Partial two-particle equations in the relativistic configurational representation for scattering p-states in the case of a superposition of two δ-function potentials

V. N. KAPSHAI, A. A. GRISHECHKINA
Francisk Scorina Gomel State University, Gomel, Republic of Belarus

Abstract

Exact solutions of two-particle equations are considered in the relativistic configurational representation for scattering p-states in the case of superposition of two δ-function potentials. Scattering amplitudes and crobs sections are determined. Comparative analysis is carried out with the case of scattering s-states.

Introduction

Partial wave equations in the relativistic configurational representation for scattering p-states (orbital angular momentum $/=1$) of system of two particles are defined as [1]

$$
\begin{align*}
& \psi_{(j)}(r)=m \operatorname{sh} \chi_{q} p_{1}\left(\chi_{q}, r\right)+\int_{0}^{\infty} G_{(j)}\left(r, r^{\prime}\right) V\left(r^{\prime}\right) \psi_{(j)}\left(r^{\prime}\right) d r^{\prime}, \tag{1}\\
& p_{1}\left(\chi_{k}, r\right)=r(m r+i)^{-1} \operatorname{sh}^{-2} \chi_{k}\left(\operatorname{ch} \chi_{k} \sin \left(\chi_{k} m r\right)(m r)^{-1}-\operatorname{sh} \chi_{k} \cos \left(\chi_{k} m r\right)\right) . \tag{2}
\end{align*}
$$

In expressions (1)-(2) $\psi_{(j)}(r)$ - is the wave function, χ_{q} - is the rapidity connected with the system energy by the formula $2 E=2 m \mathrm{ch} \chi_{q}, m$ - is the mass of each particle, and the index j indicates the corresponding equation ($j=1$ - the modified Kadyshevsky equation, $j=2$ - the Logunov-Tavkhelidze equation, $j=3$ - the modified the Logunov-Tavkhelidze equation, $j=4$ - the Kadyshevsky equation). The explicit form of the partial Green's functions (GF) $G_{(j)}\left(r, r^{\prime}\right)$ was defined earlier [2].
When $r \rightarrow \infty$ the GF $G_{(j)}\left(r, r^{\prime}\right)$ take the following form:

$$
\begin{gather*}
\left.G_{(j)}\left(r, r^{\prime}\right)\right|_{r \rightarrow \infty} \cong K_{(j)}\left(r^{\prime}\right) e^{i \chi_{q} m r} \tag{3}\\
K_{(1)}\left(r^{\prime}\right)=K_{(3)}\left(r^{\prime}\right)=-i r^{\prime}\left(\left(m r^{\prime}-i\right) \operatorname{sh} \chi_{q}\right)^{-1}\left(\cos \left(\chi_{q} m r^{\prime}\right)-\left(m r^{\prime}\right)^{-1} \operatorname{cth} \chi_{q} \sin \left(\chi_{q} m r^{\prime}\right)\right), \\
K_{(2)}\left(r^{\prime}\right)=K_{(4)}\left(r^{\prime}\right)=-i r^{\prime}\left(m r^{\prime}-i\right)^{-1}\left(2 \cos \left(\chi_{q} m r^{\prime}\right)\left(\operatorname{sh}\left(2 \chi_{q}\right)\right)^{-1}-\sin \left(\chi_{q} m r^{\prime}\right)\left(m r^{\prime} \operatorname{sh}^{2} \chi_{q}\right)^{-1}\right) .
\end{gather*}
$$

1. Solution of the equations for a superposition of two δ-function potentials

For the following superposition of two δ-function potentials:

$$
\begin{equation*}
V(r)=V_{01} \delta\left(r-a_{1}\right)+V_{02} \delta\left(r-a_{2}\right) \tag{4}
\end{equation*}
$$

equation (1) takes the following form:

$$
\begin{equation*}
\psi_{(j)}(r)=m \operatorname{sh} \chi_{q} p_{1}\left(\chi_{q}, r\right)+G_{(j)}\left(r, a_{1}\right) V_{01} \psi_{(j)}\left(a_{1}\right)+G_{(j)}\left(r, a_{2}\right) V_{02} \psi\left(a_{2}\right) \text {. } \tag{5}
\end{equation*}
$$

In order to determine the values of $\psi_{(j)}\left(a_{1}\right)$ and $\psi_{(j)}\left(a_{2}\right)$ in (5), it is necessary to consider the wave function at the points $r=a_{1}$ and $r=a_{2}$, and then solve the resulting system of linear algebraic equations. Expressions for $\psi_{(j)}\left(a_{1}\right)$ and $\psi_{(j)}\left(a_{2}\right)$ can be then represented as

$$
\begin{gather*}
\psi_{(j)}\left(a_{1}\right)=\Delta_{1(j)}\left(\chi_{q}\right) / \Delta_{(j)}\left(\chi_{q}\right), \quad \psi_{(j)}\left(a_{q}\right)=\Delta_{2(j)}\left(\chi_{q}\right) / \Delta_{(j)}\left(\chi_{q}\right) ; \tag{6}\\
\Delta_{(j)}\left(\chi_{q}\right)=\prod_{n=1}^{2}\left[1-V_{0 n} G_{1(j)}\left(\chi_{q}, a_{n}, a_{n}\right)\right]-V_{01} V_{02}\left(G_{1(j)}\left(\chi_{q}, a_{1}, a_{2}\right)\right)^{2}, \\
\Delta_{1(j)}\left(\chi_{q}\right)=m \operatorname{sh} \chi_{q} p_{1}\left(\chi_{q}, a_{1}\right)\left[1-V_{02} G\left(\chi_{1(j)}, a_{2}, a_{2}\right)\right]+V_{02} m \operatorname{sh} \chi_{q} p_{1}\left(\chi_{q}, a_{2}\right) G_{1(j)}\left(\chi_{q}, a_{1}, a_{2}\right), \\
\Delta_{2(j)}\left(\chi_{q}\right)=m \operatorname{sh} \chi_{q} p_{1}\left(\chi_{q}, a_{2}\right)\left[1<V_{01} G_{(j)}\left(\chi_{q}, a_{1}, a_{1}\right)\right]+V_{01} m \operatorname{sh} \chi_{q} p_{1}\left(\chi_{q}, a_{1}\right) G_{1(j)}\left(\chi_{q}, a_{2}, a_{1}\right) .
\end{gather*}
$$

Taking into account the asymptotic expressions for GF (3), we obtain

$$
\begin{equation*}
\left.\psi_{(, j)} r\right)\left.\right|_{r \rightarrow \infty}=\left.m \operatorname{sh} \chi_{q}\left(p_{1}\left(\chi_{q}, r\right)\right)\right|_{r \rightarrow \infty}+f_{1(j)}\left(\chi_{q}\right)(-i) e^{i m \chi_{q} q^{r}} m \operatorname{sh} \chi_{q} . \tag{7}
\end{equation*}
$$

In this case the relativistic scattering amplitude $f_{1(j)}\left(\chi_{q}\right)$ corresponding to the equation with the model potential (4) can be expressed analytically:

$$
\begin{equation*}
f_{1(j)}\left(\chi_{q}\right)=i\left(m \operatorname{sh} \chi_{q}\right)^{-1}\left(K_{(j)}\left(a_{1}\right) V_{01} \psi_{(j)}\left(a_{1}\right)+K_{(j)}\left(a_{2}\right) V_{02} \psi_{(j)}\left(a_{2}\right)\right) \text {. } \tag{8}
\end{equation*}
$$

The partial scattering cross section for the p-wave is expressed by the scattering amplitude $f_{1(j)}\left(\chi_{q}\right)$ as follows: $\sigma_{1(j)}\left(\chi_{q}\right)=12 \pi\left|f_{1(j)}\left(\chi_{q}\right)\right|^{2}$. Figure 1 shows the graphs of the dependence of the scattering cross sections on the rapidity for the following parameter values: $a_{1}=3$, $V_{01}=1, a_{2}=4, V_{02}=2, m=1$.

2. Comparison of results for scattering \mathbf{s} - and \mathbf{p}-states

Earlier [3], the scattering cross sections were obtained for the equations under consideration in the case of an s-wave. Let us give the graphs of the scattering cross section for the Logunov-

Tavkhelidze equation in the case of $l=0.1$ for $a_{1}=3, V_{01}=1, a_{2}=4, V_{02}=2, m=1$ (Figure 2). Analyzing Fig. 2, we see that the local maxima of the scattering cross section for the p-state compared to the maxima for the s-state are shifted in the direction of high rapidity values. This feature is a consequence of the presence of a centrifugal barrier.

Fig. 1. Dependence of the partial scattering cross section $\sigma_{1(j)}$ on χ_{q}

Fig. 2. Dependence of the partial scattering cross section $\sigma_{0,(2)}$ on χ_{q}

Conclusion

Thus, in this paper, we consider the determination of the wave functions of partial twoparticle equations in the relativistic configurational representation in case of a unit orbital angular momentum. On the basis of the obtained wave functions the partial scattering amplitudes and scattering cross sections for the superposition of two δ-function potentials are found.

References

[1] V. N. Kapshai, S. I. Fialka "Sollution of relativistic two-particle equations with arbitrary orbital angular momentum", Russ. Phys. Journal, Vol. 60, № 1, P. 37 - 49 (2017).
[2] V. N. Kapshai, A. A. Grishechkina "Partial relativistic Green's functions for scattering states in the case of a unit orbital angular momentum" [in Russian], Materials of the international jubilee scientific and practical conference dedicated to the 90th anniversary of the Francisk Skorina Gomel State University, p. 3, Gomel: Francisk Skorina Gomel State University, p. 224 - 229 (november 2020).
[3] V. N. Kapshai Yu. A. Grishechkin "Relativistic scattering s-states problem for superposition of two potentials " δ-sphere" type" [in Russian], P, №2 (23), c. 7 - 12 (2015).

