УДК 512.567.5

Описание регулярных фильтрующих подгрупповых функторов

Ю. В. Кравченко

Функции, согласованные с изоморфизмами групп и выделяющие в группах некоторые системы подгрупп, впервые были рассмотрены в работах А.Г.Куроша [1] и С.Амицура [2, 3]. С выходом работ Бэра [4] и Б.И.Плоткина [5] такие теоретико-групповые функции (подгрупповые функторы) стали изучаться как самостоятельные объекты.

Характерной особенностью подгрупповых функторов является их тесная связь с формациями, классами Фиттинга и классами Шунка. Основополагающими работами в этом направлении являются монографии А.Н.Скибы [6], С.Ф.Каморникова и М.В.Селькина [7]. Следует отметить, что эти две монографии показали, что функторные методы исследования носят универсальный характер и могут быть применены к изучению свойств абстрактных классов алгебраических систем.

Цель данной работы — в классе n-арных групп, содержащих по крайней мере одну единицу, дать описание всех регулярных au -фильтрующих подгрупповых функторов.

Используются определения и обозначения, принятые в [7–9]. Напомним некоторые из них. Универсальную алгебру A сигнатуры $\{\omega_n\}$, где $n \ge 2$, называют n-арной группой если: 1) операция ω_n ассоциативна на множестве A; 2) для любых элементов $a_1,...,a_{n-1},a\in A$ каждое из уравнений $(x,a_1^{n-1})\omega_n=a$ и $(a_1^{n-1},y)\omega_n=a$ разрешимо относительно x и y в A .

Подгруппу H n -арной группы A называют инвариантной в A , если для любого $a \in A$ выполняется равенство

$$(a, H, a_1^{n-2})\omega_n = H,$$

где (a_1^{n-2}) — последовательность элементов из A, обратная к элементу a.

Последовательность (e_1^{n-1}) элементов полиадического мультикольца A называется нейтральной, если для любого $u\in A$ $(u,e_1^{n-1})\omega_n=(e_1^{n-1},u)\omega_n=u.$ Последовательность (b_1^J) элементов n -арной группы A называется обратной для по-

$$(u,e_1^{n-1})\omega_n = (e_1^{n-1},u)\omega_n = u.$$

следовательности (a_1^i) , если (a_1^i,b_1^j) — нейтральная последовательность. Будем обозначать $(b_1^j) = (a_1^j)^{-1}$. Заметим, что так как $(x, a_1, ..., a_i, a_i^{-1}, ..., a_1^{-1})\omega_n = x$, то последовательность $(a_i^{-1},...,a_1^{-1})$ является обратной к последовательности (a_i') , то есть $(a_i^{-1},...,a_1^{-1})=(a_1')^{-1}$.

Элемент ε n-арной группы A называется единицей, если выполняется следующее условие:

$$\binom{j-1}{\varepsilon}, x, \frac{n-j}{\varepsilon} \omega_n = x,$$

где $x \in A, j \in \{1, ..., n\}$.

Обозначим $(H, K)\omega_n = HK$.

Рассматриваются только конечные п-арные группы, содержащие не менее одной единицы. Пусть \mathcal{F} – класс всех n-арных групп, содержащих по крайней мере одну единицу. В каждой п-арной группе из 3 зафиксируем одну единицу. В дальнейшем под словами "подгруппа п-арной группы" будем понимать ту её подгруппу, которая содержит фиксированную единицу.

Замечание 1. Фиксирование в n-арной группе G единичного элемента означает, что сигнатура n-арной группы $\Omega = \{\omega_n, \varepsilon\}$, где $\omega_n - n$ -арная операция на G, ε – нульарная операция на G, выделяющая этот фиксированный единичный элемент, который в дальнейшем будем отождествлять с нульарной операцией, выделяющей его.

Замечание 2. Так как для n-арных групп (n > 2), содержащих по крайней мере одну единицу, выполняется аналоги теорем Шрайера и Жордана-Гёльдера [10], то приведённые ниже рассуждения не зависят от того, какую единицу мы фиксируем в каждой n-арной группе.

Замечание 3. Пусть G-n-арная группа, N и K- такие её инвариантные подгруппы, которые являются смежными классами по одной и той же конгруэнции α . Тогда $G/N \cong G/K \cong G/\alpha$, причём N и K являются единицами n-арных групп G/N и G/K соответственно. Очевидно, что всегда существует автоморфное отображение $\varphi: G \to G$ такое, что $\varphi(N) = K$. Поэтому, не ограничивая общности рассуждений, будем считать (с точностью до изоморфизма), что если в n-арной группе G зафиксирована единица ε , α – конгруэнция n-арной группы G, то фиксированной единицей в G/α будет $N = \{\varepsilon\}_{\alpha}$.

Определение. Отображение ϕ : $A \to B$ n-арных групп A и B будем называть точным (точечноточным), если выполняются равенства $\phi(a) = b$, $\phi^{-1}(b) = a$, где a и b – фиксированные единицы из A и B соответственно.

В частности, если ϕ — точное автоморфное отображение n-арной группы G в себя, то $\phi(a)=a$, где a — фиксированная единица в G. В терминологии книги [11] это означает, что точное автоморфное отображение имеет по крайней мере одну неподвижную точку.

Замечание 4. Если *F*— класс всех бинарных групп, то понятие точного изоморфизма совпадает с понятием изоморфизма бинарных групп (в общепринятом смысле).

Замечание 5. Если $\mathscr{F}-$ класс всех n-арных групп (n > 2), содержащих только одну единицу, то все изоморфизмы являются точными.

Определение. Пусть τ — функция, которая ставит в соответствие каждой п-арной группе G некоторую непустую систему её подгрупп $\tau(G)$, каждая из которых содержит фиксированную единицу. Будем говорить, что τ — подгрупповой функтор, если $(\tau(G))^{\varphi} = \tau(G^{\varphi})$ для любого точного изоморфизма φ каждой п-арной группы G.

Через $S_n(G)$ обозначим множество всех инвариантных подгрупп n-арной группы G, а через sn(G) – множество всех субинвариантных (субнормальных) подгрупп n-арной группы G.

Множество 9 называется идеалом решетки Ж, если выполняются следующие условия:

- 1) если $A\in \mathfrak{G},\, B\in \mathfrak{H},\,\, B\subseteq A,$ то $B\in \mathfrak{G};$
- 2) если $A \in \mathcal{G}, B \in \mathcal{G}, \text{ то } \langle A,B \rangle \in \mathcal{G}.$

Множество G называется фильтром решетки H , если выполняются следующие условия:

- 1) если $A \in \mathcal{G}$, $B \in \mathcal{K}$, $A \subseteq B$;
- 2) если $A \in G$, $B \in G$, то $\langle A, B \rangle \in G$.

Пусть \mathfrak{X} — класс n-арных групп и пусть θ и τ — подгрупповые \mathfrak{X} -функторы. Обозначим множество $\{G \in \mathfrak{X} \mid \theta(G) = \tau(G)\}$ через $\mathfrak{X}_{\tau}(\theta)$ и будем называть его классом, индуцированным \mathfrak{X} -функтором θ с помощью \mathfrak{X} -функтора τ .

Подгрупповой функтор τ называется эпиморфным, если для любого точного эпиморфизма n-арных групп $\varphi:A\to B$ справедливо равенство

$$(\tau(A))^{\varphi}=\tau(B).$$

Эпиморфный подгрупповой функтор θ будем называть регулярным, если для любого точного эпиморфизма n-арных групп $\varphi:A\to B$ выполняется включение

$$(\tau(B))^{\varphi^{-1}} = \tau(A).$$

Подгрупповой функтор τ называется решеточным, если для любой n-арной группы G всегда из H, $K \in \tau(G)$ следует $H \cap K \in \tau(G)$ и $\langle H,K \rangle \in \tau(G)$. Таким образом, решеточный подгрупповой \mathfrak{X} -функтор выделяет в каждой n-арной группе некоторую её решетку подгрупп $\tau(G)$.

Пусть τ — решеточный подгрупповой функтор. Подгрупповой функтор θ называется τ -фильтрующим функтором, если для любой n-арной группы G множество $\theta(G)$ является фильтром решетки $\tau(G)$. Подгрупповой функтор θ называется τ -идеальным функтором. если для любой n-арной группы G множество $\theta(G)$ является идеалом решетки $\tau(G)$.

Лемма 1. Пусть τ — такой регулярный решеточный подгрупповой функтор, что $S_n(G) \subseteq \tau(G)$ для любой п-арной группы G. Пусть F — непустая формация п-арных групп и пусть τ — функция, которая ставит в соответствие каждой п-арной группе G систему подгрупп

$$\theta(G) = \{H \mid H \in \tau(G), G^{\mathfrak{g}} \subseteq H\}.$$

Тогда θ — регулярный τ -фильтрующий подгрупповой функтор. Доказательство.

1) Пусть ϕ — некоторый точный изоморфизм n-арной группы $G \in \mathfrak{X}$. Тогда

$$(\theta(G))^{\varphi} = \{H^{\varphi} \mid H^{\varphi} \in (\tau(G))^{\varphi}, (G^{\varphi})^{\vartheta} \subseteq H^{\varphi}\} = \{H^{\varphi} \mid H^{\varphi} \in \tau(G^{\varphi}), (G^{\varphi})^{\vartheta} \subseteq H^{\varphi}\} = \theta(G^{\varphi}).$$

Итак, θ — подгрупповой функтор.

2) Пусть $\psi:A\to B$ — некоторый точный эпиморфизм n-арных групп A и B .

$$(\theta(B))^{\psi^{-1}} = \{S^{\psi^{-1}} \mid S^{\psi^{-1}} \in (\tau(B))^{\psi^{-1}}, (B^{\mathfrak{S}})^{\psi^{-1}} \subseteq S^{\psi^{-1}}\} = \{S^{\psi^{-1}} \mid S^{\psi^{-1}} \in (\tau(B))^{\psi^{-1}}, (B^{\mathfrak{S}})^{\psi^{-1}} = (B^{\psi^{-1}})^{\mathfrak{F}} \subseteq S^{\psi^{-1}}\}$$

Заметим, что $K = S^{\psi^{-1}} \subseteq A, B^{\psi^{-1}} = A$. Кроме того, так как τ — регулярный подгрупповой функтор, то $(\tau(B))^{\psi^{-1}} \subseteq \tau(A)$. Поэтому:

$$(\theta(B))^{\psi^{-1}} \subseteq \{K \mid K \in \tau(A), A^{\sharp} \in K\} = \theta(A).$$

Итак, θ — регулярный подгрупповой функтор.

3) Докажем, что $\theta(G)$ — фильтр решетки $\tau(G)$.

Пусть $A \in \theta(G)$, $B \in \tau(G)$, $A \subseteq B$. Так как $A \in \theta(G)$, то $A \in \tau(G)$ и $G^{\mathfrak{g}} \subseteq A$. Следовательно, $G^{\mathfrak{g}} \subseteq B$. Поэтому $B \in \theta(G)$.

Пусть $A \in \theta(G)$, $B \in \theta(G)$. Тогда $A \in \tau(G)$, $G^{\$} \subseteq A$ и $B \in \tau(G)$, $G^{\$} \subseteq B$. Следовательно, $A \cap B \in \tau(G)$ (так как τ — решеточный функтор) и $G^{\$} \subseteq A \cap B$. Поэтому $A \cap B \in \theta(G)$.

Итак, θ — регулярный τ -фильтрующий подгрупповой функтор. Лемма доказана.

Для любой n-арной группы G и любой непустой формации n-арных групп ${\mathcal F}$ рассмотрим множества

$$\theta_1(G) = \{H \mid H \in S_n(G), G^{\mathfrak{S}} \subseteq H\},$$

$$\theta_2(G) = \{H \mid H \in sn(G), G^{\mathfrak{S}} \subseteq H\}$$

$$\theta_3(G) = \{H \mid G^{\mathfrak{S}} \subseteq H\}$$

Согласно лемме 1 θ_1 , θ_2 , θ_3 — регулярные фильтрующие подгрупповые функторы.

Лемма 2. Пусть \mathcal{X} — гомоморф. Если подгрупповые \mathcal{X} -функторы θ и τ являются эпиморфными, то класс n-арных групп $\mathcal{X}_{\tau}(\theta)$ является гомоморфом.

Доказательство. Пусть $G \in \mathfrak{X}_{\tau}(G)$ Тогда по определению $G \in \mathfrak{X}$ и $\theta(G) = \tau(G)$. Пусть N — инвариантная подгруппа n-арной группы G. Так как \mathfrak{X} — гомоморф, то $G/N \in \mathfrak{X}$. Кроме того, из определения эпиморфного функтора заключаем, что $\theta(G/N) = \theta(G)N/N$. Аналогично имеем, что $\tau(G/N) = \tau(G)N/N$. Теперь из равенства $\theta(G) = \tau(G)$ следует $\theta(G/N) = \tau(G/N)$, то есть $G/N \in \mathfrak{X}_{\tau}(\theta)$. Лемма доказана.

Следующая теорема показывает, что приведенными выше примерами функторов (то есть $\theta_1, \theta_2, \theta_3$) исчерпываются все регулярные τ -фильтрующие подгрупповые функторы.

Теорема. Пусть τ — такой регулярный решеточный подгрупповой функтор, что

 $S_n(G) \subseteq \tau(G)$ для любой n-арной группы G. Тогда для любого регулярного τ -фильтрующего функтора θ справедливы следующие утверждения:

- 1) класс $\mathscr{X}_{\tau}(\theta) = \{G \mid \theta(G) = \tau(G)\}$ является формацией n-арных групп;
- 2) для любой п-арной группы G имеет место равенство

$$\theta(G) = \{H \mid H \in \tau(G), \ G^{\mathcal{K}_{\tau}(\theta)} \subseteq H\}.$$

Доказательство. 1) Пусть $\mathscr{F}=\mathfrak{X}_{\tau}(\theta)$. Согласно лемме 2 класс $\mathfrak{X}_{\tau}(\theta)$ является гомоморфом. Пусть A и B — инвариантные подгруппы n-арной группы G, причем $G/A \in \mathscr{F}$ и $G/B \in \mathscr{F}$. Из определения регулярного функтора и условия $S_n(G) \subseteq \tau(G)$ следует, что $A \in \theta(G)$ и $B \in \theta(G)$. Так как $\theta(G)$ — фильтр решетки $\tau(G)$, то $A \cap B \in \theta(G)$, а значит, все τ -подгруппы n-арной группы G, содержащие $A \cap B$, входят в $\theta(G)$. Отсюда следует, в частности, что $\theta(G/A \cap B) = \tau(G/A \cap B)$. Значит, $G/A \cap B \in \mathscr{F}$ то есть класс \mathscr{F} является формацией.

2) Пусть $G^{\$}$ — \$-корадикал n-арной группы G. Тогда $G/G^{\$} \in \mathfrak{X}_{\tau}(\theta)$. Из определения класса $\mathfrak{X}_{\tau}(\theta)$ следует, что все τ -подгруппы n-арной группы $G/G^{\$}$ входят в $\theta(G/G^{\$})$. Из определения регулярного функтора заключаем, что $\theta(G) = \{H \mid H \in \tau(G), G^{\$} \subseteq H\}$. Теорема доказана.

Следствие 1. Пусть τ — такой регулярный решеточный подгрупповой функтор, что $S_{\sigma}(G) \subseteq \tau(G)$ для любой подгруппы σ 0. Тогда отображение

$$f: \theta \to \mathcal{X}_{\tau}(\theta),$$

ставящее в соответствие каждому регулярному τ -фильтрующему функтору θ класс $\mathfrak{X}_{\tau}(\theta)$, является биекцией множества всех регулярных τ -фильтрующих подгрупповых функторов на множество всех непустых формаций n-арных групп.

$$\theta(G) = \{H \mid H \in \tau(G), G^{\mathfrak{F}} \subseteq H\}.$$

Тогда на основании свойств функтора τ имеем $\mathfrak{X}_{\tau}(\theta)=\mathfrak{F}$, то есть $f(\theta)=\mathfrak{X}_{\tau}(\theta)$. Значит, f сюрьективно.

Если $\tau(G) = S_n(G)$ то из теоремы вытекает

Следствие 2. Пусть θ — регулярный S_n -фильтрующий функтор. Тогда:

- 1) класс $\mathcal{F} = \{G \mid \theta(G) = S_n(G)\}$ является формацией;
- 2) для любой n-арной группы G имеет место равенство

$$\theta(G) = \{H \mid H \triangleleft G, G^{\sharp} \subseteq H\}.$$

Следствие 3. Отображение, ставящее в соответствие каждому регулярному S_n фильтрующему подгрупповому функтору θ класс

$$\{G \mid \theta(G) = S_n(G)\},\$$

является биекцией множества всех регулярных S_n -фильтрующих функторов на множество всех непустых формаций n-арных групn.

Если $\tau(G) = sn(G)$, то из теоремы вытекает

Следствие 4. Пусть θ — регулярный sn -фильтрующий подгрупповой функтор. Тогда:

- 1) класс $\mathscr{F} = \{G \mid \theta(G) = sn(G)\}$ является формацией n-арных групп;
- 2) для любой п-арной группы G имеет место равенство

$$\theta(G) = \{H \mid H \in sn(G), G^{\mathfrak{F}} \subseteq H\}.$$

Следствие 5. Отображение, ставящее в соответствие каждому регулярному sn-фильтрующему подгрупповому функтору θ класс $\{G \mid \theta(G) = \text{sn}(G)\}$ является биекцией множества всех регулярных sn-фильтрующих функторов на множество всех непустых формаций n-арных групп.

Abstract. All the groups considered in the paper are n-ary groups. The author gives a description of regular filtered subgroup functors for n-ary groups.

Литература

- 1. Курош, А.Г. Радикалы колец и алгебр / А.Г.Курош // Матем. сб. 1953. Т.33. С. 13—26.
- 2. Amitsur, S. A general theory of radicals / S.Amitsur // Amer. J. Math. 1952. V. 74. P.774–786.
- 3. Amitsur, S. A general theory of radicals / S.Amitsur // Amer. J. Math. 1954. V. 76. P. 100–136.
- 4. Baer, R. Classes of finite groups and their properties / R.Baer // Amer. J. Math. 1957. V. 1. – P. 115–187.
- 5. Плоткин, Б.И. Радикалы в группах, операции на классах групп и радикальные классы / Б.И.Плоткин // Избранные вопросы алгебры и логики: Сборник, посвященный памяти А.И. Мальцева. – Новосибирск : Наука, 1973. С. 205-244.
 - 6. Скиба, А.Н. Алгебра формаций / А.Н.Скиба. Мн.: Беларуская навука, 1997.
- 7. Каморников, С.Ф., Селькин, М.В. Подгрупповые функторы и классы конечных групп / С.Ф.Каморников, М.В.Селькин. – МН. : Бел. навука, 2003.
- 8. Шеметков, Л.А., Скиба, А.Н. Формации алгебраических систем / Л.А.Шеметков, А.Н.Скиба. – М.: Наука, 1989.
- 9. Русаков, С.А. Алгебраические *n*-арные системы / С.А.Русаков. Мн. : Навука і тэхніка, 1992.
 - 10. Гальмак, А.М. Конгруэнции полиадических групп / А.М.Гальмак. Мн. : Бел. навука, 1999.
 - 11. Мальцев, А.И. Алгебраические системы / А.И.Мальцев. М.: Наука, 1970.

PERIOSITIO PINALLY MARKETHINGS OF THE PROPERTY Гомельский государственный университет им. Ф. Скорины

Поступило 15.09.08