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Abstract. Two subgroupsA andB of a groupG are called msp-permutable
if the following statements hold: AB is a subgroup of G; the subgroups
P and Q are mutually permutable, where P is an arbitrary Sylow p-
subgroup of A and Q is an arbitrary Sylow q-subgroup of B, p �= q. In
the present paper, we investigate groups that are factorized by two msp-
permutable subgroups. In particular, the supersolubility of the product
of two supersoluble msp-permutable subgroups is proved.
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1. Introduction. Throughout this paper, all groups are finite and G always
denotes a finite group. We use the standard notations and terminology of [3].
The notation Y ≤ X means that Y is a subgroup of a group X.

Two subgroups A and B of a group G are called mutually (totally) per-
mutable if UB = BU and AV = V A (respectively, UV = V U) for all U ≤ A
and V ≤ B.

The idea of totally and mutually permutable subgroups was first initiated
by Asaad and Shaalan in [1]. This direction has since been subject of an in-
depth study of many authors. An exhaustive report on this matter appears in
[3, chapters 4–5].

It is quite natural to consider a factorized group G = AB in which certain
subgroups of the factors A and B are mutually (totally) permutable. In this
direction, Monakhov [7] obtained the solubility of a group G = AB under the
assumption that the subgroups A and B are soluble and the Carter subgroups
(Sylow subgroups) of A and of B are permutable.

We introduce the following
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Definition. Two subgroups A and B of a group G are called msp-permutable
if the following statements hold:
(1) AB is a subgroup of G;
(2) the subgroups P and Q are mutually permutable, where P is an arbitrary

Sylow p-subgroup of A and Q is an arbitrary Sylow q-subgroup of B,
p �= q.

In the present paper, we investigate groups that are factorized by two msp-
permutable subgroups. In particular, the supersolubility of the product of two
supersoluble msp-permutable subgroups is proved.

2. Preliminaries. In this section, we give some definitions and basic results
which are essential in the sequel. A group whose chief factors have prime
orders is called supersoluble. Recall that a p-closed group is a group with a
normal Sylow p-subgroup and a p-nilpotent group is a group with a normal
Hall p′-subgroup.

Denote by G′, Z(G), F (G), and Φ(G) the derived subgroup, centre, Fitting,
and Frattini subgroups of G, respectively; P the set of all primes. We use Ept

to denote an elementary abelian group of order pt and Zm to denote a cyclic
group of order m. The semidirect product of a normal subgroup A and a
subgroup B is written as follows: A � B.

The monographs [2,5] contain the necessary information of the theory of
formations. The formations of all nilpotent, p-groups, and supersoluble groups
are denoted by N, Np, and U, respectively. A formation F is said to be saturated
if G/Φ(G) ∈ F implies G ∈ F. A formation function is a function f defined
on P such that f(p) is a, possibly empty, formation. A formation F is said to
be local if there exists a formation function f such that F = {G | G/Fp(G) ∈
f(p)}. Here Fp(G) is the greatest normal p-nilpotent subgroup of G. We write
F = LF (f) and f is a local definition of F. By [5, Theorem IV.3.7], among all
possible local definitions of a local formation F, there exists a unique f such
that f is integrated (i.e., f(p) ⊆ F for all p ∈ P) and full (i.e., f(p) = Npf(p) for
all p ∈ P). Such a local definition f is said to be the canonical local definition
of F. By [5, Theorem IV.4.6], a formation is saturated if and only if it is local.

A subgroup H of a group G is called P-subnormal in G, see [12], if ei-
ther H = G, or there is a chain of subgroups

H = H0 ≤ H1 ≤ · · · ≤ Hn = G, |Hi : Hi−1| ∈ P ∀i.

A group G is called w-supersoluble (widely supersoluble) if every Sylow sub-
group of G is P-subnormal in G. Denote by wU the class of all w-supersoluble
groups, see [12]. In [12, Theorem 2.7, Proposition 2.8], it is proved that wU is
a subgroup-closed saturated formation and every group from wU has an or-
dered Sylow tower of supersoluble type. By [9, Theorem B], [8, Theorem 2.6],
[12, Theorem 2.13], G ∈ wU if and only if G has an ordered Sylow tower
of supersoluble type and every metanilpotent (biprimary) subgroup of G is
supersoluble.

Denote by vU the class of groups all of whose primary cyclic subgroups
are P-subnormal. In [9, Theorem B], it is proved that vU is a subgroup-closed
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saturated formation and G ∈ vU if and only if G has an ordered Sylow tower
of supersoluble type and every biprimary subgroup of G with a cyclic Sylow
subgroup is supersoluble. It is easy to verify that U ⊆ wU ⊆ vU ⊆ D. Here D is
the formation of all groups which have an ordered Sylow tower of supersoluble
type.

If H is a subgroup of G, then HG =
⋂

x∈G Hx is called the core of H in G.
If a group G contains a maximal subgroup M with trivial core, then G is said
to be primitive and M is its primitivator. A simple check proves the following
lemma.

Lemma 2.1. Let F be a saturated formation and G be a group. Assume that
G /∈ F, but G/N ∈ F for all non-trivial normal subgroups N of G. Then G is
a primitive group.

Lemma 2.2 ([5, Theorem 15.6]). Let G be a soluble primitive group and M be
a primitivator of G. Then the following statements hold:
(1) Φ(G) = 1;
(2) F (G) = CG(F (G)) = Op(G) and F (G) is an elementary abelian subgroup

of order pn for some prime p and some positive integer n;
(3) G contains a unique minimal normal subgroup N and moreover, N =

F (G);
(4) G = F (G) � M and Op(M) = 1.

Lemma 2.3 ([10, Lemma 2.16]). Let F be a saturated formation containing U
and G be a group with a normal subgroup E such that G/E ∈ F. If E is cyclic,
then G ∈ F.

Lemma 2.4 Let F be a formation, G a group, A and B subgroups of G such
that A and B belong to F. If [A,B] = 1, then AB ∈ F.

Proof. Since
[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉 = 1,

it follows that ab = ba for all a ∈ A, b ∈ B. Let

A × B = {(a, b) | a ∈ A, b ∈ B},

(a1, b1)(a2, b2) = (a1a2, b1b2) ∀a1, a2 ∈ A, b1, b2 ∈ B

be the external direct product of the groups A and B. Since A ∈ F, B ∈ F and
F is a formation, we have A × B ∈ F. Let ϕ : A × B → AB be a function with
ϕ((a, b)) = ab. It is clear that ϕ is a surjection. Because

ϕ((a1, b1)(a2, b2)) = ϕ((a1a2, b1b2)) = a1a2b1b2

= a1b1a2b2 = ϕ((a1, b1))ϕ((a2, b2)),

it follows that ϕ is an epimorphism. The core Ker ϕ contains all elements (a, b)
such that ab = 1. In this case, a = b−1 ∈ A ∩ B ≤ Z(G). By the fundamental
homomorphism theorem,

A × B/Ker ϕ ∼= AB.

Since A × B ∈ F and F is a formation, A × B/Ker ϕ ∈ F. Hence AB ∈ F. �
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Lemma 2.5 ([4]). Let a group G = HK be the product of subgroups H and K.
If L is normal in H and L ≤ K, then L ≤ KG.

Lemma 2.6. Let G = P �M be a primitive soluble group, where M is a primi-
tivator of G and P is a Sylow p-subgroup of G. Let A and B be subgroups of M
and M = AB. If B ≤ NG(X) for every subgroup X of P , then the following
statements hold:
(1) B is a cyclic group of order dividing p − 1;
(2) [A,B] = 1.

Proof. We fix an element b ∈ B. If x ∈ P , then xb ∈ 〈x〉 since B ≤ NG(〈x〉) by
hypothesis. Hence xb = xmx , where mx is a positive integer and 1 ≤ mx ≤ p.
If y ∈ P \ {x}, then

(xy)b = (xy)mxy = xmxyymxy , (xy)b = xbyb = xmxymy ,

xmxyymxy = xmxymy , xmxy−mx = ymy−mxy = 1, mxy = mx = my.

Therefore we can assume that xb = xnb for all x ∈ P , where 1 ≤ nb ≤ p and
nb is a positive integer.

Assume that there exist d ∈ B and y ∈ P \{1} such that yd = y. Then nd =
1 and xd = x for all x ∈ P , i.e., d ∈ CG(P ) = P and d = 1. Consequently B
is an automorphism group of a group of order p. Hence B is cyclic of order
dividing p − 1.

Now we show that [A,B] = 1. We fix an element [b−1, a−1] ∈ [A,B]. Since
P is normal in G, it follows that xa ∈ P for any a ∈ A and any x ∈ P . Hence

x[b−1,a−1] = xbab−1a−1
= (xb)ab−1a−1

= ((xnb)a)b
−1a−1

= ((xa)nb)b
−1a−1

= ((xa)b)b
−1a−1

= (x)abb−1a−1
= x.

Therefore [b−1, a−1] ∈ CG(P ) = P . Since [A,B] ≤ M , we have [b−1, a−1] ∈
M ∩ P = 1 and [A,B] = 1. �

3. Properties of msp-permutable subgroups. We will say that a group G sat-
isfies the property:

Eπ if G has at least one Hall π-subgroup;
Cπ if G satisfies Eπ and any two Hall π-subgroups of G are conjugate in G;
Dπ if G satisfies Cπ and every π-subgroup of G is contained in some Hall

π-subgroup of G.
Such a group is also called an Eπ-group, Cπ-group, and Dπ-group, respec-

tively.

Lemma 3.1. Let A and B be msp-permutable subgroups of G and G = AB.
(1) If N is a normal subgroup of G, then G/N = (AN/N)(BN/N) is the

msp-permutable product of the subgroups AN/N and BN/N .
(2) If A ≤ H ≤ G, then H is the msp-permutable product of the subgroups A

and H ∩ B.
(3) If G ∈ Dπ, then there exist Hall π-subgroups Gπ, Aπ, and Bπ of G, of

A, and of B, respectively, such that Gπ = AπBπ is the msp-permutable
product of the subgroups Aπ and Bπ.
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Proof. (1) Let p ∈ π(AN/N), X/N be a Sylow p-subgroup of AN/N , and
P be a Sylow p-subgroup of A. Then PN/N = X/N . Similarly, if q ∈
π(BN/N) such that q �= p, Y/N is a Sylow q-subgroup of BN/N and Q is
a Sylow q-subgroup of B. Then QN/N = Y/N . By hypothesis, P and Q
are mutually permutable. Hence X/N and Y/N are mutually permutable.

(2) By Dedekind’s identity, H = A(H ∩ B). Let Aq be a Sylow q-subgroup
of A, R be a Sylow r-subgroup of H ∩B, where q �= r, and Br be a Sylow
r-subgroup of B containing R. Since (H ∩ Br) is a Sylow r-subgroup
of H ∩ B and R ≤ H ∩ Br, it follows that R = H ∩ Br.

Because Aq and Br are mutually permutable, we have AqU ≤ G for
every subgroup U of R.

Let V be an arbitrary subgroup of Aq. Since Aq and Br are mutually
permutable,

V Br ≤ G, H ∩ V Br = V (H ∩ Br) = V R ≤ G.

Hence Aq and R are mutually permutable.
(3) By [3, Theorem 1.1.19], there are Hall π-subgroups Gπ, Aπ, and Bπ

of G, of A, and of B, respectively, such that Gπ = AπBπ. Since A and
B are msp-permutable, it obviously follows that Aπ and Bπ are msp-
permutable. �

Lemma 3.2. Let A and B be msp-permutable subgroups of G and G = AB.
Let p, r ∈ π(G), p be the greatest prime in π(G), and r be the smallest prime
in π(G). Then the following statements hold:
(1) if A and B are p-closed, then G is p-closed;
(2) if A and B are r-nilpotent, then G is r-nilpotent;
(3) if A and B have an ordered Sylow tower of supersoluble type, then G has

an ordered Sylow tower of supersoluble type.

Proof. (1) By [3, Theorem 1.1.19], there are Sylow p-subgroups P , P1, and P2

of G, of A, and of B, respectively, such that P = P1P2. By hypothesis, P1

is normal in A and P2 is normal in B. Let H1 and H2 be Hall p′-subgroups
of A and of B, respectively, and Q be a Sylow q-subgroup of H1, where
q ∈ π(H1). Choose a chain of subgroups

1 = Q0 < Q1 < · · · < Qt−1 < Qt = Q, |Qi+1 : Qi| = q.

Since A and B are msp-permutable, we have that P2Qi is a subgroup
of G for every i. Since |P2Q1 : P2| = q and p > q, it follows that P2 is
normal in P2Q1. Then by induction, we have that P2 is normal in P2Q.
Because q is an arbitrary prime in π(H1), it follows that P2 is normal
in P2H1 and 〈H1,H2〉 ≤ NG(P2). Similarly, 〈H1,H2〉 ≤ NG(P1). Hence
P = P1P2 is normal in G.

(2) Let R, R1, and R2 be Sylow r-subgroups of G, of A, and of B, respectively,
such that R = R1R2. Let K1 and K2 be Hall r′-subgroups of A and of B.
Let q ∈ π(G) \ {r}, Q, Q1, and Q2 be Sylow q-subgroups of G, of A, and
of B, respectively, such that Q = Q1Q2. Choose a chain of subgroups

1 = V0 < V1 < · · · < Vt−1 < Vt = R1, |Vi+1 : Vi| = r.
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Since A and B are msp-permutable, ViQ2 is a subgroup of G for every i.
Since |V1Q2 : Q2| = r and q > r, it follows that Q2 is normal in V1Q2.
Then by induction, we have that R1 ≤ NG(Q2). By hypothesis, A is r-
nilpotent, hence R1 ≤ NG(Q1) and R1 ≤ NG(Q). Similarly, R2 ≤ NG(Q)
and G has a r-nilpotent Hall {r, q}-subgroup RQ. Since q is an arbitrary
prime in π(G) \ {r}, it follows that G is soluble and r-nilpotent by [11,
Corollary].

(3) By (1), we have that a Sylow p-subgroup P is normal in G for the
greatest p ∈ π(G). By Lemma 3.1 (1), G/P is the product of the msp-
permutable subgroups AP/P and BP/P . By induction, G/P has an or-
dered Sylow tower of supersoluble type, hence G has an ordered Sylow
tower of supersoluble type. �

Theorem 3.3. Let A and B be msp-permutable subgroups of G and G = AB.
If A and B are soluble, then G is soluble.

Proof. We use induction on the order of G and the method of the proof from [7,
Theorem 2]. Let N �= 1 be a soluble normal subgroup of G. By Lemma 3.1 (1),
G/N is the product of the soluble msp-permutable subgroups AN/N and
BN/N . By induction, G/N is soluble, hence G is soluble. In what follows,
we assume that G contains no non-trivial soluble normal subgroups.

Since A is soluble, U = Os(A) �= 1 for some s ∈ π(A). If B is an s-subgroup
of G, then G = AGs, U ≤ Gs, and UG ≤ (Gs)G by Lemma 2.5, a contradiction.
Hence B is not an s-subgroup of G and let Q be an arbitrary Sylow q-subgroup
of B, where q ∈ π(B) \ {s}. Since A and B are msp-permutable,

UQx = UQba = Ua(Qb)a = (UQb)a = (QbU)a = QxU

for every x = ba ∈ G, where b ∈ B and a ∈ A. By [6, Theorem 7.2.5],
D = UQ ∩ QU is subnormal in G. Since UQ ≤ UQ and UQ is soluble, it
follows that D is a soluble subnormal subgroup of G and D = 1. Hence

[U,Q] ≤ [UQ, QU ] ≤ D = 1.

This is true for any Sylow q-subgroup of B, therefore [U,QB ] = 1.
Let H = NG(U). By Dedekind’s identity, H = A(H∩B). By Lemma 3.1 (2),

H is the product of the soluble msp-permutable subgroups A and H ∩ B. By
induction, H is soluble. Since [U,QB ] = 1, we have QB ≤ NG(U) = H.
Because G = AB = HB, QB is normal in B, and QB ≤ H, it follows that
QB ≤ HG = 1 by Lemma 2.5, a contradiction. �

Lemma 3.4. Let G = G1G2 be the product of msp-permutable subgroups G1

and G2. If a Sylow p-subgroup P of G is normal in G and abelian, then P ∩Gi

is normal in G for every i ∈ {1, 2}.
Proof. Assume that i, j ∈ {1, 2} and i �= j. It is clear that P ∩ Gi is a Sy-
low p-subgroup of Gi and P ∩ Gi = (Gi)p is normal in Gi. Hence Gi has a
Hall p′-subgroup (Gi)p′ . Since Gi and Gj are msp-permutable, it follows that
(Gi)p(Gj)p′ is a subgroup of G and (Gj)p′ ≤ NG((Gi)p) because every sub-
group of G is p-closed. By hypothesis, P is abelian, therefore (Gi)p is normal
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in P and
Gj = (Gj)p(Gj)p′ = (P ∩ Gj)(Gj)p′ ≤ NG((Gi)p).

Hence (Gi)p is normal in G = GiGj = G1G2 for every i ∈ {1, 2}. �

4. Proof of the main theorem.

Theorem 4.1. Let F be a subgroup-closed saturated formation such that U ⊆
F ⊆ D. Let G = G1G2 be the product of msp-permutable subgroups G1 and
G2. If G1, G2 ∈ F, then G ∈ F.

Proof. By Lemma 3.2 (3), G has an ordered Sylow tower of supersoluble type.
Let P be a Sylow p-subgroup of G, where p is the greatest prime in π(G).
Then P is normal in G.

Assume that G �∈ F. Let N be a non-trivial normal subgroup of G. Hence

G/N = (G1N/N)(G2N/N),
G1N/N ∼= G1/G1 ∩ N ∈ F, G2N/N ∼= G2/G2 ∩ N ∈ F.

By Lemma 3.1 (1), G1N/N and G2N/N are msp-permutable. Consequently,
G/N satisfies the hypothesis of the theorem, and by induction, G/N ∈ F. Since
F is saturated, G is primitive by Lemma 2.1. Hence Φ(G) = 1, G = N � M ,
where N = CG(N) = F (G) = Op(G) = P is the unique minimal normal
subgroup of G by Lemma 2.2. Therefore M is a Hall p′-subgroup of G and
M = (G1)p′(G2)p′ for some Hall p′-subgroups (G1)p′ and (G2)p′ of G1 and
of G2, respectively.

Suppose that p divides |G1| and |G2|. By Lemma 3.4, P ≤ G1 ∩ G2. Let
P1 ≤ P and |P1| = p. Since P ≤ G1 and Q permutes with P1 for every Sylow
subgroup Q of (G2)p′ , we have P1(G2)p′ ≤ G and (G2)p′ ≤ NG(P1). Similarly,
since P ≤ G2 and R permutes with P1 for every Sylow subgroup R of (G1)p′ , it
follows that P1(G1)p′ ≤ G and (G1)p′ ≤ NG(P1). Hence M = (G1)p′(G2)p′ ≤
NG(P1) and P1 is normal in G. By Lemma 2.3, G ∈ F, a contradiction.

Thus P ≤ G1 and G2 is a p′-subgroup of G. By Lemma 2.6 (1), G2 is a
cyclic group of order dividing p− 1. Hence G2 ∈ g(p), where g is the canonical
local definition of the saturated formation U. Since U ⊆ F, we have by [5,
Proposition IV.3.11], g(p) ⊆ f(p), where f is the canonical local definition of
the saturated formation F. Hence G2 ∈ f(p). Since P ≤ G1, it follows that
G1 = P � (G1)p′ . Because G1 ∈ F and Fp(G1) = P , we have G1/Fp(G1) =
G1/P ∼= (G1)p′ ∈ f(p). By Lemma 2.6 (2), [(G1)p′ , (G2)p′ ] = 1. Since (G1)p′ ∈
f(p), (G2)p′ ∈ f(p), and f(p) is a formation, it follows by Lemma 2.4 that
G/P ∼= M = (G1)p′(G2)p′ ∈ f(p). Because P ∈ Np, we have G ∈ F, a
contradiction. The theorem is proved. �

Corollary 4.2. Let G = G1G2 be the product of msp-permutable subgroups G1

and G2.

1. If G1, G2 ∈ U, then G ∈ U.
2. If G1, G2 ∈ wU, then G ∈ wU.
3. If G1, G2 ∈ vU, then G ∈ vU.
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