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Abstract
Let σ = {πi | i ∈ I } be a partition of the set of all primes. We characterize the class
of all σ -nilpotent groups as a hereditary formation F that contains every group G
all whose Sylow subgroups are K -F-subnormal in their product with the generalized
Fitting subgroup F∗(G).
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1 Introduction

Throughout this paper all groups are finite. Let σ = {πi | i ∈ I } be a partition of the
set P of all primes. Following Skiba (see [18] or [19]), a group is called σ -nilpotent
if it is the direct product of all its Hall πi -subgroups for πi ∈ σ . The class of all
σ -nilpotent groups is denoted byNσ . It is a hereditary saturated formation. Note that
the classes of all nilpotent groups and of all π -decomposable groups coincide with
Nσ for σ = {{p} | p ∈ P} and σ = {π, π ′} respectively. The class of all σ -nilpotent
groups is of the great interest in the theory of classes of groups because it has many
properties of the class of all nilpotent groups.
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There are many interesting characterizations of the class of all σ -nilpotent groups
in the universe of all soluble groups. For example every hereditary saturated lattice
formation [2] or formation closed under taking products of abnormal subgroups [20]
is the class of all σ -nilpotent groups for some σ .

In the universe of all groups the class Nσ appeared when Shemetkov [16] stud-
ied the generalizations of systems normalizers. He called groups from this class
σ -decomposable. Kazarin, Martínez-Pastor, and Pérez-Ramos [9] proved that a group
is σ -nilpotent if and only if all normalizers of its Sylow subgroups are σ -nilpotent.
From [10] it follows that if G = AB = AC = BC where A, B and C are σ -nilpotent,
then G is σ -nilpotent. Skiba extended the theory of S-permutable subgroups for such
classes [18] and [19]. For more results about these groups see also [1,4] and [7].

The aim of this paper is to find new properties of the class Nσ that distinguish it
from all other hereditary formations.

Let F be a formation. Recall [3, Definition 6.1.4] that a subgroup H of G is called
K -F-subnormal in G if there is a chain H = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G with
Hi−1 � Hi or Hi/CoreHi (Hi−1) ∈ F for all i = 1, . . . , n. Denoted by H K -F-sn G.
If F = N is the formation of all nilpotent groups, then the notions of K -F-subnormal
and subnormal subgroups coincide.

Groups with different systems of K -F-subnormal subgroups are the main object of
many papers (for example, see [1,14,18] and [23]). In this paper we consider K -F-
subnormality of a subgroup not in the whole group but in some subgroup containing
it in the sense of the following definition:

Definition 1 Let F be a formation and R be a subgroup of a group G. We shall call
a subgroup H of G R-K -F-subnormal if H is K -F-subnormal in 〈H , R〉. If F = N,
then we just obtain the notion of R-subnormal subgroup.

Recall [8, X, Definition 13.9] that the generalized Fitting subgroup F∗(G) is the
set of all elements of G which induce an inner automorphism on every chief factor of
G. One of the important properties of F∗(G) is CG(F∗(G)) ⊆ F∗(G).

In [11,12,15] and [22] the products of R-subnormal subgroups were studied for
R ∈ {F(G),F∗(G)}. It was shown that if G is the product of two nilpotent (resp.
quasinilpotent) F(G)-subnormal (resp. F∗(G)-subnormal) subgroups, then it is nilpo-
tent (resp. quasinilpotent).

It is well known that a group is nilpotent if and only if all its Sylow subgroups are
subnormal. Formations F of all groups whose Sylow subgroups are K -F-subnormal
are studied for example in [23]. This is a rather wide family of formations. This
property have formations of σ -nilpotent groups, p-nilpotent groups, w-supersoluble
groups and other.

Theorem 1 Let F be a hereditary formation. The following statements are equivalent:

(1) F contains every group G all whose cyclic primary subgroups are F∗(G)-K -F-
subnormal.

(2) F contains every group G all whose Sylow subgroups are F∗(G)-K -F-subnormal.
(3) There is a partition σ of P such that F is the class of all σ -nilpotent groups.

Remark 1 In the proof of Theorem 1 we use [24, Theorem 5.4]. The proof of the last
result is based on the deep results mod CFSG of [9].
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Corollary 1 A group G is nilpotent if and only if all its Sylow subgroups are F∗(G)-
subnormal.

Corollary 2 Agroup G is σ -nilpotent if and only if everyπi -element of F∗(G) permutes
with every π ′

i -element of G for every πi ∈ σ .

The proof of the next result is based on the previous theorem.

Theorem 2 Let F be a hereditary formation. The following statements are equivalent:

(1) F contains every group G = AB where all cyclic primary subgroups of A and B
are F∗(G)-K -F-subnormal.

(2) F contains every group G = AB where all Sylow subgroups of A and B are
F∗(G)-K -F-subnormal.

(3) There is a partition σ of P such that F is the class of all σ -nilpotent groups.

Since in every σ -nilpotent group all Sylow subgroups are K -Nσ -subnormal, the
following holds.

Corollary 3 Let A and B beaσ -nilpotentF∗(G)-K -Nσ -subnormal (F∗(G)-subnormal)
subgroups of a group G. If G = AB, then G is σ -nilpotent.

Corollary 4 ([18]) If A and B are normal σ -nilpotent subgroups of a group G, then
AB is σ -nilpotent.

Corollary 5 A group G = AB is σ -nilpotent if and only if every πi -element of F∗(G)

permutes with every π ′
i -element of A ∪ B for every πi ∈ σ .

Recall that a subgroup H of G is called R-conjugate-permutable [13] if Hr H =
HHr for all r ∈ R. If R = G, then we obtain the notion of conjugate-permutable sub-
group [6]. From (1) of [13, Lemma 2.2] it follows that an F∗(G)-conjugate-permutable
subgroup is F∗(G)-K -N-subnormal. Hence the main result of [25] follows from The-
orem 2.

Corollary 6 ([25, Theorem 3.1]) Let A and B be subgroups of a group G and G =
AB. If every Sylow subgroup of A is BF∗(G)-conjugate-permutable and every Sylow
subgroup of B is AF∗(G)-conjugate-permutable, then G is nilpotent.

2 Preliminaries

The notation and terminology agree with [3] and [5]. We refer the reader to these
books for the results about formations.

Recall that a formation is a class of groups which is closed under taking epimorphic
images and subdirect products. A formation F is called hereditary if H ∈ Fwhenever
H ≤ G ∈ F. The following two lemmas follow from [3, Lemmas 6.1.6 and 6.1.7].

Lemma 1 Let F be a formation, H and R be subgroups of G and N � G.

(1) If H K-F-sn G, then HN/N K-F-sn G/N.
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(2) If H/N K-F-sn G/N, then H K-F-sn G.
(3) If H K-F-sn R and R K-F-sn G, then H K-F-sn G.

Lemma 2 Let F be a hereditary formation, H and R be subgroups of G.

(1) If H K-F-sn G, then H ∩ R K-F-sn R.
(2) If H K-F-sn G and R K-F-sn G, then H ∩ R K-F-sn G.

The following lemma directly follows from Lemma 1.

Lemma 3 Let F be a formation, H and R be subgroups of G and N � G. If H
K-F-sn R, then HN K-F-sn RN.

The following result directly follows from [5, B, Theorem 10.3].

Lemma 4 If Op(G) = 1 and G has a unique minimal normal subgroup, then there
exists a faithful irreducible FpG-module.

Recall [3, Chapter 6.3] or [21] that a formation F has the lattice property for K -F-
subnormal subgroups if the set of all K -F-subnormal subgroups is a sublattice of the
lattice of all subgroups in every group.

Lemma 5 (see [21], [18, Lemma 2.6(3)]) Let σ be a partition of P.Nσ has the lattice
property for K -Nσ -subnormal subgroups.

Recall [24] that a Schmidt (p, q)-group is a Schmidt group with a normal Sylow p-
subgroup. An N -critical graph ΓNc(G) of a group G [24, Definition 1.3] is a directed
graphon the vertex setπ(G)of all primedivisors of |G| and (p, q) is an edgeofΓNc(G)

iffG has a Schmidt (p, q)-subgroup. An N -critical graph ΓNc(X) of a class of groups
X [24, Definition 3.1] is a directed graph on the vertex set π(X) = ∪G∈Xπ(G) such
that ΓNc(X) = ∪G∈XΓNc(G).

Lemma 6 ([24, Theorem 5.4]) Let σ = {πi | i ∈ I } be a partition of the vertex set
V (ΓNc(X)) such that for i �= j there are no edges between πi and π j . Then every X-
group is the direct product of its Hall πk-subgroups, where k ∈ {i ∈ I | π(G) ∩ πk �=
∅}.

Let F be a hereditary formation. In [14] and [23] the classes of groups wF and v∗F
all whose Sylow and cyclic primary subgroups respectively are K -F-subnormal were
studied. According to these papers the following result holds.

Lemma 7 If F is a hereditary formation, then N ∪ F ⊆ wF ⊆ v∗F.

Lemma 8 Let F be a hereditary formation. Then there is a largest by inclusion sub-
group SF(G) among normal subgroups N of G with P K-F-sn PN for every Sylow
subgroup P of G.

Proof Let Ni � G with P K -F-sn PNi for every Sylow subgroup P ofG and i = 1, 2.
Note that PN2 K -F-sn (PN1)N2 by P K -F-sn PN2 and Lemma 3. Hence P K -F-
sn PN1N2 by (3) of Lemma 1. Let S be a product of all normal subgroups N of G
with P K -F-sn PN . Now P K -F-sn PS. It means that S = SF(G).


�
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3 Proofs of theorems

Proof of Theorem 1 (1) ⇒ (2). Note that every cyclic primary subgroup is subnormal
in some Sylow subgroup. Hence if all Sylow subgroups of G are F∗(G)-K -F-
subnormal, then all cyclic primary subgroups of G are also F∗(G)-K -F-subnormal.
Thus G ∈ F.

(2) ⇒ (3). (a) N ⊆ F.

Assume that F contains every group G all whose Sylow subgroups are F∗(G)-K -
F-subnormal. Now F contains every group G all whose Sylow subgroups are K -F-
subnormal. Hence F = wF. Now N ⊆ F by Lemma 7.

(b) Assume that L is a faithful irreducible FpG-module, T = L � G and L ≤
SF(T ). Then G ∈ F.

In this case L = F∗(T ) ≤ SF(T ). Now T ∈ F by (2). Thus G ∈ F as a quotient
group of T , the contradiction.

(c) Let π(p) = {q ∈ P | (p, q) ∈ ΓNc(F)} ∪ {p}. Then F contains every q-closed
{p, q}-group for every q ∈ π(p).

Assume the contrary. Let G be a minimal order counterexample. Since F and the
class of all q-closed groups are hereditary formations, we see that G is an F-critical
group, G has a unique minimal normal subgroup N and G/N ∈ F. Let P be a
Sylow p-subgroup of G. If N P < G, then N P ∈ F. Hence P K -F-sn PN and
PN/N K -F-sn G/N . From Lemma 1 it follows that P K -F-sn G. Since G is a q-
closed {p, q}-group, we see that every Sylow subgroup ofG is K -F-subnormal. Hence
G ∈ F, a contradiction.

Now N is a Sylow q-subgroup and Op(G) = 1. By Lemma 4 there exists a faithful
irreducible FpG-module L . Let T = L � G. Assume that NL /∈ F. Then it has an
F-critical subgroup H with normal Sylow p-subgroup K and the elementary abelian
Sylow q-subgroup Q. FromMaschke’s theorem it follows that K is the direct product
ofminimal normal subgroups of H . Note that each of this subgroups has a complement
in H . It means that K is the unique minimal normal subgroup of H . Hence K is a
faithful irreducible FpQ-module. From [5, B, Theorem 10.3] it follows that Q is a
group of order p. Now H is a Schmidt (p, q)-group with the trivial Frattini subgroup.
From (p, q) ∈ ΓNc(F) it follows that F contains a Schmidt (p, q)-group with trivial
Frattini subgroup. According to [26] all such Schmidt groups are isomorphic. Hence
H ∈ F, a contradiction. Therefore NL ∈ F. Note that L ≤ Op(T ). Hence L ≤ SF(T )

by Lemma 8. Thus G ∈ F by (b), a contradiction.
From (c) it follows that
(d) ΓNc(F) is undirected, i.e (p, q) ∈ ΓNc(F) iff (q, p) ∈ ΓNc(F).
(e) Let p, q and r be different primes. If (p, r), (q, r) ∈ ΓNc(F), then (p, q) ∈
ΓNc(F).

There exists a faithful irreducible Fp Zq -module P by Lemma 4. Let G = P � Zq .
Then there exists a faithful irreducible FrG-module R by Lemma 4. Let T = R �G.
From (c) it follows thatF contains all r -closed {p, r}-groups and {q, r}-groups. Hence
R ≤ SF(T ) by Lemma 8. Thus G ∈ F by (b). Note that G is a Schmidt (p, q)-group.

( f ) F = Nσ for some partition σ of P.
From (d) and (e) it follows that ΓNc(F) is a disjoint union of complete (directed)

graphs Γi , i ∈ I . Let πi = V (Γi ). Then σ = {πi | i ∈ I } is a partition of P. From
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Lemma 6 it follows that every F-group G has a normal Hall πi -subgroups for every
i ∈ I with πi ∩ π(G) �= ∅. Now G is σ -nilpotent. Hence F ⊆ Nσ .

Let show that the class Gπi of all πi -groups is a subset of F for every i ∈ I . It is
true if |πi | = 1. Assume now |πi | > 1. Suppose the contrary and let a group G be a
minimal order group from Gπi \ F. Then G has a unique minimal normal subgroup,
π(G) ⊆ πi and |π(G)| > 1. Note that Oq(G) = 1 for some q ∈ π(G). Hence there
exists a faithful irreducible FqG-module N by Lemma 4. Let T = N � G. Hence
N P ∈ F for every Sylow subgroup P of T by (c). Now N ≤ SF(T ) by Lemma 8.
Hence G ∈ F by (b), the contradiction.

Since a formation is closed under taking direct products, we see thatNσ ⊆ F. Thus
F = Nσ .

(3) ⇒ (1). Let σ = {πi | i ∈ I } be a partition of P. Then Nσ has the lattice
property for K -Nσ -subnormal subgroups by Lemma 5. According to [14, Theorem B
and Corollary E.2] v∗F = F.

Assume that all cyclic primary subgroups of G are F∗(G)-K -Nσ -subnormal. Note
that every cyclic primary subgroup of F∗(G) is K -Nσ -subnormal in it. Hence F∗(G) ∈
Nσ . NowF∗(G) is a direct product of all its normalHallπi -subgroup Fπi whereπi ∈ σ

and πi ∩ π(F∗(G)) �= ∅.
Let C be a cyclic primary subgroup of G. Then C K -Nσ -sn CF∗(G) and C ∈ Nσ .

Let C = C0 ⊆ C1 ⊆ · · · ⊆ Cn = CF∗(G) be a chain with Ci−1 � Ci

or Ci/CoreCi (Ci−1) ∈ Nσ for all i = 1, . . . , n. Note that if Ci−1 � Ci , then
Ci/CoreCi (Ci−1) = Ci/Ci−1 is isomorphic to a section of F∗(G) ∈ Nσ . Hence
Ci/Ci−1 ∈ Nσ . Now CF∗(G) ∈ Nσ by [3, Proposition 6.1.11].

It means that if C is a π ′
i -group, then C ≤ CG(Fπi ). Now (H/K ) �G/CG(H/K )

is a πi -group for some πi ∈ σ and every chief factor H/K of G below F∗(G). Also
note that GNσ ≤ Oπi (G) ≤ CG(Fπi ). Hence GNσ ≤ CG(F∗(G)) ≤ F∗(G). From
this it follows that (H/K ) � G/CG(H/K ) is a πi -group for some πi ∈ σ and for
every chief factor H/K of G. Now G is σ -nilpotent by [18]. 
�

Proof of Theorem 2 (1) ⇒ (2). Assume that G = AB where all Sylow subgroups
of A and B are F∗(G)-K -F-subnormal. Since every cyclic primary subgroup C is
subnormal in some Sylow subgroup P of A, we see that C �� P K -F-sn PF∗(G).
Now C K -F-sn CF∗(G) by Lemma 1. Hence C is F∗(G)-K -F-subnormal. Thus all
cyclic primary subgroups of A are F∗(G)-K -F-subnormal. We can prove the same
statement for B. Now G ∈ F by (1).

(2) ⇒ (3). From G = GG and (2) it follows that F contains every group G all
whose Sylow subgroups are F∗(G)-K -F-subnormal. Thus there is a partition σ of P

such that F = Nσ by Theorem 1.
(3) ⇒ (1). LetG = AB where all cyclic primary subgroups of A and B are F∗(G)-

K -F-subnormal. By [17, Lemma 11.6] there are Sylow p-subgroups P1, P2 and P of
A, B and G respectively with P1P2 = P .

Let C ≤ P1 be a cyclic primary subgroup. Since C K -F-sn P1, we see that
CF∗(G) K -F-sn P1F∗(G) by Lemma 3. From C K -F-sn CF∗(G) it follows that C
K -F-sn P1F∗(G) by (3) of Lemma 1.

Since F has the lattice property for K -F-subnormal subgroups by Lemma 5 and P1
is generated by all its cyclic primary subgroups, we see that P1 K -F-sn P1F∗(G).
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From P1 K -F-sn P it follows that P1F∗(G) K -F-sn PF∗(G) by Lemma 3. Since
P1 K -F-sn P1F∗(G), we see that P1 K -F-sn PF∗(G) by (3) of Lemma 1. The same
argument shows that P2 K -F-sn PF∗(G). Thus P K -F-sn PF∗(G) by the lattice
property.

Since all Sylow p-subgroups of G are conjugate, they all are F∗(G)-K -F-
subnormal. By analogy one can show that all Sylow subgroups of G are F∗(G)-
K -F-subnormal. Now G ∈ F by Theorem 1. 
�
Proof of Corollaries 2 and 5 Let prove that if H is a πi -subgroup for some πi ∈ σ

and every element of H permutes with every π ′
i -element of F∗(G), then H K -Nσ -

sn HF∗(G). Note that Oπi (F∗(G)) � G and Oπi (F∗(G)) ≤ CG(H). Now H �
HOπi (F∗(G)). Since HF∗(G)/Oπi (F∗(G)) is a πi -group, we see that H K -Nσ -sn
HF∗(G).

Now Corollaries 2 and 5 directly follows from Theorems 1 and 2 respectively. 
�
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