subset P_f(X) \subset X$$
.

В терминах векторов эти включения имеют вид

Sel
$$Y \subset \text{Ndom } Y \subset P(Y) \subset Y$$
.

Для построения множества P(Y) (и $P_t(X)$) в случае конечного множества возможных векторов У можно применять алгоритм, представленный на рисунке 1 [6, с.40].

Полученные результаты инвариантны относительно уровней иерархической структуры предприятия. В этом случае имитационная модель позволяет оценивать решение ЛПР на ℓ -уровне и вышестоящих уровнях, включая глобальную цель:

$$x' \succ_X x'' \Rightarrow f(x') \ge f(x'').$$

Вектор глобальной цели:

Вектор глобальной цели:
$$(x')^{\ell} \xrightarrow{A_{\hat{\mathbf{l}}}} (y')^{0}; \ (x'')^{\ell} \xrightarrow{A_{\hat{\mathbf{l}}}} (y'')^{0},$$
 где A_{M} – алгоритм модели. Соответственно,

$$(x' \succ_X x'')^{\ell} \Rightarrow (y' \ge y'')^0.$$

Постулат совместимости М. Месаровича может быть представлен в виде

$$P[((x'\succ_{\ell} x'')^{\ell} \Rightarrow (y'\succ_{\ell} y'')^{\ell}) \land (x'\succ_{\ell} x'')^{\ell} \Rightarrow (y'\succ_{0} y'')^{0})] = 1.$$

Получают два множества парето-оптимальных векторов на ℓ -уровне $P(Y)^{\ell}$ и 0-уровне $P(Y)^0$ глобальной цели. Понятно, что эти множествам в общем случае соответствуют два множества парето-оптимальных решений на ℓ -уровне: $P_{\ell}(X)_{\ell}$ и $P_{\ell}(X)_{0}$.

Тогда возможны следующие варианты:

- 1) $P_f(X)_\ell \cap P_f(X)_0 = \emptyset$ (полная несовместимость);
- 2) $P_t(X)_\ell \cap P_t(X)_0 \neq \emptyset$ (частичная совместимость);
- 3) $P_{\ell}(X)_{\ell}$ и $P_{\ell}(X)_{0} = P_{\ell}(X)_{\ell} = P_{\ell}(X)_{0}$ (абсолютная совместимость при выполнении постулата совместимости). Таким образом, появляется возможность оценки координирующих действий в иерархической системе.

Относительная важность критериев. Пусть I – множество номеров критериев I = {1, $\{1, \dots, m\}$. Тогда i-й критерий важнее j-го критерия с заданными положительными параметрами w_i^* и w_i^* , если для всех векторов $y', y'' \in R^m$, для которых выполняется $y'_I > y''_i, y''_i > y'_i, y'_s =$ $y''_{s} \forall s \in I \setminus \{i, j\}; y'_{i} - y''_{i} = w_{i}^{*}, y''_{i} - y'_{i} = w_{i}^{*} \Rightarrow y' \succ y''.$

Для ЛПР i-й критерий важнее j-го, если всякий раз при выборе из пары векторов ЛПР готово пожертвовать определенным количеством w_i^* по менее важному j-му критерию ради получения дополнительного количества w_i^* по более важному i-му критерию при условии сохранения остальных значений критериев. При этом соотношение между w_i^* и w_i^* позволяет количественно оценить указанную степень важности. Для указанной пары критериев коэффициентом относительной важности называют положительное число

136 А. И. Якимов

$$\theta_{ij} = \frac{w_j^*}{w_i^* + w_j^*}.$$

Коэффициент θ_{ij} показывает долю потери по менее важному критерию, на которую согласно пойти ЛПР, в сравнении с суммой прибавки по более важному критерию.

Заключение. Имитационная модель производственно-финансовой деятельности предприятия [8] при использовании принципа Парето позволяет получить количественную оценку решений, принимаемых ЛПР в иерархической структуре.

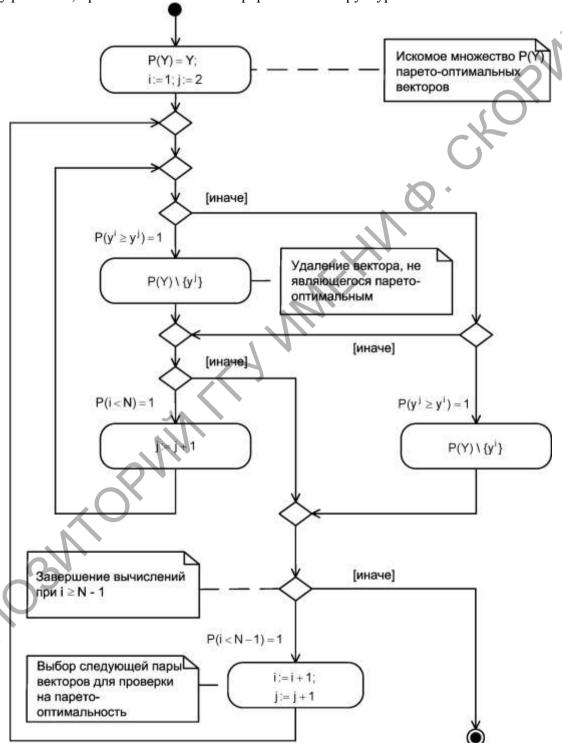


Рисунок -1. Алгоритм построения множества парето-оптимальных векторов P(Y)

Abstract. The technique of decision making in hierarchical structure of enterprise on the basis computer simulation and Pareto's principle are considered in the paper.

Литература

- 1. Алтунин, А. Е. Модели и алгоритмы принятия решений в нечетких условиях: монография / А. Е. Алтунин, М. В. Семухин. – Тюмень: Изд-во Тюменского гос. ун-та, 2000. – 352 с.: ил.
- 2. Альховик, С. А. Имитационная модель промышленного предприятия для ERPсистемы управления / С. А. Альховик, А. И. Якимов // Вестник Могилевского государственного технического университета. – №2(7). – 2004. – С. 11-16.
- 3. Бодров, В. И. Математические методы принятия решений // В. И. Бодров, Лазарева Т. Я., Мартемьянов Ю. Ф.: учебное пособие. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2004. – 124 с.
- 4. Месарович, М. Теория иерархических многоуровневых систем. / М. Месарович, Д. Мако, И. Такахара; Пер. с англ. под ред И.Ф. Шахнова. – М.: Мир, 1973. – 344 с.: илл. (
- 5. Новиков, Ф. А. Дискретная математика для программистов: учебник для вузов; 2-е изд. / Ф. А. Новиков. – СПб.: Питер, 2006. – 364 с.: ил.
- 6. Ногин, В. Д. Принятие решений в многокритериальной среде: количественный подход / В. Д. Ногин. – 2-е изд., испр. и доп. – М.: Физматлит, 2004. – 176 с.
- 7. Подиновский, В. В. Парето-оптимальные решения многокритериальных задач / В. В. Подиновский, В. Д. Ногин. – М.: Наука, 1982. – 256 с.: ил.
- 197 c.

 PELIOSITIOPINI 8. Якимов, А. И. Имитационное моделирование в ERP-системах управления / А. И. Якимов, С. А. Альховик. – Мн.: Бел. наука, 2005. – 197 с.: ил.

Поступило 17.04.07