

New characterizations of σ -nilpotent finite groups

Viachaslau I. Murashka¹ · Alexander F. Vasil'ev¹

Received: 17 February 2021 / Revised: 11 June 2021 / Accepted: 26 July 2021 © Università degli Studi di Napoli "Federico II" 2021

Abstract

Let $\sigma = {\pi_i \mid i \in I}$ be a partition of the set of all primes. We characterize the class of all σ -nilpotent groups as a hereditary formation \mathfrak{F} that contains every group *G* all whose Sylow subgroups are *K*- \mathfrak{F} -subnormal in their product with the generalized Fitting subgroup $F^*(G)$.

Keywords Finite group \cdot Generalized Fitting subgroup \cdot Hereditary formation $\cdot K$ - \mathfrak{F} -subnormal subgroup $\cdot \sigma$ -nilpotent group

Mathematics Subject Classification Primary 20D25; Secondary 20F17 · 20F19

1 Introduction

Throughout this paper all groups are finite. Let $\sigma = \{\pi_i \mid i \in I\}$ be a partition of the set \mathbb{P} of all primes. Following Skiba (see [18] or [19]), a group is called σ -nilpotent if it is the direct product of all its Hall π_i -subgroups for $\pi_i \in \sigma$. The class of all σ -nilpotent groups is denoted by \mathfrak{N}_{σ} . It is a hereditary saturated formation. Note that the classes of all nilpotent groups and of all π -decomposable groups coincide with \mathfrak{N}_{σ} for $\sigma = \{\{p\} \mid p \in \mathbb{P}\}$ and $\sigma = \{\pi, \pi'\}$ respectively. The class of all σ -nilpotent groups is of the great interest in the theory of classes of groups because it has many properties of the class of all nilpotent groups.

Alexander F. Vasil'ev formation56@mail.ru

This document is the results of the research project funded by Belarusian Republican Foundation for Fundamental Research, Project No. Φ 20P-291.

Viachaslau I. Murashka mvimath@yandex.ru

¹ Faculty of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, 246019 Gomel, Belarus

There are many interesting characterizations of the class of all σ -nilpotent groups in the universe of all soluble groups. For example every hereditary saturated lattice formation [2] or formation closed under taking products of abnormal subgroups [20] is the class of all σ -nilpotent groups for some σ .

In the universe of all groups the class \mathfrak{N}_{σ} appeared when Shemetkov [16] studied the generalizations of systems normalizers. He called groups from this class σ -decomposable. Kazarin, Martínez-Pastor, and Pérez-Ramos [9] proved that a group is σ -nilpotent if and only if all normalizers of its Sylow subgroups are σ -nilpotent. From [10] it follows that if G = AB = AC = BC where A, B and C are σ -nilpotent, then G is σ -nilpotent. Skiba extended the theory of S-permutable subgroups for such classes [18] and [19]. For more results about these groups see also [1,4] and [7].

The aim of this paper is to find new properties of the class \mathfrak{N}_{σ} that distinguish it from all other hereditary formations.

Let \mathfrak{F} be a formation. Recall [3, Definition 6.1.4] that a subgroup H of G is called K- \mathfrak{F} -subnormal in G if there is a chain $H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = G$ with $H_{i-1} \subseteq H_i$ or $H_i/\operatorname{Core}_{H_i}(H_{i-1}) \in \mathfrak{F}$ for all $i = 1, \ldots, n$. Denoted by H K- \mathfrak{F} -sn G. If $\mathfrak{F} = \mathfrak{N}$ is the formation of all nilpotent groups, then the notions of K- \mathfrak{F} -subnormal and subnormal subgroups coincide.

Groups with different systems of K- \mathfrak{F} -subnormal subgroups are the main object of many papers (for example, see [1,14,18] and [23]). In this paper we consider K- \mathfrak{F} -subnormality of a subgroup not in the whole group but in some subgroup containing it in the sense of the following definition:

Definition 1 Let \mathfrak{F} be a formation and *R* be a subgroup of a group *G*. We shall call a subgroup *H* of *G R*-*K*- \mathfrak{F} -subnormal if *H* is *K*- \mathfrak{F} -subnormal in $\langle H, R \rangle$. If $\mathfrak{F} = \mathfrak{N}$, then we just obtain the notion of *R*-subnormal subgroup.

Recall [8, X, Definition 13.9] that the generalized Fitting subgroup $F^*(G)$ is the set of all elements of *G* which induce an inner automorphism on every chief factor of *G*. One of the important properties of $F^*(G)$ is $C_G(F^*(G)) \subseteq F^*(G)$.

In [11,12,15] and [22] the products of *R*-subnormal subgroups were studied for $R \in \{F(G), F^*(G)\}$. It was shown that if *G* is the product of two nilpotent (resp. quasinilpotent) F(G)-subnormal (resp. $F^*(G)$ -subnormal) subgroups, then it is nilpotent (resp. quasinilpotent).

It is well known that a group is nilpotent if and only if all its Sylow subgroups are subnormal. Formations \mathfrak{F} of all groups whose Sylow subgroups are *K*- \mathfrak{F} -subnormal are studied for example in [23]. This is a rather wide family of formations. This property have formations of σ -nilpotent groups, *p*-nilpotent groups, w-supersoluble groups and other.

Theorem 1 Let \mathfrak{F} be a hereditary formation. The following statements are equivalent:

- (1) \mathfrak{F} contains every group G all whose cyclic primary subgroups are $F^*(G)$ -K- \mathfrak{F} -subnormal.
- (2) \mathfrak{F} contains every group G all whose Sylow subgroups are $F^*(G)$ -K- \mathfrak{F} -subnormal.
- (3) There is a partition σ of \mathbb{P} such that \mathfrak{F} is the class of all σ -nilpotent groups.

Remark 1 In the proof of Theorem 1 we use [24, Theorem 5.4]. The proof of the last result is based on the deep results mod CFSG of [9].

Corollary 1 A group G is nilpotent if and only if all its Sylow subgroups are $F^*(G)$ -subnormal.

Corollary 2 A group G is σ -nilpotent if and only if every π_i -element of $F^*(G)$ permutes with every π'_i -element of G for every $\pi_i \in \sigma$.

The proof of the next result is based on the previous theorem.

Theorem 2 Let \mathfrak{F} be a hereditary formation. The following statements are equivalent:

- (1) \mathfrak{F} contains every group G = AB where all cyclic primary subgroups of A and B are $F^*(G)$ -K- \mathfrak{F} -subnormal.
- (2) \mathfrak{F} contains every group G = AB where all Sylow subgroups of A and B are $F^*(G)$ -K- \mathfrak{F} -subnormal.
- (3) There is a partition σ of \mathbb{P} such that \mathfrak{F} is the class of all σ -nilpotent groups.

Since in every σ -nilpotent group all Sylow subgroups are K- \mathfrak{N}_{σ} -subnormal, the following holds.

Corollary 3 Let A and B be a σ -nilpotent $F^*(G)$ -K- \mathfrak{N}_{σ} -subnormal ($F^*(G)$ -subnormal) subgroups of a group G. If G = AB, then G is σ -nilpotent.

Corollary 4 ([18]) If A and B are normal σ -nilpotent subgroups of a group G, then AB is σ -nilpotent.

Corollary 5 A group G = AB is σ -nilpotent if and only if every π_i -element of $F^*(G)$ permutes with every π'_i -element of $A \cup B$ for every $\pi_i \in \sigma$.

Recall that a subgroup H of G is called R-conjugate-permutable [13] if $H^r H = HH^r$ for all $r \in R$. If R = G, then we obtain the notion of conjugate-permutable subgroup [6]. From (1) of [13, Lemma 2.2] it follows that an $F^*(G)$ -conjugate-permutable subgroup is $F^*(G)$ -K- \mathfrak{N} -subnormal. Hence the main result of [25] follows from Theorem 2.

Corollary 6 ([25, Theorem 3.1]) Let A and B be subgroups of a group G and G = AB. If every Sylow subgroup of A is $BF^*(G)$ -conjugate-permutable and every Sylow subgroup of B is $AF^*(G)$ -conjugate-permutable, then G is nilpotent.

2 Preliminaries

The notation and terminology agree with [3] and [5]. We refer the reader to these books for the results about formations.

Recall that a *formation* is a class of groups which is closed under taking epimorphic images and subdirect products. A formation \mathfrak{F} is called *hereditary* if $H \in \mathfrak{F}$ whenever $H \leq G \in \mathfrak{F}$. The following two lemmas follow from [3, Lemmas 6.1.6 and 6.1.7].

Lemma 1 Let \mathfrak{F} be a formation, H and R be subgroups of G and $N \leq G$. (1) If $H K - \mathfrak{F} - \mathfrak{sn} G$, then $HN/N K - \mathfrak{F} - \mathfrak{sn} G/N$.

- (2) If $H/N K \mathfrak{F} sn G/N$, then $H K \mathfrak{F} sn G$.
- (3) If H K- \mathfrak{F} -sn R and R K- \mathfrak{F} -sn G, then H K- \mathfrak{F} -sn G.

Lemma 2 Let \mathfrak{F} be a hereditary formation, H and R be subgroups of G.

- (1) If $H K \mathfrak{F} sn G$, then $H \cap R K \mathfrak{F} sn R$.
- (2) If H K- \mathfrak{F} -sn G and R K- \mathfrak{F} -sn G, then $H \cap R K$ - \mathfrak{F} -sn G.

The following lemma directly follows from Lemma 1.

Lemma 3 Let \mathfrak{F} be a formation, H and R be subgroups of G and $N \leq G$. If H K- \mathfrak{F} -sn R, then HN K- \mathfrak{F} -sn RN.

The following result directly follows from [5, B, Theorem 10.3].

Lemma 4 If $O_p(G) = 1$ and G has a unique minimal normal subgroup, then there exists a faithful irreducible \mathbb{F}_pG -module.

Recall [3, Chapter 6.3] or [21] that a formation \mathfrak{F} has *the lattice property for* K- \mathfrak{F} -*subnormal subgroups* if the set of all K- \mathfrak{F} -subnormal subgroups is a sublattice of the lattice of all subgroups in every group.

Lemma 5 (see [21], [18, Lemma 2.6(3)]) Let σ be a partition of \mathbb{P} . \mathfrak{N}_{σ} has the lattice property for K- \mathfrak{N}_{σ} -subnormal subgroups.

Recall [24] that a Schmidt (p, q)-group is a Schmidt group with a normal Sylow *p*subgroup. An *N*-critical graph $\Gamma_{Nc}(G)$ of a group *G* [24, Definition 1.3] is a directed graph on the vertex set $\pi(G)$ of all prime divisors of |G| and (p, q) is an edge of $\Gamma_{Nc}(G)$ iff *G* has a Schmidt (p, q)-subgroup. An *N*-critical graph $\Gamma_{Nc}(\mathfrak{X})$ of a class of groups \mathfrak{X} [24, Definition 3.1] is a directed graph on the vertex set $\pi(\mathfrak{X}) = \bigcup_{G \in \mathfrak{X}} \pi(G)$ such that $\Gamma_{Nc}(\mathfrak{X}) = \bigcup_{G \in \mathfrak{X}} \Gamma_{Nc}(G)$.

Lemma 6 ([24, Theorem 5.4]) Let $\sigma = \{\pi_i \mid i \in I\}$ be a partition of the vertex set $V(\Gamma_{Nc}(\mathfrak{X}))$ such that for $i \neq j$ there are no edges between π_i and π_j . Then every \mathfrak{X} -group is the direct product of its Hall π_k -subgroups, where $k \in \{i \in I \mid \pi(G) \cap \pi_k \neq \emptyset\}$.

Let \mathfrak{F} be a hereditary formation. In [14] and [23] the classes of groups $\overline{w}\mathfrak{F}$ and $v^*\mathfrak{F}$ all whose Sylow and cyclic primary subgroups respectively are *K*- \mathfrak{F} -subnormal were studied. According to these papers the following result holds.

Lemma 7 If \mathfrak{F} is a hereditary formation, then $\mathfrak{N} \cup \mathfrak{F} \subseteq \overline{w}\mathfrak{F} \subseteq v^*\mathfrak{F}$.

Lemma 8 Let \mathfrak{F} be a hereditary formation. Then there is a largest by inclusion subgroup $S_{\mathfrak{F}}(G)$ among normal subgroups N of G with P K- \mathfrak{F} -sn PN for every Sylow subgroup P of G.

Proof Let $N_i \leq G$ with P K- \mathfrak{F} -sn PN_i for every Sylow subgroup P of G and i = 1, 2. Note that $PN_2 K$ - \mathfrak{F} -sn $(PN_1)N_2$ by P K- \mathfrak{F} -sn PN_2 and Lemma 3. Hence P K- \mathfrak{F} -sn PN_1N_2 by (3) of Lemma 1. Let S be a product of all normal subgroups N of G with P K- \mathfrak{F} -sn PN. Now P K- \mathfrak{F} -sn PS. It means that $S = S_{\mathfrak{F}}(G)$.

3 Proofs of theorems

Proof of Theorem 1 (1) \Rightarrow (2). Note that every cyclic primary subgroup is subnormal in some Sylow subgroup. Hence if all Sylow subgroups of *G* are $F^*(G)$ -*K*- \mathfrak{F} -subnormal, then all cyclic primary subgroups of *G* are also $F^*(G)$ -*K*- \mathfrak{F} -subnormal. Thus $G \in \mathfrak{F}$.

 $(2) \Rightarrow (3). (a) \mathfrak{N} \subseteq \mathfrak{F}.$

Assume that \mathfrak{F} contains every group *G* all whose Sylow subgroups are $F^*(G)$ -*K*- \mathfrak{F} -subnormal. Now \mathfrak{F} contains every group *G* all whose Sylow subgroups are *K*- \mathfrak{F} -subnormal. Hence $\mathfrak{F} = \overline{w}\mathfrak{F}$. Now $\mathfrak{N} \subseteq \mathfrak{F}$ by Lemma 7.

(b) Assume that L is a faithful irreducible \mathbb{F}_pG -module, $T = L \rtimes G$ and $L \leq S_{\mathfrak{F}}(T)$. Then $G \in \mathfrak{F}$.

In this case $L = F^*(T) \leq S_{\mathfrak{F}}(T)$. Now $T \in \mathfrak{F}$ by (2). Thus $G \in \mathfrak{F}$ as a quotient group of T, the contradiction.

(c) Let $\pi(p) = \{q \in \mathbb{P} \mid (p,q) \in \Gamma_{Nc}(\mathfrak{F})\} \cup \{p\}$. Then \mathfrak{F} contains every q-closed $\{p,q\}$ -group for every $q \in \pi(p)$.

Assume the contrary. Let *G* be a minimal order counterexample. Since \mathfrak{F} and the class of all *q*-closed groups are hereditary formations, we see that *G* is an \mathfrak{F} -critical group, *G* has a unique minimal normal subgroup *N* and $G/N \in \mathfrak{F}$. Let *P* be a Sylow *p*-subgroup of *G*. If NP < G, then $NP \in \mathfrak{F}$. Hence $P \ K - \mathfrak{F} - sn \ PN$ and $PN/N \ K - \mathfrak{F} - sn \ G/N$. From Lemma 1 it follows that $P \ K - \mathfrak{F} - sn \ G$. Since *G* is a *q*-closed {*p*, *q*}-group, we see that every Sylow subgroup of *G* is $K - \mathfrak{F}$ -subnormal. Hence $G \in \mathfrak{F}$, a contradiction.

Now *N* is a Sylow *q*-subgroup and $O_p(G) = 1$. By Lemma 4 there exists a faithful irreducible \mathbb{F}_pG -module *L*. Let $T = L \rtimes G$. Assume that $NL \notin \mathfrak{F}$. Then it has an \mathfrak{F} -critical subgroup *H* with normal Sylow *p*-subgroup *K* and the elementary abelian Sylow *q*-subgroup *Q*. From Maschke's theorem it follows that *K* is the direct product of minimal normal subgroups of *H*. Note that each of this subgroups has a complement in *H*. It means that *K* is the unique minimal normal subgroup of *H*. Hence *K* is a faithful irreducible \mathbb{F}_pQ -module. From [5, B, Theorem 10.3] it follows that *Q* is a group of order *p*. Now *H* is a Schmidt (*p*, *q*)-group with the trivial Frattini subgroup. From (*p*, *q*) $\in \Gamma_{Nc}(\mathfrak{F})$ it follows that \mathfrak{F} contains a Schmidt (*p*, *q*)-group with trivial Frattini subgroup. According to [26] all such Schmidt groups are isomorphic. Hence $H \in \mathfrak{F}$, a contradiction. Therefore $NL \in \mathfrak{F}$. Note that $L \leq O_p(T)$. Hence $L \leq S_{\mathfrak{F}}(T)$ by Lemma 8. Thus $G \in \mathfrak{F}$ by (*b*), a contradiction.

From (c) it follows that

(d) $\Gamma_{Nc}(\mathfrak{F})$ is undirected, i.e $(p,q) \in \Gamma_{Nc}(\mathfrak{F})$ iff $(q,p) \in \Gamma_{Nc}(\mathfrak{F})$.

(e) Let p, q and r be different primes. If $(p, r), (q, r) \in \Gamma_{Nc}(\mathfrak{F})$, then $(p, q) \in \Gamma_{Nc}(\mathfrak{F})$.

There exists a faithful irreducible $\mathbb{F}_p Z_q$ -module *P* by Lemma 4. Let $G = P \rtimes Z_q$. Then there exists a faithful irreducible $\mathbb{F}_r G$ -module *R* by Lemma 4. Let $T = R \rtimes G$. From (*c*) it follows that \mathfrak{F} contains all *r*-closed {*p*, *r*}-groups and {*q*, *r*}-groups. Hence $R \leq S_{\mathfrak{F}}(T)$ by Lemma 8. Thus $G \in \mathfrak{F}$ by (*b*). Note that *G* is a Schmidt (*p*, *q*)-group.

(f) $\mathfrak{F} = \mathfrak{N}_{\sigma}$ for some partition σ of \mathbb{P} .

From (d) and (e) it follows that $\Gamma_{Nc}(\mathfrak{F})$ is a disjoint union of complete (directed) graphs $\Gamma_i, i \in I$. Let $\pi_i = V(\Gamma_i)$. Then $\sigma = \{\pi_i \mid i \in I\}$ is a partition of \mathbb{P} . From

Lemma 6 it follows that every \mathfrak{F} -group *G* has a normal Hall π_i -subgroups for every $i \in I$ with $\pi_i \cap \pi(G) \neq \emptyset$. Now *G* is σ -nilpotent. Hence $\mathfrak{F} \subseteq \mathfrak{N}_{\sigma}$.

Let show that the class \mathfrak{G}_{π_i} of all π_i -groups is a subset of \mathfrak{F} for every $i \in I$. It is true if $|\pi_i| = 1$. Assume now $|\pi_i| > 1$. Suppose the contrary and let a group G be a minimal order group from $\mathfrak{G}_{\pi_i} \setminus \mathfrak{F}$. Then G has a unique minimal normal subgroup, $\pi(G) \subseteq \pi_i$ and $|\pi(G)| > 1$. Note that $O_q(G) = 1$ for some $q \in \pi(G)$. Hence there exists a faithful irreducible $\mathbb{F}_q G$ -module N by Lemma 4. Let $T = N \rtimes G$. Hence $NP \in \mathfrak{F}$ for every Sylow subgroup P of T by (c). Now $N \leq S_{\mathfrak{F}}(T)$ by Lemma 8. Hence $G \in \mathfrak{F}$ by (b), the contradiction.

Since a formation is closed under taking direct products, we see that $\mathfrak{N}_{\sigma} \subseteq \mathfrak{F}$. Thus $\mathfrak{F} = \mathfrak{N}_{\sigma}$.

(3) \Rightarrow (1). Let $\sigma = \{\pi_i \mid i \in I\}$ be a partition of \mathbb{P} . Then \mathfrak{N}_{σ} has the lattice property for K- \mathfrak{N}_{σ} -subnormal subgroups by Lemma 5. According to [14, Theorem B and Corollary E.2] $v^*\mathfrak{F} = \mathfrak{F}$.

Assume that all cyclic primary subgroups of G are $F^*(G)$ -K- \mathfrak{N}_{σ} -subnormal. Note that every cyclic primary subgroup of $F^*(G)$ is K- \mathfrak{N}_{σ} -subnormal in it. Hence $F^*(G) \in \mathfrak{N}_{\sigma}$. Now $F^*(G)$ is a direct product of all its normal Hall π_i -subgroup F_{π_i} where $\pi_i \in \sigma$ and $\pi_i \cap \pi(F^*(G)) \neq \emptyset$.

Let *C* be a cyclic primary subgroup of *G*. Then *C* $K \cdot \mathfrak{N}_{\sigma} \cdot sn CF^*(G)$ and $C \in \mathfrak{N}_{\sigma}$. Let $C = C_0 \subseteq C_1 \subseteq \cdots \subseteq C_n = CF^*(G)$ be a chain with $C_{i-1} \trianglelefteq C_i$ or $C_i/\text{Core}_{C_i}(C_{i-1}) \in \mathfrak{N}_{\sigma}$ for all i = 1, ..., n. Note that if $C_{i-1} \trianglelefteq C_i$, then $C_i/\text{Core}_{C_i}(C_{i-1}) = C_i/C_{i-1}$ is isomorphic to a section of $F^*(G) \in \mathfrak{N}_{\sigma}$. Hence $C_i/C_{i-1} \in \mathfrak{N}_{\sigma}$. Now $CF^*(G) \in \mathfrak{N}_{\sigma}$ by [3, Proposition 6.1.11].

It means that if *C* is a π'_i -group, then $C \leq C_G(F_{\pi_i})$. Now $(H/K) \rtimes G/C_G(H/K)$ is a π_i -group for some $\pi_i \in \sigma$ and every chief factor H/K of *G* below $F^*(G)$. Also note that $G^{\mathfrak{N}_{\sigma}} \leq O^{\pi_i}(G) \leq C_G(F_{\pi_i})$. Hence $G^{\mathfrak{N}_{\sigma}} \leq C_G(F^*(G)) \leq F^*(G)$. From this it follows that $(H/K) \rtimes G/C_G(H/K)$ is a π_i -group for some $\pi_i \in \sigma$ and for every chief factor H/K of *G*. Now *G* is σ -nilpotent by [18].

Proof of Theorem 2 (1) \Rightarrow (2). Assume that G = AB where all Sylow subgroups of A and B are $F^*(G)$ -K- \mathfrak{F} -subnormal. Since every cyclic primary subgroup C is subnormal in some Sylow subgroup P of A, we see that $C \leq P K - \mathfrak{F} - sn PF^*(G)$. Now C K- \mathfrak{F} -sn CF*(G) by Lemma 1. Hence C is $F^*(G)$ -K- \mathfrak{F} -subnormal. Thus all cyclic primary subgroups of A are $F^*(G)$ -K- \mathfrak{F} -subnormal. We can prove the same statement for B. Now $G \in \mathfrak{F}$ by (1).

(2) \Rightarrow (3). From G = GG and (2) it follows that \mathfrak{F} contains every group G all whose Sylow subgroups are $F^*(G)$ -K- \mathfrak{F} -subnormal. Thus there is a partition σ of \mathbb{P} such that $\mathfrak{F} = \mathfrak{N}_{\sigma}$ by Theorem 1.

(3) \Rightarrow (1). Let G = AB where all cyclic primary subgroups of A and B are $F^*(G)$ -*K*- \mathfrak{F} -subnormal. By [17, Lemma 11.6] there are Sylow *p*-subgroups P_1 , P_2 and *P* of A, B and G respectively with $P_1P_2 = P$.

Let $C \leq P_1$ be a cyclic primary subgroup. Since $C K \cdot \mathfrak{F} \cdot sn P_1$, we see that $CF^*(G) K \cdot \mathfrak{F} \cdot sn P_1F^*(G)$ by Lemma 3. From $C K \cdot \mathfrak{F} \cdot sn CF^*(G)$ it follows that $C K \cdot \mathfrak{F} \cdot sn P_1F^*(G)$ by (3) of Lemma 1.

Since \mathfrak{F} has the lattice property for K- \mathfrak{F} -subnormal subgroups by Lemma 5 and P_1 is generated by all its cyclic primary subgroups, we see that P_1 K- \mathfrak{F} -sn P_1 $F^*(G)$.

From P_1 K- \mathfrak{F} - $\mathfrak{sn} P$ it follows that $P_1F^*(G)$ K- \mathfrak{F} - $\mathfrak{sn} PF^*(G)$ by Lemma 3. Since P_1 K- \mathfrak{F} - $\mathfrak{sn} P_1F^*(G)$, we see that P_1 K- \mathfrak{F} - $\mathfrak{sn} PF^*(G)$ by (3) of Lemma 1. The same argument shows that P_2 K- \mathfrak{F} - $\mathfrak{sn} PF^*(G)$. Thus P K- \mathfrak{F} - $\mathfrak{sn} PF^*(G)$ by the lattice property.

Since all Sylow *p*-subgroups of *G* are conjugate, they all are $F^*(G)$ -*K*- \mathfrak{F} -subnormal. By analogy one can show that all Sylow subgroups of *G* are $F^*(G)$ -*K*- \mathfrak{F} -subnormal. Now $G \in \mathfrak{F}$ by Theorem 1.

Proof of Corollaries 2 and 5 Let prove that if H is a π_i -subgroup for some $\pi_i \in \sigma$ and every element of H permutes with every π'_i -element of $F^*(G)$, then $H K \cdot \mathfrak{N}_{\sigma}$ sn $HF^*(G)$. Note that $O^{\pi_i}(F^*(G)) \leq G$ and $O^{\pi_i}(F^*(G)) \leq C_G(H)$. Now $H \leq HO^{\pi_i}(F^*(G))$. Since $HF^*(G)/O^{\pi_i}(F^*(G))$ is a π_i -group, we see that $H K \cdot \mathfrak{N}_{\sigma}$ -sn $HF^*(G)$.

Now Corollaries 2 and 5 directly follows from Theorems 1 and 2 respectively. □

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- Ballester-Bolinches, A., Kamornikov, S.F., Pedraza-Aguilera, M.C., Pérez-Calabuig, V.: On σsubnormality criteria in finite σ-soluble groups. RACSAM 114(2), 94 (2020). https://doi.org/10.1007/ s13398-020-00824-4
- Ballester-Bolinches, A., Pérez-Ramos, M.D., Martínez-Pastor, A.: Nilpotent-like Fitting formations of finite soluble groups. Bull. Aust. Math. Soc. 62(3), 427–433 (2000). https://doi.org/10.1017/ S0004972700018943
- Ballester-Bollinches, A., Ezquerro, L.M.: Classes of Finite Groups (Math. Appl.), vol. 584. Springer, Netherlands (2006). https://doi.org/10.1007/1-4020-4719-3
- Cao, C., Guo, W., Zhang, C.: On the structure of
 n_σ-critical groups. Monatsh. Math. 189(2), 239–242
 (2019). https://doi.org/10.1007/s00605-018-1201-z
- Doerk, K., Hawkes, T.O.: Finite Soluble Groups, *De Gruyter Exp. Math.*, vol. 4. De Gruyter, Berlin, New York (1992). https://doi.org/10.1515/9783110870138
- Foguel, T.: Conjugate-permutable subgroups. J. Algebra 191(1), 235–239 (1997). https://doi.org/10. 1006/jabr.1996.6924
- Hu, B., Huang, J., Skiba, A.N.: Characterizations of finite σ-nilpotent and σ-quasinilpotent groups. Bull. Malays. Math. Sci. Soc. 42(5), 2091–2104 (2019). https://doi.org/10.1007/s40840-017-0593-6
- Huppert, B., Blackburn, N.: Finite Groups III, *Grundlehren Math. Wiss.*, vol. 243. Springer-Verlag, Berlin, Heidelberg (1982). https://doi.org/10.1007/978-3-642-67997-1
- Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the Sylow graph of a group and Sylow normalizers. Israel J. Math. 186(1), 251–271 (2011). https://doi.org/10.1007/s11856-011-0138-x
- 10. Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: Finite trifactorized groups and π -decomposability. Bull. Aust. Math. Soc. **97**(2), 218–228 (2018). https://doi.org/10.1017/S0004972717001034
- Konovalova, M.N., Monakhov, V.S.: Finite groups with some subnormal 2-maximal subgroups. PFMT 43, 75–79 (2020)
- Monakhov, V.S., Chirik, I.K.: Finite factorised groups whose factors are subnormal supersolvable subgroups. PFMT 28, 40–46 (2016)
- 13. Murashka, V.I.: On partially conjugate-permutable subgroups of finite groups. PFMT 14, 74–78 (2013)

- Murashka, V.I.: Classes of finite groups with generalized subnormal cyclic primary subgroups. Sib. Math. J. 55(6), 1105–1115 (2014). https://doi.org/10.1134/S0037446614060135
- Murashka, V.I.: Products of F*(G)-subnormal subgroups of finite groups. Russ. Math. (Iz. VUZ) 61(6), 66–71 (2017). https://doi.org/10.3103/S1066369X17060093
- 16. Shemetkov, L.A.: Factorizaton of nonsimple finite groups. Algebra Logika 15(6), 684–715 (1976)
- 17. Shemetkov, L.A.: Formations of Finite Groups. Nauka, Moscow (1978).. (In Russian)
- Skiba, A.N.: On σ-subnormal and σ-permutable subgroups of finite groups. J. Algebra 436, 1–16 (2015). https://doi.org/10.1016/j.jalgebra.2015.04.010
- Skiba, A.N.: Some characterizations of finite σ-soluble PσT-groups. J. Algebra 495, 114–129 (2018). https://doi.org/10.1016/j.jalgebra.2017.11.009
- Vasil'ev, A.F.: On Abnormally Factorizable Finite Solvable Groups. Ukr. Math. J. 54(9), 1402–1410 (2002). https://doi.org/10.1023/A:1023455500097
- Vasil'ev, A.F., Kamornikov, S.F., Semenchuk, V.N.: On lattices of subgroups of finite groups. In: N.S. Chernikov (ed.) Infinitegroups and Related Algebraic Structures, pp. 27–54. Institut Matematiki AN Ukrainy, Kiev (1993). In Russian
- Vasil'ev, A.F., Murashka, V.I.: Formations and products of F(G)-subnormal subgroups of finite solvable groups. Math. Notes 107(3), 413–424 (2020). https://doi.org/10.1134/S0001434620030050
- Vasil'ev, A.F., Vasil'eva, T.I., Vegera, A.S.: Finite groups with generalized subnormal embedding of Sylow subgroups. Sib. Math. J. 57(2), 200–212 (2016). https://doi.org/10.1134/S0037446616020038
- Vasilyev, A.F., Murashka, V.I.: Arithmetic graphs and classes of finite groups. Sib. Math. J. 60(1), 41–55 (2019). https://doi.org/10.1134/S0037446619010051
- Zhao, X., Chen, R.: On R-conjugate-permutability of Sylow subgroups. Czech. Math. J. 66(1), 111–117 (2016). https://doi.org/10.1007/s10587-016-0243-4
- Zhurtov, A.K., Syskin, S.A.: Schmidt groups. Sib. Math. J. 28(2), 235–239 (1987). https://doi.org/10. 1007/BF00970869

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.