Конечные группы с максимальными холловыми подгруппами

Т. В. Тихоненко, В. Н. Тютянов

С использованием теоремы о классификации конечных простых неабелевых групп доказан следующий результат

Теорема. Пусть G — конечная простая неабелева группа, у которой всякая максимальная подгруппа является холловой. Тогда $G \in \{PSL_2(7), PSL_2(11), PSL_5(2)\}$.

Подгруппу L называют дополняемой в группе G, если в G существует подгруппа H такая, что G = LH и $L \cap H = 1$. В работах [1], [2] было доказано, что если G — конечная простая неабелева группа, у которой каждая максимальная подгруппа дополняема, то $G \in \{PSL_2(7), PSL_2(11), PSL_5(2)\}$.

Списки простых неабелевых групп в заключениях обоих результатов совпадают, что является несколько неожиданным. Поэтому кажется естественным предположить, что если G — конечная группа, у которой все максимальные подгруппы холловы, то все максимальные подгруппы группы G дополняемы в G.

Пусть J — собственная подсистема системы простых корней Π . Подмножество простых корней $I\subseteq J$ называют связной компонентой, если часть диаграммы Дынкина, соответствующая корням из I, является связным графом и для любых двух корней $r\in I$ и $s\in J\backslash I$ выполняется равенство (r,s)=0. Множество J можно единственным образом иредставить в виде объединения $J=I_1\cup I_2\cup\ldots\cup I_t$ непересекающихся между собой связных компонент. Пусть $|I_m|=l_m$ и $|J|=\sum_{m=1}^t l_m=l_0$. Обозначим через \mathcal{L}_m простую алгебру Ли над тем же полем F, которая имеет диаграмму Дынкина как у I_m , а через $d_{m,i}$ — инвариант d_i алгебры \mathcal{L}_m , который приведен в следующей таблице:

\mathcal{L}	d_1, d_2, \cdots, d_l
A_l	$2,3,\cdots,l+1$
B_l	$2,4,6,\cdots 2l$
C_l	$2,4,6,\cdots 2l$

D_l	$2,4,6,\cdots 2l-2,l$
G_2	2,6
F_4	2, 6, 8, 12
E_6	2, 5, 6, 8, 9, 12
E_7	2, 6, 8, 10, 12, 14, 18
E_8	2, 8, 12, 14, 18, 20, 24, 30

Определение параболической подгруппы можно найти, например, в работах [5]. [7].

Лемма 1 (Предложение 1 [5]). Если $J \subset \Pi$ представляется в виде объединения $J = I_1 \cup I_2 \cup \ldots \cup I_t$ непересекающихся связных компонент, то порядок параболической подгруппы P_J группы $G = \mathcal{L}(G)$ равен

$$\frac{1}{d}q^{N}(q-1)^{l-l_0}\prod_{m=1}^{t}(q^{d_{m,1}}-1)(q^{d_{m,2}}-1)\dots(q^{d_{m,l_m}}-1),$$

где $d = |\overline{G}|/|G|$ и \overline{G} — соответствующая универсальная группа Шевалле, $N = |\Phi^+|$, $l = |\Pi|$.

Следуя [8], будем говорить, что для упорядоченной пары (L,π) выполнено условие (**), если L является группой Шевалле над полем GF(q), характеристика p которого принадлежит π , и 2 принадлежит π .

Лемма 2 (Лемма 3.12 [8]). Пусть для пары (L,π) выполнено условие (**), и пусть группа L обладает свойством E_{π} . Тогда если A — холлова π -подгруппа L, то верно одно из следующих утверждений.

(E1) A = L.

(E1) A = L. (E2) $p = 2, \pi \cap \pi(L) \subseteq \pi(q-1) \cup 2$, A содержится в некоторой подгруппе Бореля

(Е3) $p=2,\ L=D_l(q),$ диаграмма Дынкина системы простых корней для Lпредставлена на рис. 1, число l является простым числом Ферма, (l, q-1) = 1, подгруппа A сопряжена с параболической подгруппой G_J , отвечающей множеству простых корней $J = \{r_2, r_3, \dots, r_l\}.$

$$r_1$$
 r_2 \cdots r_{l-3} r_{l-2} r_{l-2} рис. r_l

 $L=2,\; L={}^2D_l(q),\;$ диаграмма Дынкина системы простых корней для L=2представлена на рис. 2, число l-1 является простым числом Мерсенна, (l-1,q-1)=1, подгруппа A сопряжена с параболической подгруппой G_J , отвечающей множеству простых корней $J = \{r_2^1, r_3^1, \dots, r_{l-1}^1\}.$

рис. 2

(Е5) С изоморфна фактор-группе по некоторой центральной подгруппе группы SL(V), где V — векторное пространство размерности n над полем GF(q) характеристики p, A является образом в G относительно естественного гомоморфизма стабилизатора в SL(V) ряда подпространств $0 = V_0 < V_1 < \dots < V_s = V$ таких, что $dim V_i/V_{i-1} = n_i$, $i = 1, 2, \dots, s$, и выполнено одно из следующих условий:

- (a) n некоторое простое число, (n, q 1) = 1, s = 2, $n_1, n_2 \in \{1, n 1\}$;
- (6) n = 4, $(2 \cdot 3, q 1) = 1$, s = 2, $n_1 = n_2 = 2$;
- (B) $n = 5, (2 \cdot 5, q 1) = 1, s = 2, n_1, n_2 \in \{2, 3\};$
- (Γ) $n = 5, (2 \cdot 3 \cdot 5, q 1) = 1, s = 3, n_1, n_2, n_3 \in \{1, 2\};$
- (д) $n = 7, (5 \cdot 7, q 1) = 1, (3, q + 1) = 1, s = 2, n_1, n_2 \in \{3, 4\};$
- (e) n = 8, $(2 \cdot 5 \cdot 7, q 1) = 1$, (3, q + 1) = 1, s = 2, $n_1 = n_2 = 4$;
- (ж) $n = 11, (2 \cdot 3 \cdot 7 \cdot 11, q 1) = 1, (5, q + 1) = 1, s = 2, n_1, n_2 \in \{5, 6\}.$

Доказательство теоремы.

Необходимо рассмотреть следующие случаи.

1. $G \cong A_l(q), q = p^n, n \ge 1, l \ge 1, p$ — простое число.

Матрица Картана алгебры A_l имеет вид:

$$A = \begin{bmatrix} 2 & -1 & & & & & \\ -1 & 2 & -1 & & & 0 & & \\ & -1 & 2 & -1 & & & & \\ & & -1 & 2 & \ddots & & & \\ & & & & -1 & & \\ & & & & -1 & 2 & -1 & \\ & & & & -1 & 2 & -1 & \\ & & & & & -1 & 2 & -1 & \\ & & & & & -1 & 2 & -1 & 2 \end{bmatrix}$$

Диаграмма Дынкина:

Если $n \geqslant 2$, то в A_l существует максимальная подгруппа $H = N_G(A_l(q_0)) \in C_5(G)$ [9], где $GF(q_0)$ — максимальное подполе в поле Галуа GF(q). При этом ($[A_l(q):H],p$) = (|H|, p) = p, что невозможно. Поэтому всегда q = p.

Пусть сначала
$$l\geqslant 6$$
. По лемме 1 получаем следующие равенства:
$$|P_1|=\frac{1}{d}q^{\frac{l(l+1)}{2}}(q-1)\prod_{i=1}^{l-1}(q^{i+1}-1)=q^{\frac{l(l+1)}{2}}\frac{q-1}{d}\prod_{i=1}^{l-1}(q^{i+1}-1),$$

$$|P_2|=\frac{1}{d}q^{\frac{l(l+1)}{2}}(q-1)(q^2-1)\prod_{i=1}^{l-2}(q^{i+1}-1)=q^{\frac{l(l+1)}{2}}\frac{q-1}{d}(q^2-1)\prod_{i=1}^{l-2}(q^{i+1}-1),$$
 где $d=(l+1,q-1)$. Так как $|G|=\frac{1}{d}q^{\frac{l(l+1)}{2}}\prod_{i=1}^{l}(q^{i+1}-1),$ то $[A_l(q):P_2]=\frac{(q^{l+1}-1)(q^{l}-1)}{(q-1)(q^2-1)}$ и $[A_l(q):P_1]=\frac{(q^{l+1}-1)}{q-1}$.

По условию теоремы, $([G:P_1],|P_1|)=(\frac{(q^{l+1}-1)}{q-1},q^{\frac{l(l+1)}{2}}\frac{q-1}{d}(q^2-1)\cdots(q^l-1))=1.$ Поэтому $(\frac{(q^{l+1}-1)}{q-1},q^2-1)=1.$ Из равенства $\frac{(q^{l+1}-1)}{q-1}\cdot\frac{q^l-1}{q^2-1}=[A_l(q):P_2]$ следует, что q^2-1 делит $q^l-1.$ Легко показать, что это возможно только при l=2k. Поэтому имеет место равенство: $\frac{q^l-1}{q^2-1}=\frac{(q^k-1)(q^k+1)}{q^2-1}$. Так как $l\geqslant 6$, то степень многочлена $f(q)=q^k-1$ не меньше 3 и последняя дробь содержит отличные от единицы делители числа q^k-1 . Поскольку $q^k-1=q^{\frac{l}{2}}$ делит $|P_2|$, то получим, что $([A_l(q):P_2],|P_2|)
eq 1$. Последнее невозможно. Таким образом, $l \leq 5$.

Если l=5, то $[A_5(q):P_2]=\frac{q^6-1}{q-1}\frac{q^5-1}{q^2-1}$ и q^2-1 делит q^5-1 , что невозможно. При l=4 получим $[A_4(q):P_2]=\frac{q^5-1}{q-1}\frac{q^4-1}{q^2-1}=\frac{q^5-1}{q-1}(q^2+1)$. Если q— нечетное число, то $([A_4(q):P_2],2)=(|P_2|,2)=2$, что невозможно. Так как q— простое число, то $G=A_4(2)$. Из [10] следует, что в $A_4(2)$ все максимальны подгруппы холловы.

При l=3 получим, что $[A_3(q):P_2]=rac{q^4-1}{q-1}rac{q^3-1}{q^2-1}$ и q^2-1 делит q^3-1 , что невозможно.

Пусть l=2. Если q=2, то $G\cong L_3(2)\cong L_2(7)$. Из [10] следует, что все максимальные подгруппы в G холловы. Пусть q — нечетное простое число. Из [11] следует, что группа $A_2(q)$ имеет максимальную подгруппу $PGL_2(q)$, которая не является холловой.

Рассмотрим случай l=1. Если q=2, то $G=L_2(2)$ — разрешимая группа, что невозможно. Следовательно, q — нечетное простое число. Группа $A_1(q)$ содержит максимальную подгруппу P порядка $\frac{1}{2}q(q-1)$ и индекса q+1. Так как q+1 четное число, то |P| нечетен и q+1=4t. Группа $A_1(q)$ содержит диэдральную подгруппу $D_{2(\frac{q-1}{2})}$ порядка q-1. Если q>11, то в диэдре есть элемент порядка больше чем 5 и по теореме Диксона $D_{2(\frac{q-1}{2})}$ максимальная в $A_1(q)$ индекса $\frac{1}{2}q(q+1)$. Так как q-1четное число, то $\frac{q+1}{2}$ — нечетное число и q+1=2r, где r нечетно. Противоречие с тем, что q+1=4t. Следовательно, $q\leq 11$. Из [10] следует, что только в группах $L_2(7)$ и $L_2(11)$ все максимальные подгруппы холловы.

2. $G = B_l(q) = P\Omega_{2l+1}(q), q = p^n, n \ge 1, l \ge 2.$ Матрица Картана алгебры B_l имеет вид:

$$A = \begin{bmatrix} 2 & -1 & & & & & \\ -1 & 2 & -1 & & & 0 & & \\ & -1 & 2 & -1 & & & \\ & & -1 & \ddots & & & \\ & & & & -1 & & \\ & & & & 1 & 2 & -1 & \\ & & & & & -2 & 2 \end{bmatrix}$$

Диаграмма Дынкина:

 $|G|=\frac{1}{d}q^{l^2}\prod_{i=1}^l(q^{2i}-1),$ где d=(2,q-1). По лемме 1 $|P_1|=\frac{1}{d}q^{l^2}(q-1)\prod_{i=1}^{l-1}(q^{2i}-1)=\frac{q^{-1}}{d}q^{l^2}\prod_{i=1}^{l-1}(q^{2i}-1).$ Следовательно, $[G:P_1]=\frac{q^{2l}-1}{q-1}=\frac{(q^2-1)(q^{2l-2}+q^{2l-4}+\cdots+q^2+1)}{q-1}=(q+1)(q^{2l-2}+q^{2l-4}+\cdots+q^2+1).$ Поэтому q+1 делит $|P_1|$ и $[G:P_1]$, что невозможно.

3. $G = C_l(q) = PSp_{2l}(q), q = p^n, n \ge 1, l \ge 3.$ Дословное повторение предыдущего пункта. Матрица Картана алгебры _г имеет вид:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 & & 0 \\ & -1 & 2 & -1 & & \\ & & -1 & \ddots & & \\ & & & -1 & \ddots & \\ & & & & -1 & \\ & & & & -1 & 2 & -1 \\ & & & & & -2 & 2 \end{bmatrix}.$$

Диаграмма Дынкина:

4. $G = D_l(q) = P\Omega_{2l}^+(q), q = p^n, n \ge 1, l \ge 4.$ Матрица Картана алгебры D_l имеет вид:

$$A = \begin{bmatrix} 2 & -1 & & & & & \\ -1 & 2 & -1 & & & 0 & & \\ & -1 & 2 & -1 & & & & \\ & & -1 & \ddots & & & & \\ & & & & -1 & & \\ & & & & -1 & 2 & -1 & -1 \\ & & 0 & & -1 & 2 & 0 & \\ & & & & -1 & 0 & 2 \end{bmatrix}.$$

Если q — нечетное число, то $[G:P_{l-1}]$ — четное число. Так как $l \geq 4$, то очевидно, что $|P_{l-1}|$ — четное число. Следовательно, $(|P_{l-1}|, 2) = ([G:P_{l-1}], 2) = \overline{2}$, что невозможно. 5. $G \cong G_2(q)$.

Матрица Картана алгебры G_2 имеет вид:

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}.$$
 Диаграмма Дынкина:
$$\underbrace{\frac{1}{2}}_{}$$

Имеет место равенство: $|G|=q^6(q^6-1)(q^2-1)$. Согласно лемме 1, $|P_1|=|P_2|=q^6(q^2-1)(q-1)$. Отсюда следует, что $[G:P_1]=[G:P_2]=\frac{q^6-1}{q-1}=\frac{(q^3-1)(q^3+1)}{q-1}=(q^2+q+1)(q+1)(q^2-q+1)$. Поэтому $(|P_1|,[G:P_1])=(q^6(q^2-1)(q-1),(q^2+q+1)(q+1)(q^2-q+1))=(q+1)((q-1)^2,(q^2+q+1)(q^2-q+1))\neq 1$. Следовательно, параболические подгруппы P_1 и P_2 не холловы в группе G.

6.
$$G \cong F_4(q)$$
.

Матрица Картана алгебры F_4 имеет вид:

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -2 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

Диаграмма Дынкина:

Имеет место равенство: $|G|=q^{24}(q^{12}-1)(q^8-1)(q^6-1)(q^2-1)$. Согласно лемме 1, $|P_1|=q^{24}(q^6-1)(q^4-1)(q^2-1)(q-1)=q^{24}(q^3-1)(q^3+1)(q^4-1)(q^2-1)(q-1)$. Поэтому $[G:P_1]=\frac{(q^{12}-1)(q^4-1)}{q-1}=\frac{(q^6-1)(q^6+1)(q^4+1)}{q-1}=\frac{(q-1)(q^2+q+1)(q^3+1)(q^6+1)(q^4+1)}{q-1}=(q^3+1)(q^2+q+1)(q^6+1)(q^4+1)$.

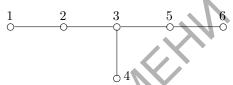
Значит, $(|P_1|, [G:P_1]) = (q^{24}(q^3-1)(q^3+1)(q^4-1)(q^2-1)(q-1), (q^3+1)(q^2+q+1)(q^6+1)(q^4+1)) = (q^3+1)((q^3-1)(q^4-1)(q^2-1)(q-1), (q^2+q+1)(q^6+1)(q^4+1)) \neq 1.$ Следовательно, параболическая подгруппа P_1 не является холловой в группе G.

7. $G \cong E_6(q)$.

Матрица Картана алгебры E_6 имеет вид:

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}.$$

Диаграмма Дынкина:



Имеет место равенство: $|G| = \frac{1}{d}q^{36}(q^{12}-1)(q^9-1)(q^8-1)(q^6-1)(q^5-1)(q^2-1)$, где d=(3,q-1). Согласно лемме 1, $|P_1| = \frac{1}{d}q^{36}(q-1)(q^2-1)(q^4-1)(q^6-1)(q^8-1)(q^5-1) = q^{36}\frac{q-1}{d}(q^2-1)(q^4-1)(q-1)(q^2+q+1)(q^3+1)(q^8-1)(q^5-1)$. Отсюда следует, что $[G:P_1] = \frac{(q^{12}-1)(q^9-1)}{(q-1)(q^4-1)} = \frac{(q^4-1)(q^8+q^4+1)(q-1)(q^2+q+1)(q^6+q^3+1)}{(q-1)(q^4-1)} = (q^8+q^4+1)(q^2+q+1)(q^6+q^3+1)$. Следовательно, $(|P_1|,[G:P_1]) = (q^{36}\frac{q-1}{d}(q^2-1)(q^4-1)(q-1)(q^2+q+1)(q^3+1)(q^8-1)(q^5-1), (q^8+q^4+1)(q^2+q+1)(q^6+q^3+1)) = (q^2+q+1)(\frac{q-1}{d}(q^2-1)(q^4-1)(q-1)(q^3+1)(q^8-1)(q^8-1), (q^8+q^4+1)(q^6+q^3+1)) = (q^2+q+1)(\frac{q-1}{d}(q^2-1)(q^4-1)(q-1)(q^3+1)(q^8-1)(q^8-1), (q^8+q^4+1)(q^6+q^3+1)) \neq 1$. Поэтому параболическая подгруппа P_1 не является холловой в группе G.

8. $G \cong E_7(q)$.

Матрица алгебры E_7 имеет вид:

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}.$$

Диаграмма Дынкина:

Имеет место равенство: $|G|=\frac{1}{d}q^{63}(q^{18}-1)(q^{14}-1)(q^{12}-1)(q^{10}-1)(q^8-1)(q^6-1)(q^2-1)$, где d=(2,q-1). Согласно лемме 1, $|P_1|=\frac{1}{d}q^{63}(q-1)(q^{12}-1)(q^9-1)(q^8-1)(q^6-1)(q^6-1)(q^8-$

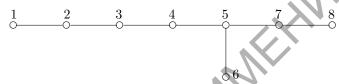
$$\overline{1)(q^5-1)(q^2-1)=\frac{q-1}{d}q^{63}(q^{12}-1)(q^9-1)(q^8-1)(q^3-1)(q^3+1)(q^5-1)(q^2-1)}.$$
 Поэтому
$$[G:P_1]=\frac{(q^{18}-1)(q^{14}-1)(q^{10}-1)}{(q-1)(q^9-1)(q^5-1)}=(q^9+1)(q^5+1)\frac{q^{14}-1}{q-1}=(q^3+1)(q^6-q^3+1)(q^5+1)\frac{q^{14}-1}{q-1}.$$
 Следовательно,
$$(|P_1|,[G:P_1])=(q^3+1)(\frac{q-1}{d}q^{63}(q^{12}-1)(q^9-1)(q^8-1)(q^3-1)(q^5-1)(q^6-q^3+1)(q^5+1)\frac{q^{14}-1}{q-1})\neq 1.$$
 Таким образом, параболическая подгруппа P_1 не является холловой подгруппой в группе G .

9. $G \cong E_8(q)$.

Матрица Картана алгебры E_8 имеет вид:

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \end{bmatrix}$$

Диаграмма Дынкина:



Имеет место равенство: $|G|=q^{120}(q^{30}-1)(q^{24}-1)(q^{20}-1)(q^{18}-1)(q^{14}-1)(q^{12}-1)(q^{8}-1)(q^{8}-1)(q^{2}-1)$. Согласно лемме 1, $|P_1|=q^{120}(q-1)(q^{18}-1)(q^{14}-1)(q^{12}-1)(q^{10}-1)(q^{8}-1)(q^{6}-1)(q^{2}-1)=q^{120}(q-1)(q^{18}-1)(q^{14}-1)(q^{6}-1)(q^{6}+1)(q^{10}-1)(q^{8}-1)(q^{6}-1)(q^{2}-1).$ Следовательно, $[G:P_1]=\frac{(q^{30}-1)(q^{24}-1)(q^{20}-1)}{(q^{-1})(q^{10}-1)(q^{6}-1)}=\frac{q^{30}-1}{q-1}(q^{10}+1)\frac{(q^{6}-1)(q^{6}+1)(q^{12}+1)}{q^{6}-1}=\frac{q^{30}-1}{q-1}(q^{10}+1)(q^{12}+1)(q^{6}+1).$ Поэтому $(|P_1|,[G:P_1])=(q^{6}+1)((q-1)(q^{18}-1)(q^{14}-1)(q^{6}-1)(q^{10}-1)(q^{8}-1)(q^{6}-1)(q^{2}-1),\frac{q^{30}-1}{q-1}(q^{10}+1)(q^{12}+1))\neq 1$. Следовательно, параболическая подгруппа P_1 не является холловой в группе G

 P_1 не является холловой в группе G.

Большую часть обозначений для исключительных групп лиевского типа мы будем брать из работы [12].

10.
$$G = {}^{2}A_{l-1}(q) = PSU_{l}(q), q = p^{n}, n \ge 1, l \ge 3.$$

$$|G| = \frac{1}{d}q^{\frac{l(l-1)}{2}} \prod_{i=1}^{l-1} (q^{i+1} - (-1)^{i+1}),$$
 где $d = (l, q+1)$

10. $G = {}^2A_{l-1}(q) = PSU_l(q), q = p^n, n \ge 1, l \ge 3.$ $|G| = \frac{1}{d}q^{\frac{l(l-1)}{2}}\prod_{i=1}^{l-1}(q^{i+1}-(-1)^{i+1}),$ где d=(l,q+1). Пусть l=3. Из [11] следует, что группа G имеет максимальную подгруппу H, для которой $|H| = \frac{q+1}{(3,q+1)}q^3(q-1)$ и $[G:H] = (q+1)(q^2-q+1)$. Если $q+1 \ne 3$, то $(|H|, [G:H]) \neq 1$, что невозможно. Следовательно, q+1=3 и q=2 . Данный случай невозможен, поскольку группа $PSU_3(2)$ разрешима. Пусть $l \geq 4$. Из [11] следует, что группа G имеет максимальную подгруппу H для которой $|H|=\frac{q+1}{d}q^{\frac{l(l-1)}{2}}(q-1)(q^2-1)(q^3-1)\cdots(q^{l-1}-(-1)^{l-1})$ и $[G:H]=(q^l-(-1)^l)(q^{l-1}-(-1)^{l-1})$. Поэтому $(q^{l-1}-(-1)^{l-1})$ делит H и [G:H], что невозможно.

11.
$$G = {}^{2}B_{2}(q), q = 2^{2m+1}, m \geqslant 1.$$

 $|G|=q^2(q^2+1)(q-1)$. Из [13] следует, что группа $^2B_2(q)$ имеет максимальную подгруппу H порядка $4(q\pm r+1)$, где $r^2=2q$. Очевидно (|H|,2)=([G:H],2)=2, что

12.
$$G = {}^{2}G_{2}(q), q = 3^{2m+1}, m \geqslant 1.$$

 $|G|=q^3(q^3+1)(q-1)$. Из [14] следует, что группа ${}^2G_2(q)$ содержит максимальную подгруппу H, изоморфную $2\times L_2(q)$. Тогда (|H|,q)=([G:H],q)=q, что невозможно. 13. $G={}^3D_4(q)$.

 $|^3D_4(q)|=q^{12}(q^2-1)(q^6-1)(q^8+q^4+1)$. Из работы [5] следует, что группа $^3D_4(q)$ содержит максимальную параболическую подгруппу P_2^1 , для которой $|P_2^1|=q^{12}(q-1)(q^3+1)(q^3-1)$ и $[^3D_4(q):P_2^1]=(q^8+q^4+1)(q+1)$. Следовательно, порядок и индекс параболической подгруппы не взаимно просты, что невозможно.

14. $G = {}^{2}F_{4}(q)$, где $q = 2^{2m+1}$

 $|{}^2F_4(q)|=q^{12}(q-1)(q^3+1)(q^4-1)(q^6+1)$. Из работы [5] следует, что группа ${}^2F_4(q)$ имеет параболическую подгруппу P^1 , для которой $|P^1|=(q-1)^2(q^2+1)$ и индекс $[{}^2F_4(q):P^1]=(q^6+1)(q^3+1)(q+1)$. Поскольку $q^6+1=(q^2+1)(q^4-q^2+1)$, то порядок и индекс параболической подгруппы не взаимно просты, что невозможно.

Для группы Титса ${}^2F_4(q)'$ наличие максимальной не холловой подгрупиы следует из [10].

15. $G={}^2E_6(q)$. $|{}^2E_6(q)|=\frac{1}{(3,q+1)}q^{36}(q^2-1)(q^5+1)(q^6-1)(q^8-1)(q^9+1)(q^{12}-1)$. Из работы [5] следует, что группа ${}^2E_6(q)$ имеет максимальную параболическую подгруппу P^1 , для которой $|P^1|=\frac{1}{(3,q+1)}q^{36}(q+1)(q^4-1)(q^5+1)(q^6+1)(q^3+1)$ и индекс $[{}^2E_6(q):P^1]=(q^{12}-1)(q^6-q^3+1)(q^4+1)(q-1)$. Следовательно, $(|P^1|,[{}^2E_6(q):P^1])\neq 1$, что невозможно. $16.\ G={}^2D_l(q)$, где l>3.

Рассмотрим в группе G множество максимальных подгрупп четного порядка. Согласно пункту (E4) леммы 2 в группе $^2D_l(q)$ имеется только один класс сопряженных холловых подгрупп четного порядка. Подгруппы данного класса сопряжены с максимальной параболической подгруппой, отвечающей множеству простых корней $\{r_2^1, r_3^1, \ldots, r_{l-1}^1\}$. При этом q — степень числа 2. Для завершения доказательства пункта 16 достаточно рассмотреть любую максимальную параболическую подгруппу (ее порядок — четное число) группы $^2D_l(q)$, которая не соответствует системе корней $\{r_2^1, r_3^1, \ldots, r_{l-1}^1\}$.

17. $G = A_n, n \ge 5$.

Одноточечный стабилизатор $A_{n-1}<\cdot A_n$ и $[A_n:A_{n-1}]=n.$ Так как $(|A_{n-1}|,[A_n:A_{n-1}])=(\frac{(n-1)!}{2},n)=1,$ то n=p — простое число. Двухточечный стабилизатор $M=A_p\cap (S_2\times S_{p-2})<\cdot A_p.$ Очевидно, что $|M|=2|A_{p-2}|.$ Поэтому $[A_p:M]=\frac{p(p-1)}{2}.$ Так как (|M|,[G:M])=1, то $((p-2)!,\frac{p(p-1)}{2})=1.$ Поскольку p — простое число, то $((p-2)!,\frac{(p-1)}{2})=1.$ Если $\frac{p-1}{2}\le p-2,$ то $\frac{p-1}{2}$ делит (p-2)!. Это возможно только при p=3. Так как $p\ge 5,$ то выполняется неравенство $\frac{p-1}{2}>p-2$ или p<3, что невозможно. Поэтому M не является холловой подгруппой в G.

18. *G* — спорадическая группа.

Из [10] следует, что во всякой спорадической группе существует максимальная не холлова подгруппа.

Авторы выражают глубокую благодарность доктору физико-математических наук, профессору А.В. Васильеву за предоставленную им информацию.

Abstract. Abstract. Finite groups with maximal Hall subgroups are considered in the paper.

Литература

1. Левчук, В.М. Конечные простые группы с дополняемыми максимальными

- подгруппами / В.М. Левчук, А.Г. Лихарев // Сибирский мат. журн., 2006. Т. 47, № 4. С. 798-810.
- 2. Тютянов, В.Н. Конечные группы с дополняемыми подгруппами / В.Н. Тютянов // Известия Гомельского государственного университета имени Ф. Скорины, 2006. N23(36). С. 178-183.
- 3. Gorenstein, D. Finite groups / D. Gorenstein // New-York.: Harper and Row, 1968.
- 4. Carter, R. W. Simple groups of Lie type / R.W. Carter // London.: John Wiley and Sons, 1972.
- 5. Васильев, А.В. Минимальные подстановочные представления конечных простых исключительных групп типа G_2 и F_4 / А.В. васильев // Алгебра и логика, 1996. Т. 35, № 6. С. 663-684.
- 6. Васильев, А.В. Минимальные подстановочные представления конечных простых ортогональных групп / А.В. Васильев, В.Д. Мазуров // Алгебра и логика, 1994. Т. 33, № 6. С. 603-627.
- 7. Кондратьев, А.С. Подгруппы конечных групп Шевалле / А.С. Кондратьев // Успехи математических наук, 1986. Т. 41, вып. 1(247). С. 57-96.
- 8. Ревин, Д.О. Две D_π -теоремы для одного класса конечных групп. / О.Д. Ревин // Препринт № 40, Новосибирск, 1999. С. 42
- 9. Kleidman, P. The subgroups structure of the finite classical groups / P. Kleidman, M. Liebeck // Cambridge University Press, 1990.
- 10. Conway, J.H. Atlas of Finite Groups / J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson // Oxford, 1985.
- 11. Mitchel, H.H. Determination of the ordinary and modular ternary liner groups / H.H. Mitchel // Trans. Amer. Math. Soc., 1911. V. 12. P. 207-242.
- 12. Васильев, А.В. Минимальные подстановочные представления конечных простых исключительных групп скрученного типа / А.В. Васильев // Алгебра и логика, 1998. Т. 37, № 1. С. 17-35.
- 13. Suzuki, M. On a class of doubly transitive groups. I, II / M. Suzuki // Ann. Math., 1962. Vol. 75, \mathbb{N} 1. P. 105-145; 1964. Vol. 79, \mathbb{N} 3. P. 514-589.
- 14. Kleidman, P. The maximal subgroups of the Chevalle groups $G_2(q)$ with q odd, Ree groups ${}^2G_2(q)$ and thei automorphism groups / P. Kleidman // J. Algebra, 1988. Vol. 117. P. 30-71.

Гомельский государственный университет имени Ф. Скорины

Поступило 10.05.08