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1. Introduction

Let Tn be a symmetric semigroup of all transformations of the set N  = { 1 , n}.  A 
transformation a  G Tn is called an order-decreasing transformation if for all x  of N  it is true 
that xa  ^  x.

The set T>n of all order-decreasing transformations of Tn is a semigroup. This semi
group first appeared in Pin’s monograph ( [8]) and have been studied by various mathemati
cians afterwards (Howie [3], Higgins [2] and Umar [14], [15]).

A semigroup S  with a zero 0 is called nilpotent if for some natural number I an 
equality S l == 0 holds; a minimal number I satisfying this condition is called a nilpotency 
class of S. It is necessary to point that a transformation 0 which maps N  into {1} is the 
zero of the semigroup V n. An arbitrary subsemigroup S  of V n is nilpotent if and only if for 
all x  G S, m  G N  it is true that x (m) < x.

Let Nil(n, к) stand for the set of the subsemigroups in V n which are maximal among 
all nilpotent subsemigroups of nilpotency class к of T.

For any m  G N  and A С N  such that m $ Awe  define sets Less(m, A) =  {x G A\x < 
< m}  and Up(m, A)  =  {a: G A\x > m}.  Cardinalities of these sets we denote by less(m, A) 
and up(m, A)  correspondingly.

For some fixed к < n let A(n, к ) stand for the set of all ordered partitions (Qi, ■ ■ • , Qk) 
of TV \  {1} satisfying the following conditions for all I. 1 ^  I < k:

1) m ax i > max i\ 2) m ini > min i.
ibQi i i€.Qi

Under an ordered partition of some set A  we mean an ordered chain of nonempty disjoint
subsets (blocks) Qi> Q2 ■ ■ ■ > С -4 such that A = Qx U Q2___

For A G Л(n, к) with blocks Q1}. . . ,  Qk we define

T\  -  { ‘/ ’ б  %\{i  G Qrn) =t> G Less(i, Qm+1 U . . .  U Qk U ( 1} ) ) } .

Due to [9] T\  is a subsemigroup in Nil(n , k).
For any A С TV and S  С Tn we define S(A) =  {ч>{а)\<р G S.a  G A}. For an arbitrary 

semigroup T  G Nil(n, k) let Q u Q 2, . . . , Q P, . . .  be defined as follows :
Ql = N \ T ( N ) ]
Q i =  (TV \  Qx) \  T(TV \  Q i) ;

Qs = (TV \ ( Q x U Q2)) \  T (N \  (Qx U Q 2);

Qp’= ( N \  (Qx U • • ■ U Qp_x)) \  T ( N  \ ( Q X U • • • U Qp-i);

As it is shown in [9], Qu . . . .  Qp, . . .  form a partition of TV \  {1} and total number of blocks
k. We shall refer to the ordered partition TV \  {1} =  QXU • • • LJQk as XT.
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Theorem 1. [9] Mappings <p : A(n,k) —> Nil(n,k),  A i—-+ Т л and ф : Nil(n,k)  —> 
A (n ,  k ) ,T  i— > A x are  reciprocal and determine one-to-one correspondence between A(n,k) 
and Nil(n, k).

In [10] this theorem has been extended to the case of of order-decreasing transfor
mations of a rooted tree.

While investigating semigroup it is naturally to consider also the automorphism 
groups of these semigroups. There are a lot of papers dedicated to the structure of au
tomorphism groups of different semigroups (e.g. [1], [4], [6], [5], [7], [12], [11], [13]).

In our paper we investigate automorphism groups of semigroups in Nil(n, к ) and with 
the help of methods described in [1] we prove that each of these groups can be represented 
as a semidirect product of direct sums of symmetric groups.

Note that we perform transformations from left to right, i.e. (<p • ф)(х) = ф(р>(х)).

2. Auxiliary propositions

Let T  G Nil(n,k), n  > 2 and Ат = (Qi, ■ ■ ■ ,Qk) be a corresponding partition of 
N  \  {1}. For an arbitrary element s let doms = {m  G N\s(m) Ф 1}, rans — s(N) \  {1}. In 
the following we shall refer to |rarts| as ranks. One can construct an embedding p of V n into 
the semigroup P7],_i of all partial transformations of (2 , . . . ,  n}, putting p(s)(m) — s(m) if 
and only if s(m) Ф 1. In particular, p maps the zero of the semigroup T>n to the zero of the 
semigroup VPn-\,  i.e. to the completely undefined transformation. Thus doms. rans and 
ranks coincide with the domain, range and rank of the transformation p{s) correspondingly.

For each indecomposable element s & T  we consider a set Ms = {m  £ Q\ : s(m) £ 
€ Qk} and an element s*. where , v f 1 , габМ,sJm ) ~ < , ч , , ,

(  s(m), m $ Ms

Let ~  be an equivalence relation, which coincides with equality relation on the set of all 
decomposable elements of T, and for indecomposable elements

a ~  b a*  =  6*

Lemma 2. The relation ~  is a congruence on the semigroup T .
Proof. It is easy to verify that for any a, b, с in T  an inclusion a ~  b implies ac — 

— be and ca — cb; hence ac ~  be and ca ~  be. Thus the relation ~  is both left and right 
compatible.

Lemma 3. I f  a and b are indecomposable elements of T , then

a ~  b ac ~  be, ca — cb V c G T

Proof. An implication a ~  b =$■ ac = bc,ca = cb Vc £ T  follows from the proof
of the lemma 2. Next, let Vc 6 Г  ac — be, ca = cb. For all m  G (rana \  Qk) we define a
transformation cm such that domcrn =  in and rancm — min i. Obviously, cm G T. Then

i^iQk
acm = bcm implies an inclusion m  G ranb \  Qk and the equality {h G JV : a(h) = m}  =  {h G 
G N  : b(h) =  m}. Analogously, for all m  6  doma \  Qx we define a transformation dm such 
that randm =  m  and domcm = m a x i Again, dm G T  and cma -  cmb implies m  G dom b\Q x
and a(m) - b(m). Hence Ma = Mb and a(m ) =  b(m) for all rn ф Ma and so a* - b*.
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L e m m a  4 .  The congruency ~  is invariant under an arbitrary automorphism of the 
semigroup T.

Proof. It implies from the lemma 3, for an automorphism preserves the decompos- 
ability and indecomposability of an element.

Let T  — |J  Mi be a decomposition of T  into the union of equivalence classes of relation
i^l

and be a direct sum of symmetric groups Бмг (as groups of permutations).
L e m m a  5 . is a normal subgroup of Aut(T).
Proof. Let 7r be in A s  for any sq, s2 from T  an element s is 2 is decomposable,

then it is true that 7r(sis2)) =  s is2- Next, from the lemma 3 it follows that s is2 =  Si7r(s2) =  
=  7r(si)7r(s2), hence 7r(s!s2) =:: 7r(si)7r(s2) and 0 is a subgroup of Aut(T). Let 7  be 
from Aut(T). As 7r(s) ~  s 1 , then from the lemma 4 it follows that 7 (7r(si)) ~  7 (^1 ). Thus 
there exists a permutation /.t from ©^iSm, such that 11(7 (31)) = 7(7r(si)), in other words 
for any automorphism 7  from Aut(T)

7(©1>1*5м4) =  (@i^i31.Mj)7

L e m m a  6 . Let s be from T, 7  be from Aut(T) and let a from Qi such that s(a) G Qi+ 1 
exist. Then there exists a' from Qi such that 7 (s)(ar) G Qi+i ■

Proof. For some s G T  the existence of a G Qi and b G Qi+i, such that s(a) G Qi+i 
is equipotential to the existence of S\ , . . . ,  Sj_ 1 , si+i , . . .  Sk~\ from T  such that si • s2 ■ . . .  ■ 
■ sj_i • s ■ Sj+i • . . .  • з/г_i ф 0. The statement of the lemma now implies from the fact that the 
latter inequality is equivalent to 7 (si) • 7 (^2) • ■ • • • 7 (s*-i) * 7 (s) ■ 7 (si+i) • • • ■ • 7 (sfc_i) ф 0. 

The next lemma can be proved analogously.
L e m m a  7 . Let s be from T, 7  be from Aut(T), 1  < i < k. Then it is true that:

1. doms П Qi Ф 0 <£> domy(s) П Qiф $

2. vans f l Qi Ф 0 7Ф- ran7{s) П Qi Ф 0

For i < к we define the set Ф* as follows:

Ф, =  {s G T  : ranks* =  1, doms* С Q t,rans* G Ql+1 , and \dornst \ =  1 when % > 1}

L e m m a  8 . For any i < к the set Ф* is invariant under an arbitrary 7  from Aut(T). 
Proof. Let A stand for the set of all transformations s from T, satisfying :

1 ) there exist such sb  . . . ,  s^_b sw , . . . ,  sk- i ,  that si ■ s2 ■...  • 1 ■ s ■ si4.1 ■ ...■ sk- 1 ф 0
2)if i ф {k -  1,1}, then for any t  6 sT \  {0} there exist such / ь  . . . ,  t ^ i  G T, that t\ • . . .  ■ 
• 1 ■ t ф 0 .

We observe that for all t from T  it is true that dom(st)* С doms*. From the second clause 
of the definition of A it follows that for any t from T  the intersection of the set Qi U Qi+1 U 
U • • • U Qk-i  and the domain of st  is nonempty. Hence we conclude that for any i ф к -  1 
and A it is true that doms* G Qi U Qi+1 U • • • U Qk-\- 

Let i > 1. We consider a set

Ф,1 =  {t G A : an ideal T t  is a minimal left ideal}

It is quite clear that for any r from A  an ideal Tr  contains the elements of rank 1, whose
domain is contained in Up(max m, Q x U • ■ • U Qi-i) ,  and whose range is a number from

meQi
Qi+1 Пгапг*. At the same time, if r G A, \domr*\ — 1 and
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then T r consists of elements of rank 1 whose domain is a subset of the set Up(max m , Qi U
mzQi

U • • • U Qi-i)  and whose range is equal to ranr*. Particulary, in such a case Tr is a minimal 
left ideal. Thus we can state that the set Ф,| is not empty. Next, the inclusion ip G Ф] 
implies that ip* is a transformation of rank 1. Indeed, in such a case there exists с £ Qi+i П 
Dranip*, and Tip contains an ideal Try, where domrc =  max m ,  ranrc — c. If there exists

m eQi
d £  (Qt+i U • • • U Qk) П rawp* and с Ф d, then Tip contains a transformation rd, defined as 
follows: domra — max m, ranrd — d. It is evident that ry ф T rc. So, we have come to the

meQi
contradiction.

Next, let Ф; be a set of all r from A  such that an ideal Tr  contains exactly one ideal 
of type Tx, where x  £ Ф ■, and if for some t an ideal T t  is contained in Tr, then T t  contains 
the ideal Tx.

Now we show that if ф belongs to Ф;, then гапкф* =  1. Let c, d £ ramp*. Since ф £ A  
we can suppose that с G Qi-i without loss of generality. Let фс and фа be transformations 
defined as follows: гапфс — с, гапфа =  d, dom^c =  m axm  — don^a- Clearly, фс G Ф|. An

meQi
ideal Тф  contains all the elements of rank 1, whose domain is a subset of [/j)(maxm, Q\ U

meQi
U • • • U Qi-i),  and whose range is с or d. Then it means that Тф contains Тфс and Тфа, 
while Тфс is an ideal from {Ts : s G Ф,1}. Therefore the inclusion Тфс С Тфа fulfills. Hence 
d G Qi+i and с =  d.

Next, let Ki be the set of all r  from A  satisfying the following term: for all ф from 
Tj a set { t G T : r r  ф 0} does not contain a set {r G T : тф ф 0} strictly. We show 
that \domp*\ =  1 for all ф G K t. Let c.d G Qi, с G domp*, d G <1отф* and фс, фа be 
transformations from Tn satisfying dompc — c, domфa = d, гапфс — гапфа — гапф*. It is 
easy to verify that фс and фа belong to Ф*. Note that the set {s G T : sp ф 0} contains 
elements t\ such that dom(ti)* С Up(c, Q\ U • • • U Q i- 1), гап'фф* — с and elements ^  such 
that dom(t2)* С Up(d, Qi U ■ • • U Qi-i), ran(t2)* =  d. Thus \ s  G T : sp ф 0} contains sets 
{s G T  : spc Ф 0} and {s G T : spa ф 0}, and so, ф ф К г. At the same time, if ф G Ф* and 
domp*| =  1, then for each p from Ф* a set {s G T  : sp ф 0} either contains {s £ T  : sp Ф 0}, 

or has empty intersection with, it, and so ф belongs to Ki.
Let now ф £ T, \domp*\ =  1, don^* £ Qi: гапф* G Qi+i- Then an ideal Тф consists of
elements whose domain is equal to a subset of Up(donvp*, Qi U ■ • ■ U Qi-i), and whose range 
is equal to гапф*. Thus Тф  contains exactly one ideal from {Tx  : x £ Ф,1}, namely an 
ideal consisting of elements with range equal to гапф*, and domain equal to a subset of the
set f7p(max m, Qi U ■ U Qi-i)- Ф ^ Ф;, and since \domp*\ = 1, we have ф G Ki. So, if

VTlZzLJi

i > 1, then Ki = Фj. Invariance of the set Ф, under automorphisms now follows from the 
construction of sets А, Ф|, Фу and K {, so, for г > 1 the lemma is proved.

Let now i = 1. We consider a set Фх of all transformations t from A  satisfying the 
following conditions:
1) t belongs to the right annulator AnnR{T) of the semigroup T, in other words for all r 
from T an equality rt =  0 fulfills;
- f°r each r from А п п л (Т ) П A  a set {s £ T  : rs ф 0} is not contained in the set {s G 
G T : ts ф 0} strictly.
It implies from the first condition that domains of all the transformations from Ф̂  are 
contained in the first block of the partition Л. Next, we show that for any element t from 
ф; it is true that rankt* = 1. Assume that there exist c, d of (c, d £ rant*) П (Q2 U • • • U 
A Q k-i)  and с ф d. Since t belongs to A, then without loss of generality one can suppose
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that с G <52- Let rc be a transformation from Tn such that domrc =  {a G Q\ : t(a) =  c}, 
r a m  с =  с. It is clear that r c belongs to T, furthermore, rc belongs to АппфТ  fl A. A set 
{s G T  : ts Ф 0} contains elements p such that с G domp, and so {s G T  : ts ф 0} contains a 
set {s G T  : rs Ф 0}. The set {s G T  : ts Ф 0} contains an element p\ such that dompi — d, 
ranpi =  min m. Obviously, p\ does not belong to {s G T  : rcs ф 0}, so we have come to a

т е(}з
contradiction with the assumption t  G Фь

Let now t G А п п д (Т ) П A  and rankt* =  1. Then a set {s :G T  : ts ф 0} contains all
the elements, whose domain contains rant ; for any r G Ann л (T) П A  a set {s :G T  : ts ф 0}
does not contain the set {s :£ T  : rs Ф 0}. So, Ф* is equal to the set of all transformations s
from T,  which map some subset of Qi hito an element from Q2 and rans* =  1 , so dq =  Ф^
From the construction of Ф1 it follows that each automorphism of the semigroup T  maps an
element from dq into an element from dq, so lemma is proved for the case of i — 1 .

Corollary 9. Let s i ,  s 2 G [J Ф* and 7  G Aut(T).  Then it is true that:
1

1. dom(s 1 )* — dom(si)* -ФФ- dora(7 (si))* =  dom(7 (si))*

2. ran(si)* — ran(s i )* <=> ran(j(si))*  =- ran(7 (si))*

Proof. Since (si)* and (s2)* are transformations of rank 1, an equality dom(s-i)* = 
=  dom(s2)* is equivalent to

(SlT  -  s2T)  V {SlT  С s2T)  V (s2T  с  SlT).

The latter condition is equivalent to

(T j( s i )  =  T7 (s2) V T'y(si) С T-y(s2) V T j ( s 2) С T'y(si),

so dom(7 (si))* =  dom(y(si))*. Thus the first part of the corollary is proved. The other one 
can be proved analogously.

Corollary 10. Let s G T  and ranks* =  1, doms* С Qi, ra?is.t G Qj, i < j , j  -
-  i Ф к — 1 and in case of i > 1 |doms*| — 1. Then /o r  any 7  G Aut{T) it is true that
dom^(s)t G Qi, raii'y(s)* G Qj, rank^{s)t =  1 and \dom'y(s)J =  1 when i > 1.

Proof. Note that for any s from T  a condition doms G Qi, i > 1 is equivalent to
the existence of r from [J Ф/г -  1) such that rs Ф 0; a condition rans  G Qi, г ф к is

i t̂i
equivalent to the existence of r from (J Фг(г) such that sr ф 0; an inclusion doms G Q 1 is

к
equivalent to s /  0 and d om s f|( U  Qi) =  0 ; an inclusion ra n s  G Q*: is equivalent to s Ф 0

1=2
fc-i

and rans f)( U Qi) =  0- Then a set A  of all the mappings s from T  satisfying doms* С Qi, 
1=1

rans* С Qj is invariant under automorphisms of the semigroup T.
Let г > 1 and s G A. \doms*\ = 1 implies that for any ф, ф G Фг_1 satisfying ф -s Ф 0, 

ф ■ s Ф 0, it is true that ran /*  =  r a n /* . Then it means that for any / ,  /  g  Фг_1 such that 
/ • 7  (s) ^  0, ф • 7 (s) ф 0 it is true that ran /*  =  ran /* . As 7 (e) G ,4, then |dom(7 (s))*| =  1.

Let now i =  1 and s belong to A. |rans»| = 1 implies that for any / ,  /  G Ф̂ +i such 
that s • ф Ф 0, s ■■ ф Ф 0. it is true that dom/* =  dom/*. Then for any ф, /  G Фг+i satisfying 
7 (s) • /  ф 0, 7 (s) • ф ф 0, an equality dom/* =  do?n/* fulfills. Since 7 (5) belongs to A, we 
have rank(/j ( s )), =  1 .
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Corollary 11. Let S\ E (J Ф^(г); s2 E T, rank(s2)* =  1 and 7  € Aut(T). Then
1

1. dom(s1)* =  dom(s2)* <=7 dom(i(si))* = dom{'y{s2))*

2 . ran(s i)* =  ran(s2)* r<m(7 (si))* =  ran (7 (s2))*

Proof. Since for the present terms

dorn(si)„ =  dom(s2)* siT  D s2T  ф {0},

ran(si)* = ran (s2)* 47- Ts* П T s 2 ф {()};

it is enough to use corollary 10 .
Corollary 12. Let s L G IJ Ф^(г), s2 E T ,  7 6  A u t(T ). Then

1. ran(si)* E ran(s2)* r a n j j i ) ) *  € ra n (7 (52)),:,

2. i f  i > I, then dom(si)* G dora(s2)* dom('y(si))i, С  dorn('y(s2))^>

3. i f  г = 1, dom(si)* С  dom(s2)* and /o r all f i , t2 € dom(si)*, t$ E N  \  dom(si)* it
is true that (s2)*(ti) =  (s2)*(t2), s2(ti) 7  ̂ s2(t3), then d&?n(7 (si))* С dom(7 (s2))* and
for all t i , t 2 G dom(7 (6'i))*,t3 E N  \  d o m j j i ) ) *  it is true that 7 (s2)(ti) =  7 (s2)(t2), 
7(s2)(<i) 7̂  7 (s2)fe)

Proof. An inclusion ran(si)* 6 ran (s2)* is equivalent to the existence of such s E T, 
that ]doms| =  1, rans =- ran (s i), and T’s С T s2. The first part of the corollary easily 
implies from corollaries 10 and 1 1  .

For the proof of the second part of the corollary assertion it is enough to observe 
that dorn(si)* G dom(s2)* if and only if there exists an element s G IJ Ф:/(г'), such that

JS»1
ssj =  ss2 Ф 0.

Let now г =  1. Then an inclusion dom(s\)* С dom(s2)* is equivalent to the existence 
of s G T  such that ranks — 1, doms =  dom{s\)* and sT С  s2T. Now using corollaries 10 
and 1 1  is sufficient for the proof of the third part of the assertion.

For any of the blocks Qit 1 ^  г < к we define partition Qt =  Q] U Qf U • • •, where 
blocks of the partition are defined by the following equivalence relation:

if 1 ^  г <  к, then (a ~  b) &  (Vm G [1, к] \  {г} less(a, Qm) = less(b, Qm));

(a ~  b) o  (Vm, 1 < m  < к less(a, Qm) = less(b, Qm))■

and the order of the blocks is defined by inequalities max > max m  > ■ ■ ■ .
meQ■ meQ?

Lemma 13. Let s E T, |doms*| =  1, 7  G Aut(T). Then for any i, 1 < i < k, it is 
true that

1. dom(s)* С  Ql <77 dom{p;{s))* С  Qj

2 . ran(s)* c  Qli+1 ran (7 (s))* с  Q\+l
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Proof. Let dom(s)* =  {а} С Qj. For any I, 1 < I < i, we consider a set of all the 
transformations r from T,  such that \dom(r)*\ = 1, dom(r)* С Qi, rs 7- 0. It is clear that 
the cardinality of this set equals up(a,Qi) • \Ann(T)\,  where Ann{T)  is the annulator of 
the semigroup T.  Hence up{dom(^'(s))t , Qi) ^  up(a,Qi). From bijectivity 7  it follows that 
up(dom(/y(s))^, Qi) — up(a,Qi), and so less(dorn('j(s))^, Qi) -- less(a, Qi).

Now we consider a set of all r from T,  such that dom{r)* С Qi,|{ra?r(r)*}| =  1, rs ф 
— 0. The cardinality of this set equals to (2up -̂.Qi) _  1 ). \Ann(T)\. Analogously to mentioned 
above, up(dom('y(s))t , Qi) -- up(a,Q 1 ) and thus /ess(do?n(7 (s))*, Qi) — less(a,Q 1 ).

Next, for each I. i < I ^  к we consider a set of all r  from T  such that 
|dom(r)*| =  1, ran(r)* С Qi and (rT  --= s T ) V {rt С sT)  V (.sT  С rT).  It is imme
diate that s belongs to this set. Next, the cardinality of this set equals to less(a,Qi) •
• \Ann(T)\.  Thus less{dom(~r(s))*,Qi) ^  less{a,Qi).  From bijectivity of 7  it follows that 
less(dorn('y(s))*,Qi) =  less(a,Qi).  So, for all / ф i it is true that less{dom{'y{s))^,Qi) —
= less(a,Qi).  Thus dom(7 (s))* С Qj.  One can prove the conversed implication
(dom(/y(s))t С Qj) => (dora(s)* С Qj)  using already proved assertion for the automorphism 
7 _1-

The second part of lemma can be proved analogously.
L e m m a  1 4 .  Let s £ T, rank(s)* =  1, 7  G Aut(T).

1. I f  ran(s)* С Qk, |dom(s)*| — 1, then for any i, 1 < г < k, it is true that
up(ran(s)*,Qi) = up(ran('j(s))^,Qi)

2. if dom{s)* С Q\, then for any i, 1 < i < k, it is true that less( min a,Qf) —
a£dom (s)*

=  less( min a,Qt)
a£dom( 7(s)),

Proof. The proof follows from the fact that the cardinality of the set 

{r : domr* € Qi, rankr* =  1, raw * £ Qi, (rT  =  sT)  V (rT  С sT)  V (sT  С r T )} 

equals to a number less{ min a, Qi); and the cardinality of the set
a£dom (s),

{r : domr* 6 Qu \domr*\ =  1, raw * € Qk, (T r  = T s ) V (T r  С Ts)  V (Ts  С Tr)}

equals to a number up(ran(s)*, Qi).
Lemma 15. I f  the nilpotency class к of the semigroup T  is greater than 3, then for 

any d, 1 ^  d ^  jQil a set

{s £ T , rank(s )* =  1, doms С Qi, |doras*| =  d}

is invariant under an arbitrary automorphism 7  0/  t/ге semigroup T.
Proof. For any Л С Qi, A ^  0  and 6 € Q2 U . . .  U Qfc_j we consider a set 0(A, b) of 

all the transformations s from T  satisfying rank(s)* =  1, doms* =  A, rans* =  b. Note that 
|0(A , 6)| =  1 if and only if A =  Q v  Next, for sb s2 and Г, such that

rank(s i )* =  1 =  rank(s2)*, domsi G Q1; doms2 G Qi

and equality dom(s'i)* П dom(si)* =  0 is equivalent to the existence of transformation s3 
from T, such that

ran£(s3)* =  2, dom(s3) с  Qb ran(s3)* =  ran(s;l)* Uran(,s2)*,
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{a 6 Qi : s3(a) 6 ran'(si)*} =  dom(si)*] {a G Qi : s3(a) G («2)*} =  dom{s2)*.
Then inequality doms П dornt ^  0  holds for any t e  T  satisfying r a n k t — 1, =  domt G Q3 
if and only if doms* =  Ql- Hence |doms*| =  |Qii ^  |dora(7 (s))*| =  |Qi|-

We consider all the elements from T  satisfying rankt* =  1, domt G Qi doms П domt — 
— 0. If it is possible to choose IQx) — 1 elements with pairwise nonequal domains among all 
such elements, but one can not choose |Qi| elements among all such elements though, then 
it will be if and only if \doms*\ =  \Qk~a\- Hence we conclude that \doms*\ =  |Qi| — 1 and 
|dom(7 (s))*| =  |Qj| — 1 are equivalent.

A semigroup T  contains an elements t satisfying rankt* =  1, dornt G Q 1 , \domt*\ =  
= |Qi| — 1, doms П domt — 0 if and only if \domtf \ = 1. So, equalities \doms*\ =  1 and 
|dom(7 (s))*| =  1 are equivalent.

It is possible to choose г element with pairwise nonequal domains among all the 
elements t  satisfying rankt* =  1, domt G Q\, \domt\ — 1, doms П domt ^  0, while i +  1 
elements among all the elements satisfying mentioned condition can not be chosen, if and 
only if \domt*\ = i. Thus equalities \doms*\ =  i and |dom(7 (.s))*| =  г are equivalent.

C o r o i la x - y  1 6 .  Let s £ T, 7  G AutifT). Then equalities \doms*\ =  1 and 
|dom(7 (s))*| =  1 are equivalent.

C o r o l l a r y  1 7 .  Let s 1; s2 G T,  doms\ С Q\, doms2 С Q\, |o’om(si)*| =  1, 
rank(s2)* =  1, 7  € Aut(T). Then {dom{sf)* С dom(s2)*) (dorafy'fyi))* С dora(7 (s2))*) 

C o r o l l a r y  1 8 .  Let S\, s2 G T, domsi С Qi, |dom(.Si)„| =  1. 7  G Aut(T). Then 
dom(si)* С dom(s2)* <t7 dom(7 (s3))* С dom{^{s2))*.

Proof. The proof follows from corollaries 17 and 1 2 .
L e m m a  1 9 .  Let s G T, \doms*\ =  I, 7  G Aut(T). Then

dom(s)* С Q{ dom(7 (s))* С Qj.

Proof. We consider a set M  of all such transformations t from T,  such that

domt С Q 1 , |domt„| =  |<5x| — 1, rani* =  {rnina}, domt* П doms* =  0.
aeQ'2

It follows from lemma 15 and corollary 12 that M  is invariant under automorphisms of the 
semigroup T. It is clear that for all t from M  domt* =  Q3 \  doms*. Besides, the cardinality 
of the set M  equals less(doms*, Qk) +  1 . Next, with the use of lemma 15 and corollary 10, 
we obtain

less(dom('y(s))*,Qk) +  1 =  less(doms*,Q3) +  1,

and so less(dom('y(s))*,Qk) =  less(doms*,Q3). An implication (dom(s\ )* С dom(s2)*) => 
=> (dom('y(si))* С dom (j(s2))*) follows now from lemma 14. To prove the converse impli
cation one can apply already proved assertion for the automorphism 7 -1  and the element 
7 ( s ) .

L e m m a  2 0 .  Let S\, s2 G T, \doms*\ — 1, element s2 is decomposable and 7  G Aut(T).
Then

dom(si)* С (Q1 П domsf) dom(7 (s3))* С ( ф  ndom 7(s2)), 
ran (s i) , С (Qfe П ransf) •<=> rcm(7 (s3))* с  (Qfc f lr a n 7 (s2)).

Proof. Since the element s2 is decomposable then there exist £3,£2 from T, such that

dom(ti), =  doms2 D (Q\ П doms2),

ran(t2)* == rans2 D (Q3 D ran s2), 
then the proof of lemma follows from the corollary 1 2 .
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We will say th a t t from T  has an indecomposable arrow from a into 6, if

•  a belongs to Qi, b belongs to Qk]

• t(a) — b-,

• (t(a),a) П ( i j  Qi) = 0 .

i = 2

к ,m i

Let 5  -  be a direct sum of symmetric groups of blocks Q j . For any 7r from S'
t=l,m = l

let 7Г(1) =  1 and W : 1 t—> tn be transformation, defined as follows: for all a from N

, . _  j  t(7r~1(a)), if a has an indecomposable arrow from '/r_1(a) into t(n~1(a));
[ 7r(t(7r_1(a))), otherwise .

R e m a r k  2 1 .  I f  t  is decomposable, then tn(a) = Tr(t(n~1(a))) for all a from N.  
R e m a r k  2 2 .  I f  a belongs to dom(t)*, then tn(a) — ir(t(n~l (a))).
L e m m a  2 3 .  For any permutation rc from S  following conditions are equivalent:

• 7r-1(a) 6 Qx, f(7r- 1 (a ) )  G Qk> (t(ir- 1 ( a ) ) ,  7г- 1 (а ) )  П ( [j Qt) = 0;
i—2

к—1
• a G Qi, tn(a) G Qk, (a, U(a)) П ( (J Qf) =  0.

i—2

Proof. For the properties of partition UQj it follows tha t a belongs to Q i if and only if 
7r -1 (a) belongs to Qi, and. th a t Q(a) belongs to Qk if and only if <(7r-1 (a)) belongs to  Qk. If

к—1 k—1
(t(7r_1(a)),7r” 1( a ) ) n (  (J Qi) = 0, then (a, tn(a)) П ( [J Qt) = 0, as {c G Q2\J- ■ -UQk- i  ■ с <

i=2 i—2
< a} =  {c G Q2 U • • • U Qk-1 : с < 7г_ 1 ( а ) } .  If there exists such b from Q2 U • • • U Qk-i,  tha t 
7Г_1(а) > с > t (n_1(а)), then a > с and 7r(t(7r_1(a))) < с, a > с > tn(a).

к,m i

L e m m a  2 4 .  The mapping n : t i—»• tn is an embedding of the grorup S  — 0  Sq™

into the group A u t T .
Proof. 1. We show th a t 7f maps T  into T,  i.e. for any t G T  an inclusion tn G T  

holds. We need to show th a t for any i, 1 ^  i ^  k, a from Q, conditions t7r(a) A a and 
tn(a) G N  \  (Qi  U  • • • U Qi) hold. Since for any i and j  an inclusion Qj С  Qt holds, then it 
follows th a t t„(a) G N  \  (Q1 U • • • U Qi). It remains to show th a t tn is an order-decreasing 
transformation. As t is order-decreasing, then f(?r_1(a)) < 7r_1(a).

к — I
L et 7r- 1 (a )  G Qi, £(тг_ 1 ( а ) )  G Qk a n d  (£(7г- 1 ( а ) ) ,  тг_ 1 (а ) )  П ( (J Qi) =  0- Then a

i = 2
belongs to Qi and inequality t„(a) < a implies from {c G Qk ■ с < a} — {c G Qk : с <
< 7г-1 (а)}.

Let 7г_1(а) G Q i and ф г _1(а)) G Qk do not hold simultaneously. If £(7г_1(а)) =  1, 
then t„(a) = 7t(1) =  1, tha t is a ^  tn(a). If <(7г_1(а)) ф 1, then it implies from a G Q\\ 
and t(a) G Qjj th a t i2 -  ix < к -  1. Then for the definition of the blocks Qj we obtain th a t 
7г-1 (а) > 7г(t(a)). An inequality 7r-1 (a) > t(a) follows from the structure of Q\.

Let n - 1 (a) G Qi, t(n~1(a)) G Qk and there exists b from Q2 U • • ■ U Qk- 1 such tha t 
7T_1(u) > b > t(7r_1(a)). Since numbers я - ^ а )  and a are contained in the same block of
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partition UQj, then b < a. Numbers t(7r~l (a)) and 7r(f(7r^1(a))) are contained in the same 
block of partition UQj, thus n(t(7r~1(a))) < b. Hence a > tn(a).

So, tn is an order-decreasing transformation.
2 . Now we show that ¥ is a homomorphism, i.e. tn -sn --- (ts)n. Since ts is an indecom

posable element, then for any a from N  it is true that tsn(a) — 7r(£s(¥-1(a))). If £(7T_1(a)) 
belongs to Qk, then tn(a) and 7r_1(^ (a)) belong to Qk. Hence tsn(a) ~  Tr(s(t(n~1(a))) = 7r(l) 
and tnsn =  Tr(s(ir~1(t7T(a))) =  7r(l), i.e. tsn(a) =  t^sn(a).

If t(7r_1(a)) does not belong to Qk, then tn(a) = 7r(t(7r-1(a))). As t„(a) ф Q i,
then ф Qi. We obtain that (ts)n(a) =  7r(<s(7r_1(a))) =  7r(s(t(7r_1(a)))) =
= s(f(7r_1(a))) — s(7r“ 1(7r(f(7r"'1(a))))) =  t^s^. Thus ¥  is a homomorphism.

3. Now we show that ¥  is injective. Let t, s belong to T, s Ф t. Then there exists 
a from N  such that s(a) ф t(a). Assume that tn(ir(a)) =  sn(ir(a)). Then, with the use of 
lemma 23 we obtain that following conditions are equivalent:

k—1
a), a £ Qi, t(a) £ Qk, (:t(a), а) П ( (J Q{) =  0;

i - 2 
fc-1

b). a £ Qu  s(a) £ Qk, (s(a). а) П ( (J Qt) = 0.
i - 2

Then it implies from tn(n(a)) = sn(7r(a)) that one of equalities holds: either
7r(t(7r_1(7r(a)))) =  7г(б’(7г_1(7г(а)))), or f(7r_1(7r)(a))) =  s (¥ -1(7r(a))). We have come to 
contradiction with statement s(a) Ф t(a). Thus tn Ф s„, and so ¥  is injective.

к,гщ
4. For any г, ж £ S  =  0  Sq™. we show that ¥ r  =  ¥  • r. It follows from the lemma

t = l ,  r o = l

23 that t7r has an indecom posable arrow from  т~1(а) into t7r( r “ 1(a )) if and only  if t has an  
indecom posable arrow from  ж~1(т~1(а)) into f ( 7r_ 1 ( r _ 1 (a )) ) .

Let for some a from N  t^T{a) — Ь{{жr ) _1(a). Then (t7r)T(a) =  ^ ( г _1(а)) =  
= £(7г-1(т-1(а))), wherefrom (tn)T =  tnT(a). In case when tnr(a) =  7rr(f((7rr)“ 1(a))), we 
have that (tn)T(a) = r ( t7r( r _1(a))) =  7-(7г(̂ (7г—1 (т*-1 (а))))), and hence (t„)T =  tnT(a).

5. Now we show that ¥  is surjective. From the proved above it follows that i)ff =  
= tnтт-i. But 7Г7Г 1 — is an identical permutation, thus tnn-i ~  t, and so ¥  is a surjection.

6 . Now we show that if ¥  =  r , then ж — т. For any a £ N  \  [Qx U {!}) we denote
k

by ta a transformation from (J Ф, such that ranta — {a}. Then ж (a) = r(a) implies from
i- 1

[ta)n — (ta)T■ For any a £ Qi we denote by ta a transformation from T  such that domta =
= {a} and ta(a) £ Q2- Then n(a) = r(a) implies from (ta)n =  (ta)r . As 7r(l) =  r ( l )  then
¥ =  r.

к,1Щ
In the following we will equate the group S  = 0  S q™ to the image of embedding

i= l ,m = l
into the group Aut(T).

L em m a 25. A u t (T ) /  SMl =
Proof. For any a from N  we define transformation ta on the set N  as follows:

• domta =: {a}, ranta =  { min m}, if a belongs to Qu 1 sC i < k\
me.Qi+i

• ranta — {a}, domta ~  { min rn}, if a belongs to Qk;
m€:Qi+i,m>a

• t=0, if a — 1.

It easy to see that for any a transformation ta belongs to T.  Let belong to T.  We define a
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transformation 7rc on the set N  as follows:

{domta, if a belong to Q,; and 1 ^  i < k\
ranta, if a belong to Q&;

1 , if a — 1;

It follows from lemmas 13, 14, 19 that 7rs- belongs to •
Let £ be decomposable element of T. Then for the remark 21 for all a from N  t^ (a )  — 

=  7rc(f(7r~1(a))) (tni_ we define as in previous lemma). Then for the lemma 20 we obtain that 
domq(t) = 1J dom(g(ta))* =  domt^  and for all a of domg(t) it is true that q(t) =  t ^ .

a£domt
Let £ be indecomposable. Then for all a of dom(tnc_)* we have that tWt_(a) — 7г?(£(7г'1(а))). 
From corollaries— 12, 16 — 18 it implies that dom(q{t))* = (J dom(s(ta))* — dom(t^)*

a & domt
and for all a from dom(g(t))* it is true that q(t) = tT<;. Then g(t) ~  Note that if 7r? is 
identical mapping, then for all £ from T  we have that tn^(a) t(a) if a belongs to dom(t)* 
and ^ ( a )  =  t(a) if a belongs to domt and t is decomposable. Thus ~  t and q(t) ~  t.

If <;(£) t for all t € T, then ~  t and £^(o) =  £(a) if a belongs to domt* and 
А-До) =  £(а) if a belongs to domt, if £ is identical. Thus £T is identical.

We denote a mapping /  from th set Aut(T)  into the set ®£^4,n_15,Qm as follows: 
/  : <; t-t 7T?. It is easy to verify that 1 is a homomorphism. is a kernel of mapping
/ ,  so lemma is proved.

Proof. From lemmas 20, 3 and corollaries 9 — 12, 16 — 18 it follows that if £ 
is decomposable and a G N  or if £ is indecomposable and a 6 domt*, then y(£) =  £w (a). 
Therefore 7 (f) ~  £̂ 7. If 7t7 is an identical mapping, then for all £ from T  an equality tn_f(a) = 
= t(a) fulfills for any a from domt*, if £ is decomposable, then (a) — t(a) for any a from 
domt. Thus t%l ~  £ and y(£) ~  (£). At the same time, if q(£) ~  (£) for all £ e T, then t ^  ~  £ 
and £,r7(o) =  £(a) for all a from domt* and if £ is decomposable, then tn̂ (a) = t(a) for all a
from domt. Thus 7r7 is an identical mapping. Next we consider a mapping /  : 7  1—* 7r7 from
Aut(T)  into It is easy to verify that I  is a homomorphism, while the kernel
of I  equals to wherefrom the assertion of lemma easily implies.

3. The main theorem

T h eo rem  26. Let T  be a nilpotent subsemigroup from V n which is maximal among 
all the nilpotent subsemigroups of nilpotency class k.

1. I f  к — 2, then Aut{T) ~  ST\{0}.

2. I f  к > 3, the group Aut(T) may be represented as a semidirect product of direct sums
of the symmetric groups

A u t(T ) =  @i^iSMi X

Proof. 1. Since a nilpotent semigroup of nilpotency class 2 is a semigroup where 
the product of two arbitrary elements is zero then any permutation of any element is 
an automorphism.

2. It follows from the lemmas 2, 5 and 25.
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C o ro lla ry  27. I f T  is the maximal nilpotent subsemigroup from T>n, then Aut(T)  =  
=  C2 ® . . .  Ф C2, where r equals the number of the indecomposable elements in the maximal

4---------- v*  /
Г

nilpotent subsemigroup of T>n-\.
Proof. It implies from fact that all the blocks of the partition Л are one-element and 

each equivalence class for the ~  contains either one or two elements, while s is contained in 
two-element class if and only if s* is an indecomposable transformation and n doms*.

A b s trac t. The paper deals with the automorphism groups of maximal nilpotent subsemi
groups of V n of nilpotency class k. It is proved that each of these groups can be represented 
as a semidirect product of direct sums of symmetric groups.
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