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1. Introduction. The idea of quark-hadron duality was formulated in the paper [1] as fol-

lows: inclusive hadronic cross sections, once they are appropriately averaged over an energy in-

terval, must approximately coincide with the corresponding quantities derived from the quark-

gluon picture.  

The following quantities and functions will be considered here:  

 the ratio of hadronic to leptonic  -decay widths in the vector channel  
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 the “light” Adler function, which is constructed from  -decay data  
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 the smeared R  function  
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 the hadronic contribution to the anomalous magnetic moment of the muon (in the leading 

order in electromagnetic coupling constant )  
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where ( )K s  is the vacuum polarization factor;  

  the strong interaction contribution to the running of the fine structure constant:  
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The approach that we use here to describe the quantities and functions mentioned above is 

based on the nonperturbative expansion method [2,3,4,5]. We formulate a model that also incorpo-

rates a summation of threshold singularities [6] and takes into account the nonperturbative character 

of the light quark masses [7].  

2. The method. The method on which we construct a description of the R -related quantities 

is variational perturbation theory (VPT). Within this approach, a quantity under consideration is 

represented in the form of the so-called floating or variational series. A certain variational proce-

dure is combined with the possibility of calculating corrections to the principal contribution, which 

allows the possibility of probing the validity of the leading contribution and the region of applica-

bility of the results obtained. The VPT series is different from the conventional perturbative expan-

sion and can be used to go beyond the weak-coupling regime. This allows one to deal with consid-

erably lower energies than in the case of perturbation theory.  

The new expansion parameter a  is connected with the initial coupling constant g  by the re-

lation [2, 3] 
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where C  is a positive constant. As follows from (6), for any value of the coupling constant g , the 

expansion parameter a  obeys the inequality  

 0 1a    (7) 

While remaining within the range of applicability of the a -expansion, one can deal with 

low-energy processes where g  is no longer small.  

The positive parameter C  plays the role of an auxiliary parameter of a variational type, 

which is associated with the use of a floating series. Here we will fix this parameter using some fur-

ther information, coming from the potential approach to meson spectroscopy. As has been shown in 

[3], C  is determined by requiring that ( ) ( )k     tends to 1 for sufficiently large  . The behavior 

of the functions ( ) ( )k     gives evidence for the convergence of the results, in accordance with 

the phenomenon of induced convergence.
1
 The behavior of the  -function at large value of the 

coupling constant, ( ) ( ) 1k    , corresponds to the infrared singularity of the running coupling: 
2 2( )s Q Q   at small 2Q . In the potential quark model this 2Q  behavior is associated with the lin-

ear growth of the quark-antiquark potential.  

The VPT approach allows one to perform the analytic continuation from the Euclidean to 

Minkowskian region self-consistently [11]. This situation is similar to the analytic approach in 

QCD [12,13], where the connection space- and timelike regions can also be established self-

consistently [14,15]. A problem of transition from the spacelike region, where the running coupling 

is initially defined by the renormalization group method, to the timelike region within perturbation 

theory has been discussed in [16,17,18].  

Resummation of threshold singularities. In describing a charged particle-antiparticle system 

near threshold, it is well known from QED that the so-called Coulomb resummation factor plays an 

important role. This resummation, performed on the basis of the nonrelativistic Schrödinger equa-

tion with the Coulomb potential ( )V r r   , leads to the Sommerfeld-Sakharov S -factor [19,20]. 

In the threshold region one cannot truncate the perturbative series and the S -factor should be taken 

into account in its entirety. The S -factor appears in the parameterization of the imaginary part of 

the quark current correlator, which can be approximated by the Bethe-Salpeter amplitude of the two 

charged particles, BS( 0)x   [21]. The nonrelativistic replacement of this amplitude by the wave 

function, which obeys the Schrödinger equation with the Coulomb potential, leads to the appear-

ance of the resummation factor in the parameterization of the ( )R s -function.  

For a systematic relativistic analysis of quark-antiquark systems, it is essential from the very 

beginning to have a relativistic generalization of the S -factor. A new form for this relativistic factor 

in the case of QCD has been proposed in [6]  
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where   is the rapidity which related to s  by 2 coshm s  , 4 3s    in QCD. The function 

( )X   can be expressed in terms of 21 4v m s   : 2( ) 1X v v    . The relativistic resumma-

tion factor (8) reproduces both the expected nonrelativistic and ultrarelativistic limits and corre-

sponds to a QCD-like Coulomb potential. Here we consider the vector channel for which a thresh-

old resummation S -factor for the s-wave states is used. For the axial-vector channel the P -factor is 

required. The corresponding relativistic factor has been found in [27].  

To incorporate the quark mass effects one usually uses the approximate expression proposed 

in [1,22,23] above the quark-antiquark threshold  

  ( ) ( ) 1 ( ) ( )R s T v g v r s    (9) 

                                                 
1
It has been observed empirically [8, 9] that the results seem to converge if the variational parameter is chosen, in each 

order, according to some variational principle. This induced-convergence phenomenon is also discussed in [10]. 
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where  
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The function ( )g v  is taken in the Schwinger approximation [24].  

One cannot directly use the perturbative expression for ( )r s  in Eq. (9), which contains un-

physical singularities, to calculate, for example, the Adler D -function. Instead, one can use the 

VPT representation for ( )r s . Besides this replacement, one has to modify the expression (9) in such 

a way as to take into account summation of an arbitrary number of threshold singularities. Including 

the threshold resummation factor (8) leads to the following modification of the expression (9) 

(see [25] and [26]) for a particular quark flavor f   

 2

0 1( ) ( ) ( ) ( 4 )f f f fR s R s R s s m 
        (11) 
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The potential term corresponding to the 0R  function gives the principal contribution to ( )R s , the 

correction 1R  amounting to less than twenty percent for the whole energy interval [27].  

Effective quark masses. A solution of the Schwinger-Dyson equations [28,29,30,31] demon-

strates a fixed infrared behavior of the invariant charge and the quark mass function. The mass 

function of the light quarks at small momentum looks like a plateau with a height approximately 

equal to the constituent mass, then with increasing momentum the mass function rapidly decreases 

and approaches the small current mass.  

This behavior can be understood by using the concept of 

the dynamical quark mass. This mass has an essentially nonpertur-
bative nature. Its connection with the quark condensate has been 

established in [32]. By using an analysis based on the Schwinger-

Dyson equations a similar relation has been found in [33]. It has 

been demonstrated in [34] that on the mass-shall one has a gauge-

independent result for the dynamical mass  

                     3 4
0 | | 0

3
sm q q                                        (12) 

Figure 1. Function 2( )m p . 

A result obtained in [35] demonstrates the step-like behavior of the mass function. The height m  of 

the plateau is given by the quark condensate (12). According to these results it is reasonable to as-

sume that at small 2p  the function 2( )m p  is rather smooth (nearly constant). In the region 2 1p  –

2  GeV the principal behavior of the function 2( )m p  is defined by perturbation theory with the 

renormalization group improvement.                           

Table 1. Typical values of 0

fm  and 0

fM . 

f  u  d   s   c   b   t   

0

fm  (GeV)     0.004    0.007    0.130    1.35    4.4     174.0   

0

fM  (GeV)     0.260    0.260    0.450    1.35    4.4     174.0   

 

The following analysis was performed by using the model mass function 2( )m p  that is 

shown in Fig. 1. We take the curve that connects the points ap  and bp  to have the form 

3 2 2( )A p B  . The parameters 0m  are taken from the known values of the running masses at 

2bp   GeV. The values of 0

fm  at 2  GeV [36] and typical values of 0

fM  are shown in Table 1.    

3. Physical quantities and functions generated by ( )R s . In this section we apply the 
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model we have formulated to describe the physical quantities and functions described in the Intro-

duction. 

 Inclusive decay of the  -lepton. The ratio of hadronic to leptonic  -decay widths in the 

vector channel is expressed by Eq. (1), where (0) 2

EW3 2udR V S    , 0 9752 0 0007udV      is the 

CKM matrix element, 
EW 1 0194 0 0040S      is the electroweak factor, and 0 29

0 261776 99M

 

    MeV 

is the mass of the  -lepton [36]. The experimental data obtained by the ALEPH and OPAL collab-

orations for this ratio are [37,38,39]: ALEPH 1 775 0 017VR      , OPAL 1 764 0 016VR      . In our analysis 

we use the nonstrange vector channel spectral function obtained by the ALEPH collaboration [37] 

and keep in all further calculations the value ALEPH

VR   as the normalization point. The range of esti-

mates are obtained by varying the quark masses in the interval 
0 260 10u dM     MeV (this band is 

fixed rather definitely by the D -function considered below) and 
0 450 100cM    MeV. The results 

for VR  are given below.  

VD -function. The experimental information obtained by the ALEPH and OPAL collabora-

tions allows us to construct the nonstrange vector channel “experimental” D -function. In order to 

construct the Euclidean D -function we use for ( )R s  the following expression 
expt theor

0 0( ) ( ) ( ) ( ) ( )R s R s s s R s s s       The continuum threshold 0s  we find from the global 

duality relation [40] that gives 0 1 6s   GeV 2 . The value of 0s  agrees with the results of pa-

pers [41,42,43]. A similar value of the continuum parameter is used in the QCD sum 

rules [44,45,46,47].  

The low energy  -data in the nonstrange vector channel results in the curve for 2( )D Q  in 

Figs. 2 and 3. In Fig. 2 we also plot three theoretical curves corresponding to masses of the light 

quarks of 150 , 260  and 350  MeV. Fig. 2 demonstrates that the shape of the infrared tail of the D -

function is quite sensitive to the value of the light quark masses. Note the experimental D -function 

turns out to be a smooth function without any trace of resonance structure. The D -function ob-

tained in [48] from the data for electron-positron annihilation into hadrons also has a similar proper-

ty.  

                 
Figure 2. D -function for constm  .                            Figure 3. D -function for 2( )m m p . 

The values of masses 260u dm m  MeV agree with the experimental value 

1 775 0 017VR      [37]. The values of the light quark masses are close to the constituent quark 

masses and therefore incorporate nonperturbative effects. These values are consistent with other 

results of [49,50] and [51] and with the analysis performed in [41,52] and [53].  

R -function. Instead of the Drell ratio ( )R s  defined in terms of the discontinuity of the cor-

relation function 2( )q  across the physical cut the smeared function ( )R s  is defined as [1] 

  
1

( ) ( ) ( )
2

R s s i s i
i

         (13) 
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with a finite value of   to keep away from the cut. If   is sufficiently large and both the experi-

mental data and the theory prediction are smeared, it is possible to compare theory with experiment. 

Equation (13) and the dispersion relation for the correlator 2( )q  give the representation (3).  

       
Figure 4. Smeared function for 0 5    GeV 2 .   Figure 5. Smeared function for 1 0    GeV 2 . 

 

As with the Adler function we will construct the “light” experimental function ( )R s . For 

this purpose we match the experimental data taken with 0s s  to the theoretical result taken with 

0s s . The value 0s  is found from the duality relation.  

In Figs. 4 and 5 the experimental and theoretical curves for 0 5    GeV 2 , 1 0    GeV 2  

and 2( )m m p  are shown. Let us emphasize that, for reasonable values of  , in the spacelike re-

gion ( 0s  ) there is a good agreement between data and theory starting from 0s  . 

            Hadronic contribution to a . The hadronic contribution to the anomalous magnetic mo-

ment of the muon in the leading order in the electromagnetic coupling constant is defined by (4), 

where 1 1(0) 137 03599911(46)      [36], and K(s) is known function (see, for example, [24]). 

The muon mass is 105 7m    MeV.  

The expression (4) can be rewritten in terms of the D -function  

 

2 1 2
had 2

0

1 1
(1 )(2 )

3 2 1

dx x
a x x D m

x x
 





 
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 

 
    

 
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It is should be emphasized that the expressions (4) and (14) are equivalent due to the analyt-

ic properties of the function 2( )q . If one uses a method that does not maintain the required proper-

ties of 2( )q , expressions (4) and (14) will no longer be equivalent and will imply different results 

[54]. This situation is similar to that which occurs in the analysis of inclusive  -decay [55]. Within 
VPT one is justified in doing this, and can use equally well either the expression (4) or the expres-
sion (14).  

In our calculations we take into account the matching conditions at quark thresholds accord-

ing to the procedure described in [15]. If we take for the parameter 0

u dM   in the function 2( )m m p  

the best fit value 260  MeV and vary 0 400sM  –500  MeV, we get  

 had 10(702 16) 10a

      

The method based on the analytic perturbation theory leads to the close result: 
had 10(698 13) 10a

    [7]. Alternative “theoretical” values of hada  are extracted from e e   annihi-

lation and   decay data: 10

exp rad(696 3 6 2 3 6 ) 10       ( e e  -based) [56] which is 1.9  below the 

BNL experiment; [57] 10

exp rad (2)(711 0 5 0 0 8 2 8 ) 10SU

         ( -based) [56] which is within 0.7  

of experiment; and 10

exp rad(693 4 5 3 3 5 ) 10       ( e e  -based) [58] 2.7  below experiment. An 

even lower value 10

exp rad(692 4 5 9 2 4 ) 10       is given in [59].  

Hadronic contribution to the fine structure constant. Consider the hadronic correction to the 

electromagnetic fine structure constant   at the Z -boson scale. The evolution of the running elec-
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tromagnetic coupling is described by  

 
(5) top

lept had had

(0)
( )

1 ( ) ( ) ( )
s

s s s




  
 

  
  

The leptonic part 
lept ( )s  is known up to the three-loop level, 2

lept ( ) 0 03149769ZM    [60]. It is 

conventional to separate the contribution (5)

had ( )s  coming from the first five quark flavors. The 

contribution of the t -quark is estimated as top 2

had ( ) 0 000070(05)ZM     [61].  

At the Z -boson scale we get  

 (5) 2 4

had ( ) (279 9 4 0) 10ZM          

This value is to be compared with predictions extracted from a wide range of data describing 

e e    hadrons [59]:  

 (5) 2 4

had expt rad( ) (275 5 1 9 1 3 ) 10ZM            

The result based on the analytic perturbation theory is (5) 2 4

had ( ) (278 2 3 5) 10ZM        [7]. We see 

that our result is consistent with previous theoretical/experimental evaluations, with comparable un-
certainties.  

4. Summary. A method of performing QCD calculations in the nonperturbative domain has 
been developed. This method is based on the variational perturbation theory in QCD, takes into ac-
count the summation of threshold singularities and the involvement of nonperturbative light quark 
masses.  

The following quantities have been analyzed: the inclusive  -decay characteristic in the 

vector channel, VR ; the light-quark Adler function, 2( )D Q ; the smeared R -function; the hadronic 

contribution to the anomalous magnetic moment of the muon, hada ; and the hadronic contribution to 

the fine structure constant, (5) 2

had ( )ZM . We have demonstrated that the proposed method allows us 

to describe these quantities rather well.  
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