Математика

УДК 512.542

Формации Шеметкова в классе $\mathfrak X$

И. Н. ХАЛИМОНЧИК

Введение. Рассмотрение задач перечисления формаций конечных групи с заданными свойствами привело к проблеме описания насыщенных формаций 3, для которых любая конечная минимальная не 3-группа является либо группой Шмидта, либо группой простого порядка. Впервые такая проблема была поставлена в начале 80-х годов Л.А. Шеметковым и сформулирована им в явном виде в 1984 году на IX Всесоюзном симпозиуме по теории групп в Москве. В дальнейшем, эта проблема была записана им в Коуровскую тетрадь [1], вопрос 9.74. В классе конечных разрешимых групп эта проблема была решена А.Ф. Васильевым и В.Н. Семенчуком 📵 Этот результат вошел в монографии [3-6]. Исследованию формаций с данным свойством были посвящены работы А.Н. Скибы [7], С.Ф. Каморникова [8], Баллестера-Болинше и Перец-Рамош [9-10], Го Вэньбиня [11], Баллестера-Болинше [12] и др. В настоящее время такие формации, называемые формациями Шеметкова (кратко, 5-формациями), широко используются при решении различных задач перечисления формаций по заданным свойствам, см. [3-6]. В монографии [5] было предложено следующее расширение понятия S-формации. Пусть \mathfrak{X} — некоторый класс конечных групп. Формация \mathfrak{F} конечных групп называется формацией Шеметкова или \check{S} -формацией в классе \mathfrak{X} , если каждая минимальная не **3**-группа из **3** является либо группой Шмидта, либо группой простого порядка. В [5] было получено описание S-формаций в классе \mathfrak{X} в случае, когда $\mathfrak{F} \subseteq \mathfrak{X}$ и $\mathfrak{X} = \mathfrak{S}_{\pi(\mathfrak{X})}\mathfrak{X}$.

В настоящей работе мы приводим конструктивное описание наследственных локальных \check{S} -формаций \mathfrak{F} в классе \mathfrak{X} при предположении, что $\mathfrak{F} \subseteq \mathfrak{X}$ и \mathfrak{X} — наследственная локальная формация конечных разрешимых групп.

2. Предварительные сведения. Рассматриваются только конечные разрешимые группы. В работе используются обозначения и определения из [13-14].

Напомним некоторые необходимые определения и результаты.

Пусть $\mathfrak X$ некоторый класс групп. Группа G называется минимальной не $\mathfrak X$ -группой, если G не принадлежит $\mathfrak X$, а все собственные подгруппы из G принадлежат $\mathfrak X$. Через $M(\mathfrak X)$ будем обозначать класс всех минимальных не $\mathfrak X$ -групп. В частности, группа Шмидта — это минимальная не $\mathfrak N$ -группа.

Лемма 2.1 [15]. Пусть \mathfrak{F} — наследственная локальная формация u h — ee максимальный внутренний локальный экран. Группа G является минимальной не \mathfrak{F} -группой тогда u только тогда, когда выполняются следующие условия:

1) $\Phi(G) = Z_{\infty}^{\mathfrak{F}}(G) \ u \ G^{\mathfrak{F}}\Phi(G) = F(G);$

2) $G/\Phi(G) = [G^{\mathfrak{F}}\Phi(G)/\Phi(G)]M/\Phi(G)$, где $G^{\mathfrak{F}}\Phi(G)/\Phi(G)$ — единственная минимальная нормальная подгруппа, а $M/\Phi(G)$ — максимальная подгруппа группы $G/\Phi(G)$, причем $M/\Phi(G)$ является минимальной не h(p)-группой, где $p \in \pi(G^{\mathfrak{F}}\Phi(G)/\Phi(G))$.

Нам понадобятся некоторые свойства групп Шмидта, перечисленные в следующей лемме.

Лемма 2.2 [13]. Пусть G — группа Шмидта. Тогда справедливы следующие утверждения:

- 1) G разрешимая бипримарная группа;
- 2) $G^{\mathfrak{N}}$ является силовской p-подгруппой в G, p простое число;
- 3) $G/G^{\mathfrak{N}}$ циклическая q-группа, q простое число;
- 4) $G^{\mathfrak{M}}/\Phi(G^{\mathfrak{M}})$ главный фактор группы G, причем если $|G^{\mathfrak{M}}/\Phi(G)(G^{\mathfrak{M}})| = p^b$, то $p^b \equiv 1 \pmod{q}$ и b есть показатель числа p по модулю q;
 - 5) если $Q = \langle a \rangle$ силовская q-подеруппа из G, то $a^q \in Z(G)$;
 - 6) если $G^{\mathfrak{N}}$ абелева, то $\Phi(G^{\mathfrak{N}})=1$.

Пусть \mathfrak{F} — локальная формация. Множество всех ее локальных экранов Ω можно считать частично упорядоченным с отношением \leq , которое задается следующим образом: для $f_1, f_2 \in \Omega$ выполняется $f_1 \leq f_2$, если $f_1(p) \subseteq f_2(p)$ для любого простого p.

Локальный экран f формации $\mathfrak F$ называется внутренним, если $f(p)\subseteq \mathfrak F$ для каждого простого p. Внутренний локальный экран f формации $\mathfrak F$ являющийся максимальным элементом множества всех внутренних локальных экранов формации $\mathfrak F$ называется максимальным внутренним локальным экраном $\mathfrak F$. По теореме 3.3 из [13] локальная формация $\mathfrak F$ имеет единственный максимальный внутренний локальный экран h, причем $h(p)=\mathfrak N_p h(p)$ для любого простого p.

Наследственный локальный экран f наследственной формации \mathfrak{F} , являющийся максимальным элементом множества всех наследственных локальных экранов формации \mathfrak{F} называется максимальным наследственным локальным экраном \mathfrak{F} . Если \mathfrak{X} — произвольный класс групп, то \mathfrak{X}^S — это наибольший (по включению)

Если \mathfrak{X} — произвольный класс групп, то \mathfrak{X}^S — это наибольший (по включению) наследственный подкласс класса \mathfrak{X} , то есть $\mathfrak{X}^S = \{G \mid \text{все подгруппы группы } G$ входят в $\mathfrak{X}\}.$

Класс \mathfrak{X}^S является формацией, если \mathfrak{X} — формация, см. [13, лемма 25.4].

Напомним, что подгруппа H группы G называется \mathfrak{X} -проектором группы G, если $HN/N-\mathfrak{X}$ -максимальная подгруппа группы G/N для любой нормальной подгруппы N группы G.

Если \mathfrak{X} — формация, а \mathfrak{F} — локальная формация, то согласно [14, с.333] класс $\mathfrak{F}\downarrow\mathfrak{X}$ определяется следующим образом: $G\in\mathfrak{F}\downarrow\mathfrak{X}$ тогда и только тогда, когда каждый \mathfrak{F} -проектор группы G принадлежит \mathfrak{X} . Если $\mathfrak{X}=\varnothing$, то $\mathfrak{F}\downarrow\mathfrak{X}=\varnothing$.

Лемма 2.3 [13]. Пусть f — локальный экран формации \mathfrak{F} . Группа G тогда u только тогда принадлежит \mathfrak{F} , когда $G/F_p(G) \in f(p)$ для любого $p \in \pi(G)$.

Лемма 2.4 [16]. Пусть \mathfrak{F} — наследственная локальная формация u h — ее максимальный внутренний локальный экран. Тогда справедливы следующие утверждения:

- 1) h является единственным максимальным внутренним наследственным локальным экраном формации \mathfrak{F} ;
- 2) формация $\mathfrak F$ имеет единственный максимальный наследственный локальный экран φ такой, что $\varphi(p)=(\mathfrak F\downarrow h(p))^S$ и $\varphi(p)=\mathfrak N_p\varphi(p)$ для каждого простого p;
 - 3) $M(\varphi(p))\subseteq M(h(p))\cap \mathfrak{F}$ для любого простого p.

Если f и x — локальные экраны, то экран f называется x-экраном, если $f(p) \subseteq x(p)$ для любого простого p.

Лемма 2.5. Пусть $\mathfrak F$ и $\mathfrak X$ — наследственные локальные формации, f и x — ux максимальные наследственные локальные экраны соответственно и $\mathfrak F\subseteq \mathfrak X$. Тогда $\mathfrak F$ имеет единственный максимальный наследственный локальный x-экран t такой, что $t(p)=f(p)\cap x(p)$ для любого простого p.

Доказательство. Пусть t — такой локальный экран, что $t(p) = f(p) \cap x(p)$ для любого простого p. Нетрудно видеть, что t — локальный экран формации \mathfrak{F} . Если t_1

— произвольный наследственный локальный x-экран формации \mathfrak{F} , то $t_1 \leq f$ в силу свойств экрана f. Так как t_1-x -экран, то $t_1 \leq t$. Лемма доказана.

Лемма 2.6 [14, В, 10.7]. Если абелевы минимальные нормальные подгруппы группы G попарно неизоморфны как G-модули, то G имеет точное неприводимое представление над любым полем, чья характеристика либо равно нулю, либо не делит |F(G)|.

3. Основной результат

Лемма 3.1. Пусть \mathfrak{F} — локальная формация, \mathfrak{X} — локальная наследственная формация, x — ее максимальный наследственный локальный экран и $\mathfrak{F}\subseteq\mathfrak{X}$. Если \mathfrak{F} имеет локальный экран f такой, что

- 1) $f(p) = \mathfrak{S}_{\pi(f(p))} \cap x(p)$, для любого $p \in \pi(\mathfrak{F})$;
- 2) $f(p) = \emptyset$ для любого $p \in \pi'(\mathfrak{F})$;
- 3) $f(p) = \mathfrak{N}_p f(p)$ для любого простого p,

то \mathfrak{F} является формацией Шеметкова в \mathfrak{X} .

Доказательство. Пусть формация $\mathfrak F$ имеет локальный экран f, удовлетворяющий условиям 1)—3) леммы 3.1. Пусть G — минимальная не $\mathfrak F$ -группа, принадлежащая $\mathfrak X$. Если G нильпотентна, то $G=G_{p_1}\times\ldots\times G_{p_n}$, где G_{p_i} — силовская p_i -подгруппа в G. Если n>1, то $G_{p_i}\in \mathfrak F$ для любого i. Так как $\mathfrak F$ — формация, то $G\in \mathfrak F$. Получаем противоречие с выбором G. Значит, G — p-группа, где p — некоторое простое число. Если в G имеется собственная подгруппа P простого порядка, то $P\in \mathfrak F$. Из локальности формации $\mathfrak F$ следует, что $G\in \mathfrak F$. Противоречие. Значит, G является группой простого порядка.

Пусть G — ненильпотентная группа. Покажем, что тогда она является группой Шмидта. Предположим, что $\Phi(G)=1$. По 2) леммы 2.1 $G=[G^{\mathfrak{F}}]M$, где $G^{\mathfrak{F}}$ — единственная минимальная нормальная подгруппа группы G, а подгруппа M является минимальной не h(p)-группой, где $p\in\pi(G^{\mathfrak{F}})$ и h — максимальный внутренний локальный экран формации \mathfrak{F} . Заметим, что M не принадлежит формации f(p). Поэтому M является минимальной f(p)-группой. Так как $f(p)=\mathfrak{S}_{\pi(f(p))}\cap x(p)$, то нетрудно получить, что M является группой простого порядка q, где $q\neq p$. Следовательно, G — группа Шмидта.

Предположим, что $\Phi(G) \neq 1$. Так как $G/\Phi(G)$ — группа Шмидта, то по 2) леммы 2.2 в $G/\Phi(G)$ имеется нормальная силовская p-подгруппа $H/\Phi(G)$ для некоторого простого p. Пусть P — силовская p-подгруппа из H. Тогда P — силовская p-подгруппа в G и $H = P\Phi(G)$. Так как H нормальна в G, то по лемме Фраттини подгруппа P нормальна в G. Тенерь по 1) теоремы 24.5 из [13, с. 235] получаем, что $P = G^3$. Тогда, G - p-замкнутая $\{p,q\}$ -группа, где q — простое число, отличное от p. Отметим, что $f(p) \neq \emptyset$ и $f(q) \neq \emptyset$.

Пусть M — собственная подгруппа из G. Так как $M \in \mathfrak{F}$, то по лемме 2.3 $M/F_p(M) \in f(p)$. Если $M/F_p(M) \neq 1$, то $M/F_p(M) - q$ -группа. Но тогда $\mathfrak{N}_q \subseteq \mathfrak{S}_{\pi(f(p))}$. Отсюда и из $G/F_p(G) \in x(p)$ следует, что $G/F_p(G) \in f(p)$. Так как G является p-замкнутой группой, то $F_q(G) = G$. Тогда $G/F_q(G) \in f(q)$. Теперь по лемме 2.3 получаем, что $G \in \mathfrak{F}$. Противоречие. Следовательно, $M/F_p(M) = 1$. А это значит, что $M = F_p(M) = F_q(M)$ и подгруппа M нильпотентна. Итак, G — группа Шмидта. Лемма доказана.

Теорема 3.2. Пусть \mathfrak{F} — наследственная локальная формация, h — ее максимальный внутренний локальный экран, \mathfrak{X} — наследственная локальная формация, x — ее максимальный наследственный локальный экран и $\mathfrak{F}\subseteq\mathfrak{X}$. Формация \mathfrak{F} тогда

и только тогда являєтся формацией Шеметкова в классе \mathfrak{X} , когда ее максимальный наследственный локальный x-экран f удовлетворяет следующим условиям:

- 1) $f(p) = \mathfrak{S}_{\pi(f(p))} \cap x(p)$ для любого $p \in \pi(\mathfrak{F})$;
- 2) $f(p) = \emptyset$ для любого $p \in \pi'(\mathfrak{F})$.

Доказательство. Пусть $\mathfrak F$ является S-формацией в классе $\mathfrak X$, h— ее максималь ный внутренний локальный экран. Рассмотрим максимальный наследственный локальный x-экран f формации \mathfrak{F} , который существует и единственен по лемме 2.5. Заметим. что $f(p)=(\mathfrak{F}\downarrow h(p))^S\cap x(p)$ и $f(p)=\mathfrak{N}_pf(p)$ для каждого простого p. Покажем, что $f(p) = \mathfrak{S}_{\pi(f(p))} \cap x(p)$ для любого $p \in \pi(\mathfrak{F})$. Ясно, что $f(p) \subseteq \mathfrak{S}_{\pi(f(p))} \cap x(p)$. Предположим, что обратное включение неверно для некоторого простого $p \in \pi(\mathfrak{F})$ и G группа минимального порядка из $(\mathfrak{S}_{\pi(f(p))} \cap x(p)) \setminus f(p)$. Так как $\mathfrak{S}_{\pi(f(p))} \cap x(p)$ и f(p) формации, то в G имеется единственная минимальная нормальная подгруппа. Кроме того, G является минимальной не f(p)-группой. Так как $f(p)=\mathfrak{N}_pf(p)$, то $O_p(G)=1$. По лемме 2.6 существует точный неприводимый G-модуль U над полем F_p из p элементов. Пусть R = [U]G. Покажем, что R является минимальной не \mathfrak{F} -группой. Так как $F_p(R) = U$ и $R/F_p(R) \notin f(p)$, то по лемме 2.3 $R \notin \mathfrak{F}$. Пусть M — максимальная подгруппа из G. Если M не содержит U, то M сопряжена с подгруппой G в R. Ввиду 3)леммы 2.4 получаем, что $G \in M(f(p)) \subseteq M(h(p)) \cap \mathfrak{F}$, а значит, $M \in \mathfrak{F}$. Пусть $U \subseteq M$. Из $M=M\cap [U]G=U(M\cap G)$ и $(M\cap G)\in h(p)$ следует, что $M\in\mathfrak{N}_ph(p)=h(p)\subseteq\mathfrak{F}$. Следовательно, R — минимальная не \mathfrak{F} -группа, а значит, группа Шмидта. Из 3) леммы 2.2 следует, что G — циклическая q-группа, где q — простое число и $q \neq p$. Так как $C_R(U)=U$, то G — группа простого порядка g. Так как $G\in\mathfrak{S}_{\pi(f(p))}\cap x(p)$ и f(p)— наследственная формация, то $G \in f(p)$. Получили противоречие. Следовательно, $f(p) = \mathfrak{S}_{\pi(f(p))} \cap x(p)$. Обратное утверждение следует из леммы 3.1. Теорема доказана.

Abstract. A constructive description of soluble subgroup-closed saturated Shemetkov formations \mathfrak{F} in the class \mathfrak{X} where \mathfrak{X} is a soluble subgroup-closed saturated formation is presented in the paper.

Литература

- 1. Коуровская тетрадь: Нерешенные вопросы теории групп. Новосибирск, 1984.
- 2. Семенчук, В.Н. Характеризация локальных формаций \mathfrak{F} по заданным свойствам минимальных не \mathfrak{F} -групп / В.Н. Семенчук, А.Ф. Васильев // Исследование нормального и подгруппового строения конечных групп: тр. Гомельск. семинара Мн.: Наука и техника, 1984.— С. 175-181.
- 3. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. М.: Наука, 1989.—256 с.
- 4. Guo, W. The Theory of Classes of Groups / Guo Wenbin. Dordrecht Bocton London: Kluwer Academic Publishers, 2000. 257 p.
- 5. Подгрупповые функторы в теории классов конечных групп / С. Ф. Каморников, М. В. Селькин. Мн.: Беларуская навука, 2003.-254 с.
- 6. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L.M. Ezquerro Springer, 2006.— 385 p.
- 7. Скиба, А.Н. Об одном классе локальных формаций конечных групп / А.Н. Скиба // Докл. Акад. наук БССР. 1990. № 34. С. 982-984.
- 8. Каморников, С.Ф. О двух проблемах Л.А. Шеметкова / С.Ф. Каморников, // Сибир. мат. журн. 1994. Т. 35, № 4. С.801–812.

- 9. Ballester-Bolinches, A. On F-critical groups / A. Ballester-Bolinches, M.D. Perez-Ramos // J. Algebra. — 1995. — Vol. 174. — P. 948–958.
- 10. Ballester-Bolinches, A. Two questions of L.A. Shemetkov on critical groups / A. Ballester-Bolinches, M. D. Perez-Ramos // J. Algebra. — 1996. — Vol. 179. — P. 905–917.
- 11. Guo, W. On formations with Shemetkov conditions / W. Guo, L. Zhu // Algebra Colloquium. — 2002. — Vol. 9, № 1. — P. 89-98.
- 12. Ballester-Bolinches, A. F-critical groups, F-subnormal subgroups, and the generalised Wielandt property for residuals / A. Ballester-Bolinches // Ricerche di Matematica. -2006. - Vol. 55. - P. 13–30.
- 13. Шеметков, Л.А. Формации конечных групп / Л.А. Шеметков. М. Наука. 1978. — 278 c.
- 14. Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes. Berlin New York: Walter de Gruyter, 1992. - 891 p.
- 15. Семенчук, В.Н. Минимальные не \mathfrak{F} -группы / В.Н. Семенчук / Алгебра и логика. — 1979. — Т.18, \mathbb{N}_2 3. — С. 348-382.
- PEHO3MIOPNINTHY VINNELHING. 16. Васильев, А.Ф. О перечислении локальных формаций с условием Кегеля / А.Ф. Васильев // Вопросы алгебры. —1993 — Вып. 7. — С. 86–93.

Гомельский государственный университет имени Ф. Скорины Поступило 30.06.08