УДК 512.542

Максимальные подгруппы и π -сверхразрешимость конечной группы

А. В. Шныпарков

Рассматриваются только конечные группы. Исследование строения разрешимой группы в зависимости от значений показателей степеней примарных индексов максимальных подгрупп произведено в работах [1-3]. Б. Хупперт [1] установил, что конечная группа сверхразрешима тогда и только тогда, когда индексы ее максимальных подгрупп простые числа. Ф. Холл ([2], теорема 10.5.7) доказал, что если индексы максимальных подгрупп — простые числа или квадраты простых чисел, то группа разрешима. Инварианты разрешимой группы в зависимости от произвольных значений показателей степеней примарных индексов максимальных подгрупп получены В. С. Монаховым [3].

В настоящей заметке развивается тематика подобных исследований. Доказываются следующие теоремы.

Теорема 1. Пусть G — группа нечетного порядка, π — некоторое подмножество множества $\pi(G)$. Если индекс каждой подгруппы из $\mathcal{M}_{\pi}(G)$ — простое число или квадрат простого числа, то $r_p(G) \leq 2$ для всех простых $p \in \pi$.

Теорема 2. Пусть G — π -разрешимая группа. Группа G π -сверхразрешима то-

Теорема 2. Пусть $G - \pi$ -разрешимая группа. Группа G π -сверхразрешима тогда и только тогда, когда для кажсдой подгруппы M из $\mathcal{M}_{\pi}(G)$ пересечение $F_{\pi}(G) \cap M$ — максимальная подгруппа группы $F_{\pi}(G)$.

Напомним необходимые обозначения и определения. Символом π будем обозначать некоторое множество простых чисел, а π' — дополнение к π во множестве всех простых чисел. Число, делящееся только на простые числа из множества π , называется π -числом. Множество всех простых делителей порядка группы G обозначается $\pi(G)$. Подгруппа H группы G называется π -группой, если $\pi(H) \subseteq \pi$. Если же $\pi(H) \subseteq \pi'$, то будем говорить, что H — π' -группа. В дальнейшем будем считать, что π — некоторое подмножество $\pi(G)$ основной группы G.

Подгруппы Фраттини и Фиттинга группы G обозначаются через $\Phi(G)$ и F(G), а $O_{\pi}(G)$ — наибольшая нормальная π -подгруппа группы G. Запись G = [A]B означает полупрямое произведение с нормальной подгруппой A. Класс всех нильпотентных π -групп обозначается через \mathfrak{N}_{π} , а $\mathfrak{E}_{\pi'}$ — класс всех π' -групп.

Через $F_{\pi}(G)$ обозначается наибольшая нормальная π -нильпотентная подгруппа группы G с нильпотентной π -холловой подгруппой. Таким образом $F_{\pi}(G)/O_{\pi'}(G) = F(G/O_{\pi'}(G))$ и $F_{\pi}(G) = [O_{\pi'}(G)]A$, где A — нильпотентная π -холлова подгруппа из $F_{\pi}(G)$. Множество всех максимальных подгрупп группы G, у которых индекс является π -числом и которые не содержат $F_{\pi}(G)$. обозначим через $\mathcal{M}_{\pi}(G)$.

Ряд

$$E \le G_1 \le G_2 \le \dots \le G_n = G \tag{1}$$

неединичной группы G называется главным рядом, если G_{i-1} является максимальной нормальной подгруппой группы G, содержащейся в G_i для всех $i=2,3,\ldots,n$. Факторгруппы G_i/G_{i-1} при этом называются главными факторами ряда (1).

Число r называется p-рангом ряда (1), если p^r является наибольшей степенью числа p, встречающейся в качестве порядков факторов ряда (1). Если среди порядков факторов ряда (1) нет ни одного, равного степени p, то p-ранг ряда (1) считается равным нулю.

Если (1) — главный ряд неединичной группы G, то его p-ранг называют главным p-рангом группы G и обозначают через $r_p(G)$. В силу теоремы Жордана-Гельдера любые два главных ряда группы G изоморфны, поэтому значение главного p-ранга определяется однозначно.

Главный ранг неединичной группы G определяется равенством $r(G) = \max\{r_p(G) \mid p \in \pi(G)\}$. Для единичной группы E полагают $r_p(E) = r(E) = 0$,

Пусть (1) — главный ряд группы G и $|G_i/G_{i-1}|=p^{\alpha_i}, i\in I\subseteq\{2,3,\ldots,n\}$. Арифметическим p-рангом неединичной группы G называется наименьшее общее кратное всех $\alpha_i, i\in I$, и обозначается $\overline{r}_p(G)$. Если G=1, то считают, что $\overline{r}_p(G)=0$.

Группа G называется π -разрешимой [5], если все ее главные факторы являются либо элементарными абелевыми p-группами для $p \in \pi$, либо π' -группами. π -разрешимая группа с π -факторами простых порядков называется π -сверхразрешимой.

Для доказательства приведенных выше теорем нам понадобятся следующие утверждения.

Лемма 1. ([6], теорема 4.23) Если H — нильпотентная нормальная подгруппа группы G и $H \cap \Phi(G) = 1$, то H дополняема в группе G.

Лемма 2. ([7], лемма 3.3) Пусть G — неприводимая подгруппа GL(2,p) и |G| — нечетное число. Тогда G — циклическая группа порядка делящего (p^2-1) .

Лемма 3. ([6], теорема 4.24) В любой группе G фактор-группа $F(G)/\Phi(G)$ есть прямое произведение абелевых минимальных нормальных подгрупп фактор-группы $F(G)/\Phi(G)$.

Лемма 4. ([4], теорема VI.8.4) Если G — разрешимая группа и $(\overline{r}_p(G/\Phi(G),|G|)=1$, то $\overline{r}_p(G/\Phi(G)=\overline{r}_p(G)$.

Лемма 5. ([4], теорема VI.9.3) Если $G \rightarrow p$ -разрешимая группа и индекс каждой максимальной в G подгруппы либо не делится на p, либо равен p, то группа G p-сверхразрешима.

Лемма 6. Пусть G — группа, $\pi \subseteq \pi(G)$, $O_{\pi'}(G) = \Phi(G) = 1$. Если H/K — G-главный фактор группы G и $H \subseteq F(G)$, то существует подгруппа M из $\mathcal{M}_{\pi}(G)$ такая что |G:M| = |H/K|.

Доказательство. По лемме 1 подгруппа K дополняема в группе G. Поэтому существует подгруппа A группы G такая, что G = [K]A. По тождеству Дедекинда

$$H = G \cap H = [K](H \cap A) = K \times (H \cap A),$$

поскольку $H \leq F(G)$ и F(G) — абелева подгруппа. Обозначим $N = H \cap A$. Ясно, что $N \triangleleft A$ и N централизует K. Поэтому $N \triangleleft G$. Так как $H/K \simeq N$, то N — минимальная нормальная подгруппа группы G. Поскольку $\Phi(G) = 1$, то существует максимальная в G подгруппа M такая, что G = [N]M и [G:M] = |N| = |H/K|. Лемма доказана.

Доказательство теоремы 1. Используя индукцию по порядку группы G, заключаем, что $O_{\pi'}(G)=1$ и $F_{\pi}(G)=F(G)$. Предположим, что $\Phi(G)\neq 1$. Опять применяя индукцию по порядку группы G, получаем, что $r_p(G/\Phi(G))\leq 2$. Значит $\overline{r}_p(G/\Phi(G))\leq 2$. Так как |G| — нечетное число, то $(\overline{r}_p(G/\Phi(G),|G|)=1$. По лемме 4 $\overline{r}_p(G)\leq 2$, а значит и $r_p(G)\leq 2$. В силу индукции $\Phi(G)=1$.

Используя лемму 6, получаем, что порядки G-главных π -факторов, содержащихся в подгруппе F(G) — простые числа или квадраты простых чисел.

Остается показать, что порядки главных π -факторов фактор-группы G/F(G) — простые числа или квадраты простых чисел. По лемме 3

$$F(G) = N_1 \times N_2 \times \ldots \times N_n, \tag{2}$$

где N_i — абелевы минимальные нормальные π -подгруппы группы G. Так как $\Phi(G)=1$, то для любой подгруппы N_i , где $i=1,\ldots,n$, существует подгруппа M_i из $\mathcal{M}_{\pi}(G)$ такая, что

$$G = [N]M, |N_i| = |G: M_i|.$$

По предположению

$$|N_i| = p$$
 или $|N_i| = p^2, p \in \pi, i = 1, \dots, n.$

Если $|N_i|$ — простое число для некоторого $i\in 1,\ldots,n$, то фактор-группа $G/C_G(N_i)$ циклическая. Если $|N_i|=p^2$ для некоторого $i\in 1,\ldots,n$, то $G/C_G(N_i)$ — неприводимая подгруппа группы GL(2,p). Так как |G| — нечетное число, то по лемме 2 $G/C_G(N_i)$ — циклическая группа. Из равенства (2) следует, что

$$C_G(F(G)) = \bigcap_{i=1}^n C_G(N_i).$$

Так как G разрешима, то $C_G(F(G)) \leq F(G)$. А поскольку F(G) абелева, то $F(G) \leq C_G(F(G))$. Поэтому $F(G) = C_G(F(G))$ и

$$G/F(G) = G/C_G(F(G))$$
 изоморфна подгруппе из $\prod_{i=1}^n G/C_G(N_i)$.

Это означает, что G/F(G) абелева. Отсюда следует, что все главные факторы факторгруппы G/F(G) имеют простые порядки. Теорема 1 доказана.

Доказательство теоремы 2. Пусть G π -сверхразрешима и M — максимальная подгруппа группы G, индекс которой является π -числом. Тогда |G:M| — простое число. Если $F_{\pi}(G)$ не содержится в M, то

$$F_\pi(G)M=G \text{ if } |G:M|=|F_\pi(G):F_\pi(G)\cap M|$$

является простым числом. Поэтому $F_{\pi}(G)\cap M$ — максимальная подгруппа в $F_{\pi}(G)$.

Обратно, пусть G π -разрешима и для каждой подгруппы M из $\mathcal{M}_{\pi}(G)$ пересечение $F_{\pi}(G)\cap M$ — максимальная подгруппа группы $F_{\pi}(G)$. Предположим, что $K=O_{\pi'}(G)\neq 1$. Тогда M/K — максимальная подгруппа группы G/K и |G/K:M/K| — число. Кроме того, $(F_{\pi}(G)\cap M)/K$ — максимальная подгруппа в $F_{\pi}(G)/K$. По индукции факторгруппа G/K π -сверхразрешима. Это означает, что группа G π -сверхразрешима, противоречие. Значит

$$O_{\pi'}(G) = 1$$
 и $F_{\pi}(G) = F(G)$.

Так как

$$F(G/\Phi(G)) = F(G)/\Phi(G),$$

то условия теоремы 2 переносятся на фактор-группу $G/\Phi(G)$. Если $\Phi(G)\neq 1$, то по индукции $G/\Phi(G)$ π -сверхразрешима, поэтому согласно теореме VI.8.6 [4] группа G π -сверхразрешима. Итак,

$$\Phi(G) = 1, \ F_{\pi}(G) = N_1 \times N_2 \times \ldots \times N_n$$

является прямым произведением абелевых минимальных нормальных π -подгрупп N_i группы $G,\,i=1,\ldots,n$. Для каждого i существует максимальная подгруппа M_i группы G такая, что

$$M_i \cap N_i = 1$$
 и $G = M_i[N_i]$.

Согласно тождеству Дедекинда,

$$F_{\pi}(G) = [N_i](F_{\pi}(G) \cap M_i),$$

а по условию теоремы $F_{\pi}(G) \cap M_i$ — максимальная подгруппа в $F_{\pi}(G)$. Из нильпотентности $F_{\pi}(G)$ следует, что индекс

$$|N_i| = |F_{\pi}(G) : F_{\pi}(G) \cap M_i| = p_i$$

есть простое число из π . Теперь фактор-группа $G/C_G(N_i)$ абелева, поэтому

$$G' \le \bigcap_{i=1}^n C_G(N_i) \le C_G(F_\pi(G)) \le F_\pi(G).$$

Пусть теперь M — максимальная в G подгруппа и $|G:M|=p^{\alpha}, p\in\pi$. Если $F_{\pi}(G)\leq M,$ то G/M абелева и |G:M| — простое число. Если $F_{\pi}(G)$ не содержится в M, то

$$F_{\pi}(G)M = G$$
 и $|G:M| = |F_{\pi}(G):F(G)_{\pi} \cap M_i|$

будет простым числом. По лемме 5 группа G p-сверхразрешима для всех $p \in \pi$. Теперь G π -сверхразрешима. Теорема 2 доказана.

Следствие 2.1. ([6], теорема 4.56) Пусть G — разрешимая группа. Группа G сверхразрешима тогда и только тогда, когда для каждой максимальной подгруппы M группы G либо $F(G) \leq M$, либо $F(G) \cap M$ — максимальная подгруппа группы F(G).

Доказательство. Полагая $\pi=\pi(G)$, в теореме 2 получаем требуемое утверждение.

Следствие 2.2. Пусть $G-\pi$ -разрешимая группа. Группа G π -сверхразрешима тогда и только тогда, когда для каждой максимальной подгруппы M группы G, индекс которой есть π -число, и любой нормальной подгруппы N группы G либо $N \subseteq M$, либо $N \cap M$ — максимальная подгруппа группы N.

Доказательство. Пусть $G-\pi$ -сверхрешимая группа, M — максимальная подгруппа группа G, индекс которой есть π -число, и N — нормальная подгруппа группы G. Если M не содержит N, то

$$MN=G$$
 и индекс $|G:M|=|N:N\cap M|$

будет простым числом. Поэтому $N\cap M$ — максимальная подгруппа в N.

Обратно, пусть для каждой максимальной подгруппы M группы G, индекс которой есть π -число, и любой нормальной подгруппы N группы G либо $N \subseteq M$, либо $N \cap M$ — максимальная подгруппа группы N. Тогда это верно и для подгруппы $F_{\pi}(G)$. По теореме 2 группа G π -сверхразрешима. Следствие доказано.

При $\pi = \pi(G)$ следствие 2.2 совпадает со следствием 1 теоремы 4.56 [6].

Abstract. The paper considers finite groups with the limitation on maximal subgroups of given in-dexes.

Литература

- 1. Huppert B. Normalteiler und maximale Untergruppen endlicher Gruppen / B. Huppert // Math. Zeit. 1954. V. 60. P. 409–434.
 - 2. Холл М. Теория групп / М. Холл // М.: ИЛ. 1962.

- 3. Монахов, В.С. Об индексах максимальных подгрупп конечных разрешимых групп / В. С. Монахов // Алгебра и логика. — 2004. — 43, № 4. — С. 411–424.
- 4. Huppert, B. Endliche Gruppen I. / B. Huppert // Berlin, Heidelberg, New York. -1967.
- 5. Чунихин С. А. Подгруппы конечных групп / С. А. Чунихин // Минск: Наука и техника. -1964. -158 с.
- A.C. N

 Ame square inde

 Hoerymano 21.12.07 6. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Мо-