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Abstract—A calculation of structural relativistic corrections of higher orders for the ground states of hydro-
gen-like systems, such as a hydrogen atom and a muonic hydrogen atom, has been performed. The depen-
dence of the corrections on the parametrization of proton form factors is investigated. The numerical esti-
mates show that the corrections are within the limits of sensitivity of modern experiments to measure the
energy characteristics of hydrogen-like systems.
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INTRODUCTION

Studying the characteristics of bound systems is the
most important source of information on the proper-
ties of interactions of elementary particles. In this
regard, to explain the experimental data within the
framework of quantum field models, it is necessary to
take into account both relativistic effects and effects of
higher orders in the interaction constant. Such calcu-
lations require techniques that allow numerical calcu-
lations of these effects with high accuracy.

Calculating various corrections for energy charac-
teristics of -states of hydrogen-like systems is relevant
for several reasons. First, experimental measurements
of -states of the hydrogen atom are carried out with
high accuracy ( ) [1]. Second, there is still no
final solution to the problem of the difference between
the values of the proton charge radius obtained in the
experiment with muonic hydrogen [2] and an ordinary
hydrogen atom. This situation has stimulated numer-
ous theoretical studies of various corrections that can
improve the accuracy of theoretical calculations
[3‒6].

This work is devoted to calculating higher order
structural relativistic effects for -states of hydrogen-
like systems. For the calculations, a calculation tech-
nique is used based on the impulse representation of
the interaction potential and the exact calculation of
the radial kernel of the equation of state (without
expansion in powers of the velocities) carried out in
[7, 8]. Using this technique, higher order relativistic
contributions are calculated for the muonic and ordi-
nary hydrogen atoms, the bound states of which are
described by the gauge-invariant Poincaré-covariant
model. This model is based on the point form of Poin-
caré-invariant quantum mechanics (PIQM).

1. DESCRIPTION 
OF A BOUND TWO-PARTICLE SYSTEM 

IN THE POINCARÉ COVARIANT MODEL
The main requirement of PICM is the condition

for the preservation of Poincaré invariance both for
systems without interaction and for interacting parti-
cles. In the case of a system of two particles with
masses  and  and, accordingly, with 4-pulses

 and , this require-
ment, within the framework of the instantaneous and
point forms of the PIQM, leads to the equation for the
bound state with the wave function  and mass :

(1)

where  is the effective mass of a
system of noninteracting particles with an impulse of
relative motion   .

The nucleus of the fermion–fermion system in the
 basis for an arbitrary total angular momentum ,

after the exact calculation of the spinor part by the
method of basis spinors [11], can be written in the form

(2)
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where
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To shorten the record, additional functions have
been introduced:
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with

(9)

An analytical expression for the last part of the
potential is written in the form

(10)

For the Clebsch–Gordan coefficients of the group
, we use the notation of the form

Components  are linear combina-
tions of functions

(11)

(12)

where the form factor  is the result of vacuum
polarization and  and  are fermion
form factors.

In Eqs. (3)–(10), the functions  and
 are defined by integrals of the form
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The radial part of the potential was obtained on the
basis of the scattering amplitude of fermions, which
took into account the diagrams of one-boson
exchange, the structure of the proton, the diagrams
associated with the polarization of the vacuum, and
the electromagnetic corrections for the electron line
[7, 8]. In this work, we investigate the corrections
associated only with the structure of the proton.
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2. ESTIMATING 
THE RELATIVISTIC CONTRIBUTIONS

As a rule, when calculating the energy corrections
of hydrogen-like systems, the potential expansion is
used  (see survey [9]). Including terms of

higher order than  in the expansion in
terms of fermion velocities leads to complications.
Thus, when calculating relativistic corrections, diver-
gent integrals appear due to the appearance of high
degrees . Therefore, to study relativistic contri-
butions of a higher order, we use the exact expres-
sion for the kernel of integral Eq. (1). The potential
kernel (2) was obtained in [7] without any assump-
tions about the fermion velocities and the quantity ,
so it is an adequate way to analyze relativistic contribu-
tions of a higher order than .

For numerical calculations, we use the values of
fundamental physical constants taken from [10]. To
find the energy corrections for a relativistic hydrogen-
like system with , we use the expression

(18)

where  is an addition to the potential with

point fermions and  is Coulomb wave functions

(19)

with Gegenbauer polynomials .

3. ESTIMATING 
RELATIVISTIC CONTRIBUTIONS

Let us estimate the higher order relativistic correc-
tions associated with the motion of fermions, as well as
the effects of high momentum transfers for structural
contributions to - and -states of hydrogen-like
systems. To isolate the terms associated with the finite
size of the proton, we represent the Saxon form factors
of the proton in the form of sums:

where  at small .
Next, we will calculate three types of corrections:
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nonrelativistic approximation  ( ,

 and );

leading contribution  (only the approxima-

tion is used , );

precise calculation  (without decomposition
in terms of parameters  and ).
Amendment  with potential (2) will give the
result taking into account the relativistic motion of the
system fermions. To estimate the higher order relativ-
istic contributions, we use the quantity

The explicit form of the terms of the potential,
which contain integrals of the form (functions (13)
and (14))

will depend on the explicit form of the proton form
factors.

To calculate the corrections, we use various param-
eterizations of the proton form factors:

–standard dipole parameterization

(20)

where . This variant of parameteriza-
tion will be referred to as fit I;

parameterization variant [12] will be called fit II:
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Table 1.  Corrections for the fit II variant associated with
the internal structure of the proton and contributions

,  and high-order relativistic corrections 
for the hydrogen atom (in kHz)

1
2

Δ NRE Δ LCE Δ RelE

n Δ NRE Δ LCE Δ RelE ΔHO

.1208 31 .1208 30 .1202 52 − .5 78
.151 04 .151 04 .150 31 .0 72
parameterization [13]

was applied in [14] to describe the behavior of proton
form factors with parameters:

(1) This variant of parameterization is denoted by
fit III. Table 1 shows the results of calculations for the
hydrogen atom.

As follows from the data in Table 1, accounting for
high  through parametrization (21) does not signifi-
cantly change in comparison with linear behavior.
However, the corrections associated with the relativis-
tic motion of fermions in this situation give a visible,
albeit relatively small in percentage terms ( ),
effect.

Calculations using the standard dipole parameter-
ization (20) (fit I) and parameterization fit II differ
due to the different behavior of functions (20) and (21)
at small . So much for - and -states for the
parameterization of fit I we have that

 and ,
respectively.

For a more complete understanding of the depen-
dence of the structural corrections for hydrogen-like
atoms on the type of parametrization, let us consider a
numerical calculation for fit III.

,
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Table 2. Corrections for the option of parameterization fit II

1
2

n Δ NRE Δ LCE

. ± .1223 15 22 36 . ± .1200 10 34 86

. ± .152 89 2 39 . ± .150 01 4 23
Higher order relativistic corrections : 
and  make up  for - and -states
and practically do not differ from the parameterization
of fit II, while the contributions themselves differ due
to different behavior at small . However, the interval
estimates of both fits are practically the same.

In this approach, it is possible to calculate contri-
bution  associated with the Jlab effect [15] (the
difference between the two cases  and

, : with kHz]
 for - and -states.

Let us carry out calculations similar to the above
for the muonic hydrogen atom. Interest in this system
is associated with unusual consequences arising from
the experiment [2].

The calculations for the muonic hydrogen atom for
the fit II situation are presented in Table 3.

From Table 3 it follows that, in contrast to the
hydrogen atom, the  system is more sensitive to
the behavior of the proton form factor and less sensi-
tive to high-order relativistic effects. This is explained
by the fact that the first Bohr orbit of this system is
closer to the nucleus than in the hydrogen atom.
Therefore, in calculating the structural contributions
of the muonic hydrogen atom, an important role is
played by the behavior of the form factors from the
committed momentum. In this case, the dependence
on the parametrization is stronger than for the hydro-
gen atom.

Numerical estimates show that relativistic
effects ( ) are more than the required accu-

racy  and therefore they also need to be
considered.

As in the case of the hydrogen atom, the calcula-
tions using the standard dipole parameterization (20)
(fit I) differ from the data in Table 3. This effect
becomes more significant in comparison with the
hydrogen atom; the relative deviation of the calcula-
tions is almost .

Calculations for the “fit III” option are presented
in Table 4.

The data from Tables 3 and 4 show that, in contrast
to the ordinary hydrogen atom, in the muonic hydro-
gen atom, the effects of high  are partially compen-
sated by relativistic effects associated with the motion
of fermions.

ΔHO − .5 67
.0 71 kHz ≈ .0 47% 1s 2s

2q

ΔJlab

=2( ) 1q5

= +2 2
0 1( )q c c q5 = . 2

1 0 13 GeV )c
Δ − −Jlab{ 23.42 kHz, 2.93 kHz} 1s 2s

μ–p

≈ .0 38%
−

∼

410 meV

.14 7%

2q
. 18  No. 4  2021

I (in kHz)

Δ RelE ΔHO

. ± .1194 43 33 67 − .5 67

. ± .149 30 4 21 .0 71
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Table 3. Corrections for the fit II variant associated with
the internal structure of the proton  and  and
taking into account high-order relativistic contributions

 for the muonic hydrogen atom (  system) (in meV)

, meV

1

2

Δ NRE Δ LCE

Δ RelE −μ p

n Δ NRE Δ LCE Δ RelE ΔHO

.32 1261 .31 9498 .32 0591 .0 1093

.4 0158 .3 9937 .4 0065 .0 0128

Table 4. Corrections for the “fit III” variant associated with
the internal structure of the proton  and  and
taking into account high-order relativistic contributions

 for the muonic hydrogen atom (  system) (in meV)

, meV

1
2

Δ NRE Δ LCE

Δ RelE −μ p

n Δ NRE Δ LCE Δ RelE ΔHO

.32 5205 .31 7717 .31 8929 .0 1212

.4 0651 .3 9715 .3 9866 .0 0152
Let us also estimate the additional contribution
associated with the effect found on  [15]. Since it
modifies the behavior of the proton charge form fac-
tor, one should expect a greater sensitivity of the
muonic hydrogen atom to these effects. Indeed, for 
and  states of the hydrogen atom, this effect gives
additional corrections equal to –0.6158 and

 respectively.

CONCLUSIONS

As follows from the calculations, the proposed cal-
culation method, which uses the representation of the
interaction potential of fermions in form (2), is a tool
that makes it possible to estimate the relativistic con-
tributions higher than  terms. It was used to
investigate the dependence of the corrections on the
parametrization of proton form factors and calculate
higher order relativistic contributions. Calculations
show that such corrections are within the limits of sen-
sitivity of modern experiments to measure the energy
characteristics of such systems.
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