УДК 57.02

Состояние экосистем озер, расположенных в разных районах урбанизированной территории

И. Ф. РАССАШКО, О. В. КОВАЛЕВА

Целью работы явилось изучение биоразнообразия, структурных, эколого-географических показателей биоты, качества воды и установления состояния экосистем нескольких водоемов, расположенных на территории г. Гомель: Девятый карьер (промышленный район, предприятие «Гомсельмаш»), 5 Волотовских озер (зона отдыха микрорайона «Волотова»), озеро Обкомовское – рукав озера Володькино (зона отдыха микрорайона «Пролетарский луг»), водоем в пойме р. Сож (левый берег реки, место пляжа, недалеко находится стоянка прогулочных катеров). Исследованиями охвачена также группа водоемов, с одной стороны, подвергнутых выраженному загрязнению – озеро Дедно (место поступления ливневых коллекторов и сточных вод промышленных предприятий), озеро Шапор (затон Сожа, левый берег реки, Новобелицкий район города, сброс сточных вод промышленных предприятий), с другой стороны, рекреационному воздействию – озеро Любенское (5-й микрорайон), озеро Сетен (граница городской зоны, д. Поколюбичи). Сбор и обработку гидрохимических и гидробиологических проб проводили стандартными методами в разные годы, включая 2007-2009 гг.

Результаты исследований показывают, что по большинству показателей гидрохимический режим в водоеме Девятый карьер является вполне благоприятным – концентрация кислорода (по среднегодовым данным) составляет 9,53 мг/дм³, содержание аммонийного азота -0.19 мг/дм^3 , нитритного азота -0.014 мг/дм^3 . Вместе с тем, в озере имеет место превышение БПК₅ в 1,9, цинка в 8,5 раз. Фитопланктон в озере в 2008 г. представлен 17 видами из трех отделов: зеленые (хлорококковые), диатомовые и динофитовые водоросли, среди которых чаще встречаются Pediastrum duplex Meyen, Ceratium hirundinella (O. F. M.) Schrank. Последний вид может развиваться в значительном количестве при «цветении» воды. В озере обнаружено 39 видов зоопланктона, из них коловраток – 30,8%, кладоцер – 41%, копепод – 28,2 %. Сопоставление полученных данных с таковыми, установленными нами ранее, показывает, что в 2006-2007 гг. удельный вклад коловраток был в 1,7 раза больше. Таксономическая структура зоопланктона водоема характеризуется тем, что в нем выражено доминирует один вид: в летнее время – это Thermocyclops oithonoides (Sars, 1863) из копепод (плотность его составляет 65,2 % – 65,7 % от общей), осенью – Simacephalus vetulus (O. F. Muller, 1776) – представитель кладоцер. Уменьшение количества доминирующих видов в экосистемах имеет место при возрастании антропогенной нагрузки. Данные по количественным характеристикам показывают, что в водоеме «Девятый карьер» в период исследований плотность зоопланктона составляет 2741.7 - 3102.5 экз./л, при этом плотность копепод равна 90.2 % - 94.2% от таковой зоопланктона. В зоопланктоне водоема есть виды – индикаторы (76,9%) разных классов качества воды. Массовые виды планктона относятся к индикаторам чистых вод. Индекс сапробности – 1,63 характеризует воду водоема как «умеренно загрязненную».

Водоем 1 в микрорайоне «Волотова», предназначенный для рекреационных целей, относится к группе пяти Волотовских озер, которые остались после осущения болот и имели связь с р. Сож. Гидрохимический режим водоема характеризуется довольно высокой цветностью воды -215, высоким содержанием кислорода -9,25 мг/дм³, сравнительно небольшим содержанием взвешенного вещества -3,10 мг/ дм³, рН равен 7,82, концентрация аммонийного, нитритного и нитратного азота в среднем составляет 0,222,0,003 и 0,043 мг/ дм³ соответственно, СПАВ -0,152 мг/ дм³, нефтепродукты -0,030 мг/ дм³. В озере повышена в 20,8 раз концентрация марганца, в 5,0-5,2 раз - железа, в 1,8-2,1 раза - величина БПК $_5$, в 1,03 раза

– цинка. Содержание фосфатов в 4-30 раз выше, чем в других озерах городской зоны. По индексу сапробности Пантле и Букка – 1,73 вода озера относится к классу «умеренно (слабо) загрязненная». Результаты гидробиологических исследований показывают на относительно невысокое биоразнообразие планктонных сообществ водоема. Это находится во взаимосвязи с его еще недостаточно сложившимися гидрологическим и гидрохимическим режимами (водоем после реконструкции был залит незадолго до начала настоящих исследований в 2008 г.). Видовой состав фито- и зоопланктона озера включает: 31 вид водорослей, относящихся к 5 отделам, 7 классам, 11 порядкам и 29 видов зоопланктона, представляющих 2 типа, 2 класса и 4 отряда. Как видно, разнообразие зоопланктона по крупным таксонам меньше. Различия по количеству видов двух групп планктона почти отсутствуют, а по другим таксономическим единицам фитопланктон водоема богаче в 2,5-3,5 и 2,8 раз. На исследуемых нескольких станциях водоема наблюдаются изменения в видовом разнообразии фито- и зоопланктона, но величины индекса Соренсена показывают на довольно значительную степень сходства планктонных сообществ станций. В зоопланктоне выявлены виды-индикаторы загрязнения, из них преобладают индикаторы олигосапробных условий. В фитопланктоне есть видыиндикаторы загрязненных вод. Плотность и биомасса зоопланктона значительно варьируют во временном аспекте и составляют от 0.15 до 24.00 экз./л, 4.81 - 257.00 мг/м³. В фитопланктоне доминируют мелкие водоросли, доступные по размерным параметрам зоопланктону. Наличие в его кормовой базе значительной доли потребляемого фитопланктона показывает на возможность существования в планктонном сообществе озера Волотовское 1 пищевых отношений пастбищного типа. В целом, проведенные исследования показывают, что водоем, расположенный в рекреационной зоне крупного городского микрорайона, в настоящее время подвергается относительно небольшому антропогенному воздействию, но степень его неодинаковая в разных местах водоема.

В озере Обкомовское содержание растворенного кислорода составляет 7,79-9,12 - $9,25 \text{ мг/дм}^3$, концентрация аммонийного, нитритного и нитратного азота -0.0788-0.477, 0,021-0,023 и 1,3 мг/дм³ соответственно, нефтепродуктов – 0,023-0,034 мг/дм³, СПАВ – 0.023-0.04 мг/дм³. В озере повышена в 2.58-2.7 раз концентрация железа, в 1.22 – концентрация азота аммонийного, в 1,3 раза – концентрация фосфатов. Фитопланктон в озере в 2008 г. представлен 33 видами и внутривидовыми таксонами, 28 родами из 7 отделов. Наиболее разнообразны диатомовые и зеленые водоросли, третье место принадлежит синезеленым. Летом 2003 г. фитопланктон был представлен 29 видами, относящимися к 18 родам и 7 отделам. Наибольшее количество видов, по-прежнему, принадлежало диатомовым и зеленым водорослям. В озере в исследуемый период ротаторный зоопланктон (по сетяным пробам) был беден – обнаружено всего 3 вида коловраток из 3-х родов, входящих в состав 3-х семейств. По данным, полученным в 2003 г., в составе ротаторного планктона отмечено 6 видов, относящихся к 5 родам и 5 семействам. По сравнению с таковым в оз. Волотовское 1 ротаторный планктон в оз. Обкомовское в 2008 г. был также менее разнообразным. Количественные показатели ротаторного зоопланктона – плотность и биомасса (по сетяным пробам) составляют 2.40 экз./л, биомасса – 1.27 мг/м³. В то же время в оз. Волотовском его плотность равна 0.06-19,32 экз./л, биомасса – 0,08-97,00 мг/м³. Сравнительные данные показывают, что в оз. Обкомовское по сравнению с оз. Волотовское 1 в 2008 г. наблюдается уменьшение видового разнообразия, количественных показателей ротаторного планктона, но в обоих водоемах в формировании плотности и биомассы существенную роль играет один вид. В первом озере в состав доминирующего комплекса входят виды-индикаторы чистых вод, во втором - доминируют индикаторы умеренно-загрязненных условий. В оз. Обкомовское в целом, доля видов-индикаторов чистых вод равна 66,6 %, умеренного загрязнения – 33,4 %, индекс сапробности Пантле и Букка – 1,2 (класс чистых вод). Качество воды озера Обкомовское в 2008 г. по сапробным показателям, ряду гидрохимических и гидробиологических данных является более высоким по сравнению с некоторыми озерами г. Гомель. Это можно объяснить меньшей антропогенной нагрузкой на водоем в настоящее время. В 2003 г. биологические данные показывали на более грязные условия озера, что было видно визуально. Кроме того, в озере достигали значительного развития виды водорослей, вызывающих «цветение» воды – Ceratiит hirundinella Schrank, Aphanizomenon flos-aquae Ralfs, представители рода Anabaena. Что касается рачкового зоопланктона, то в оз. Обкомовское количество видов, обнаруженных в 2008 г., равно 21, из них ветвистоусых ракообразных – 15, веслоногих – 6. Плотность и биомасса их составляют 0,69-1,32 экз./л и 18,0-43,0 мг/м 3. Удельный вклад наиболее массового вида – Scapholeberis mucronata (Muller, 1785) в формирование плотности и биомассы зоопланктона является значительным и примерно одинаковым – 31,9 % – 65,2 %, 38,9 % – 67,4 % соответственно. Сравнение данных, полученных в разные годы, показывает, что в 2003 г. рачковый зоопланктон озера был менее разнообразный и включал 6 видов кладоцер и 3 вида копепод. Только 4 вида ракообразных продолжают встречаться в настоящее время – Chydorus shpaericus (Muller, 1785), Pleuroxus trigonellus trigonellus (Muller, 1785), Mesocyclops leuckarti (Claus,1857), Thermocyclops oithonoides (Sars, 1863). В сравнении с оз. Волотовское I планктонные ракообразные в нем, в противоположность коловраткам, менее разнообразны, а их плотность варьирует от 0,09 до 4,68 экз./л. Общие величины плотности зоопланктона равны 0,70-30,40 экз./л.

В пойменном водоёме в летний период 2007 г. наиболее разнообразными являлись планктонные сообщества (фитопланктон и зоопланктон) на станции в районе расположения прогулочных катеров. Общее количество видов, обнаруженных на трех исследуемых станциях, по зоопланктону было 28, по фитопланктону – 30. В 2008 г. наиболее разнообразен зоопланктон на станции 2 (середина озера), а фитопланктон – по-прежнему на станции 3. Общее количество видов на трех станциях по фитопланктону составляет 19, по зоопланктону – 28. Индекс Соренсена показывает, что имеются различия в сообществах между станциями. В 2007 г. по зоопланктону наибольшим сходством обладают станции 2 и 3, менее сходны между собой станции 1 (пляж) и 3, более отдаленные друг от друга. В 2008 г. продолжает быть наиболее сходным зоопланктон станций 2 и 3, станция 1 является менее сходной со станцией 2 по зоопланктону и со станцией 3 по фитопланктону. Сопоставление таксономического разнообразия зоопланктона с таковым второго важного компонента – фитопланктона в 2008 г. показывает, что зоопланктон включает виды, относящиеся к 2 типам, 3 классам, 9 отрядам, 21 семейству, 23 родам, фитопланктон включает виды, относящиеся к 5 отделам, 8 классам, 10 порядкам, 12 семействам, 13 родам. Разнообразие фитопланктона по крупным таксономическим единицам – типу, отделу и классу больше разнообразия зоопланктона в 2,5 и 2,7 раза. По отрядам, порядкам разнообразие первой и второй групп примерно одинаковое, по семействам, родам и видам лучше представлен зоопланктон – в 1,8, 1,7, 1,5 соответственно. Это показывает на определенную несбалансированность в таксономическом разнообразии двух разных групп планктона. Имеются виды, которые характерны для вод повышенной трофности – Sc. mucronata, Ch. sphaericus. Плотность зоопланктона составляет 0,73-2,60 экз./л. В исследуемом водоеме виды – индикаторы качества воды относятся к разным группам индикаторных организмов, но преобладают представители бета-мезосапробных и олигосапробных условий. Индекс сапробности Пантле и Букка имеет различные значения по станциям: в районе пляжа он составляет 1,82, на станции, расположенной на середине озера – 1,67, в районе стоянки катеров – 1,74. По шкале оценки качества вод вода на трех станциях исследуемого водоема относится к III классу – умеренно (слабо загрязненная).

Эколого-зоогеографический анализ данных показывает, что в исследуемых водоемах есть виды, которые являются космополитами, эврибионтами, широкораспространенными — 9-16; имеются виды, характерные для Голарктики — 2-4 и Палеарктики — 1-2, в водоемах Европы — 1; обычны в водных экосистемах Беларуси — 1-6, Полесья — 2-3, преимущественно в водоемах и водотоках бассейна Днепра — 1-2. Обитают также виды, которые встречаются в водоемах разного типа — 2-5, в пелагиали — большинство, прибрежье — 2-3, характерны для зарослей — 1-4, заболоченных водоемов — 1, из редких — 1-2.

В группе водоемов, которые подвергнуты значительному загрязнению, а также водоемов, отмеченных выше и исследуемых в другое время (рисунки 1-2), отмечается превышение величин БПК $_5$ в 1,36-2,91 раза, железа – в 1,44-11,00 раз, марганца – в 1,25-20,80 раза. В некоторых озерах качество воды также не удовлетворяет нормам по содержанию азота аммонийного (1,22-8,32 ПДК), цинка (1,28-1,39 ПДК), фосфатов (1,26-7,18 ПДК), нефтепродук-

тов (3,58 ПДК), азота нитритного (1,42-2,04 ПДК). В озерах, принимающих сточные воды, отмечается ниже допустимого на 2,45 мг/дм³ содержание растворенного кислорода, концентрация азота нитритного превышает ПДК в 1,42-7,54 раза, азота аммонийного – в 2,57-8,32 раза, фосфатов – в 1,55-3,53, азота нитритного – в 3,04-6,63 раза.

В результате гидробиологических исследований в зоопланктоне озер обнаружено 79 видов и внутривидовых таксонов: *Rotifera* – 48, *Cladocera* – 24, *Copepoda* – 7. Количество обнаруженных в озерах видов снижается при увеличении степени антропогенной нагрузки в 1,2-2 раза. Аналогичным образом изменяются и величины индексов видового разнообразия. В видовом разнообразии зоопланктона доминирующая роль (более 50%) принадлежит коловраткам, что наблюдается при евтрофировании водоемов.

Количество доминирующих видов зоопланктона, выделенное на основе функции рангового распределения плотности, составляет в разных озерах 2-5 и сокращается при антропогенном прессе. Отношение числа видов рода Brachionus к числу видов рода Trichocerca (индекс $Q_{B/T}$) для разных озер изменяется в пределах 2-8, что характерно для гиперэвтрофных водоемов. Во всех исследуемых озерах доля видов-индикаторов загярзнения превышает 50%. Величины рассчитанного индекса сапробности (по среднегодовым данным) позволяют отнести воду всех исследуемых озер к категории «умеренно загрязненная». В отдельные периоды исследований вода некоторых озер относится к категории «загрязненная», а вода озер, в которые поступают сточные воды, — к категории «грязная».

При проведении исследований были сопоставлены гидрохимические характеристики и гидробиологические показатели озер. Так, повышение концентрации фосфатов в озерах приводит к обеднению видового состава зоопланктона. Одновременно в озерах отмечается увеличения коэффициента трофии и, как правило, возрастает доля коловраток в видовом разнообразии зоопланктона (рисунок 1). С возрастанием концентрации нефтепродуктов в воде снижается количество доминирующих видов и величина индекса $Q_{B/T}$ (рисунок 2). Аналогичные данные получены и при сопоставлении индикационных характеристик зоопланктона озер с другими гидрохимическими показателями.

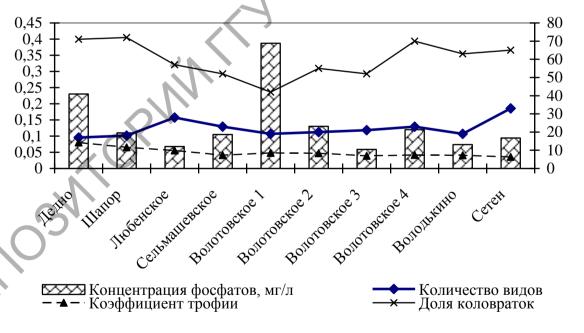


Рисунок 1 — Изменение индикационных характеристик зоопланктона озер в зависимости от концентрации фосфатов

Таким образом, в результате проведенных исследований установлено, что качество воды ряда изученных городских озер по некоторым гидрохимическим показателям не удовлетворяет нормативам. Данные по таксономической структуре планктона согласуются с гидрохимическими и отражают антропогенную нагрузку на исследуемые озера.

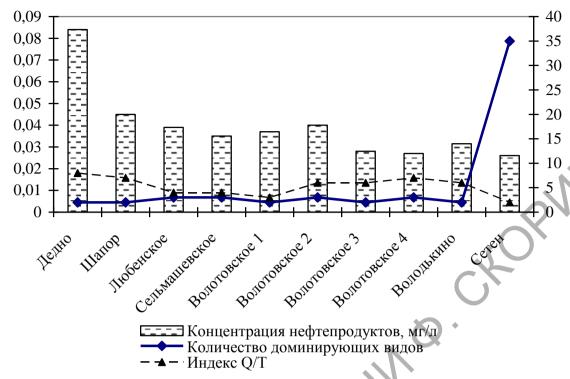


Рисунок 2 — Изменение индикационных характеристик зоопланктона озер в зависимости от концентрации нефтепродуктов

Структурные характеристики сообществ зоопланктона характеризуют трофический статус озер, подверженных выраженному антропогенному воздействию, как довольно высокий.

Abstract. State of lake ecosystems situated in different areas of urban territories is considered in the paper.

Гомельский государственный университет им. Ф. Скорины

Поступило 10.05.09