УДК 612.+612.4

Химический состав и аспекты физиологического действия фитоадаптогенов

Л.А.Евтухова

В последние годы в связи с угрозой радиоэкологического кризиса, особенно после аварии на ЧАЭС, резко возросла необходимость поиска эффективных средств защиты от нелетальных и хронических доз радиации. Искусственные радиопротекторы, ускоряющие выведение из организма инкорпорированных радионуклидов, в условиях отсроченной терапии не снижают риска возникновения опухолевых и неопухолевых форм отдаленных последствий. Для решения этой задачи, по-видимому, есть все основания обратить пристальное внимание на биологически активные вещества природного происхождения. Несмотря на то, что по сей день механизм действия радиопротекторов пытаются объяснить только непосредственным их участием в репарации, представления об опосредованном их действии все больше находили свое подтверждение и в настоящее время оформились в целый ряд концепций. Многие ученые США, Японии и Китая поддерживают гипотезу эндогенного фона радиорезистентности, в основе которой лежит представление о наличии в организме человека систем защиты и сенсибилизации, осуществляющих общий механизм регуляции гомеостаза. К ним относятся, прежде всего, биогенные амины, тиолы и некоторые продукты окисления липидов в биологических мембранах [1]. Эта гипотеза позволяет также предположить, что препараты, модулирующие общую устойчивость (неспецифическую), в том числе и средства, издавна используемые в народной медицине для нормализации гомеостаза организма, могут быть рекомендованы для противолучевой защиты человека [2].

В 1957 году Брехман выдвинул концепцию о механизмах физиологического действия адаптогенов растительного происхождения, способных нормализовать гомеостаз человека, и ввел термин «фитоадаптогены». Реализация повышения общей (неспецифической) устойчивости организма человека происходит в результате запуска систем клеточной регуляции циклонуклеотидов и инозитидного цикла даже после однократного введения препаратов из растительного сырья. Последовательно развивающийся во времени многоэтапный биохимический и физиологический процесс захватывает постепенно все сложные системы биологической организации. Важная особенность действия фитоадаптогенов — регуляция активности головного мозга, выражающаяся в нормализации реакций возбуждения и торможения, оптимизации процессов обучения и запоминания [3].

В последние годы многие здравницы нашей республики все чаще используют в лечебно-профилактических целях радиопротекторы природного происхождения и фитоадаптогены в виде отваров, напитков и коктейлей.

Целью настоящей работы явилось исследование химического состава адаптагирующих фитосборов и характеристика аспектов физиологического действия их микрокомпонентов на гомеостаз человека.

Материалы и методика

Экспериментальная часть работы выполнялась в условиях лабораторий кафедры физиологии человека и животных ГГУ им.Ф.Скорины и санатория «Приднепровский», где для оздоровления детей и взрослых в 1999-2000гг.использовались адаптагирующие средства следующего состава:

витаминный № 1 – листья малины и крапивы, трава череды и зверобоя, цветы календулы, плоды аронии, боярышника и черники;

витаминный № 2 – плоды рябины и шиповника;

гипотензивный — листья мяты и подорожника, трава пустырника и сушеницы, цветы календулы,плоды боярышника и укропа;

успокоительный — листья мяты и подорожника, трава пустырника и сушеницы, плоды аронии, боярышника и укропа, корень валерианы.

Приготовление фитококтейлей согласно ГОСТа фармакопеи: водные вытяжки без кипячения, из расчета 7,5 г растительного сырья на 1 литр воды.

Содержание аскорбиновой кислоты определяли колориметрически с использованием 2,6 – дихлорфенолиндофенолята натрия, биофлавоноиды по методу Саранцу и Мийдла [4].

Макро- и микроэлементный состав исследовали методом спектрометрии в лаборатории НИИ радиологии МЧС РБ.

Результаты и их обсуждение

В сложных биохимических реакциях жизнедеятельности организма человека минеральные вещества играют особо важную роль, которая определяется их участием в структурах ферментативных систем (энзимов), пластических процессах регенерации тканей, поддержании кислотно-щелочного равновесия, нормализации водно-солевого обмена.

Как показали наши исследования адаптагирующие фитосборы содержат широкий диапазон макро- и микроэлементов: натрий (18,57-32,17), калий (14,76-22,46), кальций (4,08-8,92), магний (2,68-3,78) г/кг и железо (2,81-61,32), марганец (13,98-26,25), цинк (16,69-20,76), медь (3,79-6,23) мг/кг (Taбл.1).

Таблица 1 Макро- и микроэлементный состав адаптагирущих фитосборов

Фитосбор	Макроэлементы, г/кг			Микроэлементы, мг/кг				
	Na	K	Ca	Mg	Fe	Mn	Zn	Cu
Витаминный №1	18,57	19,15	4,08	3,78	8,12	20,25	16,69	6,23
Витаминный №2	30,74	14,76	8,92	2,68	58,02	26,25	20,76	5,85
Гипотензивный	32,17	21,54	7,07	2,76	61,32	23,71	18,35	3,97
Успокоительный	29,46	22,46	5,60	2,76	2,81	13,98	17,70	3,79

Полифенолы растений представляют собой группу биофлавоноидов, родственных по химическому строению и являющихся дегидро- или оксипроизводными флавана. Отмечается достаточно высокое содержание антоцианов и катехинов в фитосборах (94-250 и 89-240 мг%,соответственно). Биофлавонолы, известные в литературе как группа веществ Рвитаминной активности, используются в качестве средства предупреждающего заболевания, связанные с нарушением проницаемости кровеносных капилляров. По мнению многих авторов, благотворное влияние природных полифенолов на организм человека возможно только на фоне достаточной обеспеченности аскорбиновой кислотой [5]. Идеальное сочетание двух витаминов в составе фитосбора №2 позволяет использовать его в качестве мощного лечебного и профилактического средства, обладающего капилляроукрепляющим и противосклеротическим действием (Табл.2).

Таблица 2 Содержание аскорбиновой кислоты и полифенолов в коктейлях адаптагирующих фитосборов, мг%

Фитосбор	Витамин С	Полифенолы				
		антоцианы	катехины	флавонолы		
Витаминный №1	18,80±0,04	108	89	2,0		
Витаминный №2	46,93±0,01	250	96	2,5		
Гипотензивный	14,61±0,02	94	138	1,98		
Успокоительный	12,48±0,02	112	240	3,69		

Микроэлементы и витамины характеризуются широким спектром физиологического действия, способны повышать общую резистентность, стимулируя иммунную и гемопоэтическую систему организма человека. Так, железо активизирует эритропоэз, марганец принимает участие в процессах тканевого дыхания, цинк является составной частью гормона поджелудочной железы, медь нормализует уровень лейкоцитов в кровеносном русле. Аскорбиновая кислота и биофлавонолы оказывают терапевтический эффект при малых дозах радиации. Есть все основания полагать, что противолучевые свойства этих витаминов определяются их способностью перехватывать активные формы кислорода, снижая тем самым интенсивность пероксидации [4,5].

Заключение. Химический состав адаптагирующих фитосборов характеризуется широким спектром биологически активных соединений и элементов, как бы сбалансированных самой природой, способных регулировать гомеостаз и являющихся компонентами неспецифической резистентности организма человека.

Abstract

L.A.Evtuhova. Chemical Composition And Physiology Action Aspects Of Fhytoadaptogens // Proc. Gomel State Univ., 4 Biology (2001)

Anti-radiation components of any plants modulate regulatory systems of the human body and increase its aendogene resistance. Macro- and microelements, Vitamin C and biophlovonoids of fhytoadaptogens activise cell regeneration, normalize haemopoaesis, ensuring positive development of tissue metabolism.

Литература

- 1. Hu Bi. // Biol. Effects large dose ion and non ion radiat. Hangzhou (China). 1988. 167 p.
 - 2. Кевра М.К Растение против радиации.- М.: Высшая школа, 1993. 350 с.
- 3. Гончаренко Е.Н., Кудряшов Ю.Б. Противолучевые средства природного происхождения. Успехи современной биологии. 1991. Т 3, В.2. С. 302–316.
- 4. *Саранцу Л.Б., Мийдла Х.*. Фенольные соединения яблони // Уч.зап. Тартуского университета. Тарту, 1971.- Вып.256, №3. С.111–114.
- 5. Wang Bingji and et. // Abstr. Internat. Conf, biol. Effects large dost ion and non ion radiat. Hangzhou (China), 1988. 86 p.

Гомельский государственный университет им. Ф Скорины

Поступило 20.09.2000