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Partial two-particle relativistic scattering problems
and superpositions of J-shell potentials

V.N. KAPsHAI, S.I. FIALKA

A method for approximate solution of two-particle relativistic equations with analytic potentials, which is
based on smooth quasipotential replacing by superpositions of delta-potentials is discussed. Expressions
for the scattering cross section calculation in the case of nonzero angular momentum of the two particle
system are obtained. For a model potential a numerical analysis of s- and p- scattering states of two-
particle systems is performed, and the partial cross section resonant behavior is investigated.
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O6CY)KZ(8.€TC$I METO HpI/I6J’II/I)KeHHOFO pemieHuA ABYX4YaCTUYHBIX PCIATHUBHUCTCKUX ypaBHCHI/Iﬁ C aHaJIu-
TUYCCKUMHU IMOTCHIMAJIaMU, KOTOpLII‘/'I OCHOBAH Ha 3aMCHE TJIAAKHX KBAa3UIIOTCHIHAJIIOB CYyIEpIO3NIUAMU
JACIbTa-IIOTCHINAJIOB. HOJ'Iy‘ICHBI BbIpAXKCHHUA IJISI BBIMHUCIICHUS CCYCHUS PACCCAHUA B CIIy4Yac HCHYJICBbIX
Op6I/ITaJ'II>HI)IX MOMCHTOB L[BquaCTH‘IHOﬁ cuctembl. Ha MMpuMEpPE MOJCIBHOTO MOTCHIHAIa MPOBEIACH
YHCIICHHBIN aHalIn3 S- U p'COCTOFIHI/Iﬁ PaCCCAHHBbIX YaCTHI, UCCICAO0OBAHO PE30HAHCHOC IMMOBCACHUC IAp-
IUAJIbHBIX CEUCHUM paccesHus.

KiroueBble cj10Ba: KBa3HIOTCHINAIbHEIN noaxon, ACbTa-MMOTCHIHAJIbI, CCUCHNUC PACCCAHNA, PE30OHAHC-
HBIC COCTOSHHUA.

1. Introduction. In this paper we investigate the scattering states of two spinless particles of
the same mass m each on the basis of three-dimensional quasipotential equations of quantum field
theory [1], [2]. In this approach the interaction between two relativistic particles is defined by the
quasipotential, which in the momentum representation (MR) depends on the initial and final relative
momenta of the particles in the center-of-mass system and also on the two-particle energy 2E, in the
most general case. Since the problem of relativistic potentials finding in quantum field theory is
complicated, various phenomenological potentials, not depending on energy, are frequently used by
analogy with the non-relativistic theory. In addition to that the coordinate dependence of potentials
in relativistic configurational representation (RCR) is often chosen to be similar to the coordinate
dependence of non-relativistic potentials. Nevertheless, the number of relativistic problems having
exact analytical solutions is much less than that in the non-relativistic theory. At the same time, the
exactly solvable models allow us to draw important conclusions about the general properties of the
quasipotential equations which contain more complex potentials, not allowing exact solutions.

In the non-relativistic theory much attention is being attracted by the potentials which are de-
fined with the help of the Dirac’s delta function, since scattering problems for such potentials can
be solved exactly [3]-[7]. Similar problems have been considered in the relativistic theory as well.
Exact solutions of the one-dimensional two-particle equations with d- potentials were obtained in
[8], [9]. Exact solutions of the three-dimensional equations with a superposition of two d- shell
potentials were investigated in detail for s-states (I = 0) of two spinless particles in [10].

The method presented below is for approximate solution of the relativistic two-particle scat-
tering problems with quasipotentials of sufficiently general form, in the case of nonzero angular
momentum | . It is based on the approximation of a smooth quasipotential function by a superposi-
tion of N d -shell potentials.

2. Relativistic equations in the coordinate representation. We consider the case when the
quasipotential in the Lobachevsky momentum space is local and spherically symmetric [11, p. 677].
In such a case the relativistic integral equations of quantum field theory and the relativistic general-
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ization of the Schrédinger equation in the integral form [12, p. 264] are analogous. In the relativistic
configuration representation (RCR) these quasipotential equations have the form:

rr rr rr rro I.
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Here the functions x(('}, Ir) are the solution of the free of interaction problem; they implement

unitary irreducible representations of the Lorentz group [11, p. 659]:
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The connection between the Green’s functions in the RCR and the MR is determined by equa-
tion of the form [11, p. 660]:
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The functions Gy(Ey,E,) can take the form of the Green’s functions of the Logunov—

Tavkhelidze (j=1), and the Kadyshevsky (j=2) equations or their modified versions

(j=3,j=4)[10,p.2]:
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The problem of three-dimensional integral equation (1) solving can be greatly simplified by
reducing it to the one-dimensional form. For convenience, we also use the rapidity variable (C ):

b:mshcprllp; Ep:mchcp; Eﬂdp:mdcp. (5)
P

Scalar plane wave (2), the wave function y (d, II’) and the Green’s function can be expanded in the
basis of spherical harmonics [12, p. 38]:
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Substituting partial decompositions (6) and (8) into (3), it is necessary to execute the integra-
tion over the angles defining the vector p direction. Equating then the sums and using the spherical

harmonic properties one can obtain the formula, connecting partial Green’s functions in the RCR
with partial Green’s functions in the MR:
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G(()I)(cq;r,r}”) = M1y X (€ p.NGo(Eq. Ep)X (€ rYdey; 9)
Let us perform now the partial analysis of the equation (1). Having substituted expansions in
spherical harmonics (6), (7), (8) into (1), and integrating over the angles defining the vector r¥ di-

rection, and using the spherical harmonic properties again, we can find the one-dimensional partial
differential equations in the r-representation:

I o
yicqn=x(gqn+ T, Gé )(cq;r,rS)V(Eq;rS)yl (Cq.rydry (10)
3. Partial waves and partial Green’s functions in the RCR. Using formula (6) it is easy to
obtain the partial decomposition of the relativistic plane wave in the basis of Legendre polynomials
[13, p. 80]. Taking into account the explicit form of functions (2), one can easily obtain the integral
expression for the determination of the explicit form of the partial components of the plane wave:

. 1 .
X (c,r)= %mrshc 1 (chc - zshc) ¥ ™R (2)dz. (11)
-1
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Performing the integration in (11) for | = 0,1, one can write down the explicit form of the
partial waves in the RCR:

Xo(C,r)=sin(mrc); (12)
Xl(C ’ I’)= cthc sin(mrrz 3-+ni1rcos(mrc) ) (13)

Having substituted (12) and (13) into (9), it can be shown that the partial Green’s functions
are represented by the following convenient formula (r = m(r- r3); ry= m(r+ r)):
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Green’s functions (4) in rapidity space have the form.
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The quantities that make up formula (14) can be calculated using methods of complex analysis;
it is necessary to simply construct the contour integral and apply the residue theorem [14, p. 146]. Per-
forming calculations at | = 0, we obtain:
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It should be noted that these partial components of the Green s functlons (for s-states), calcu-

lated in this way, actually coincide with the results obtained in [8]-[10] by another method. Per-
forming now calculations at | = 1, we obtain
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These explicit forms of the partial Green’s functions can be now used at partial equations
solving.

4. Approximate solution method. Let us consider the solution of relativistic partial equations
(10) containing the superposition of d- potentials, each of which is localized on a sphere of a finite

radius Tk > 0. According to papers [8]-[10] we use the analogy with the non-relativistic theory for
the determination of the relativistic scattering amplitude for the relativistic scattering amplitude de-
termination. In the non-relativistic theory the following property is used for finding the scattering
amplitude: the asymptotic wave function expression at r ® I' can be represented as the sum of the
incident plane wave and the outgoing spherical wave [15, c. 186]. In turn, the asymptotic expression
of the partial wave functionat r® T has the form [15, p. 187]:

V(P op » J(PO)+ phi(p)e (PP, (18)
here f;(p) are the partial scattering amplitudes via which the total scattering cross section can be

determined as the partial scattering cross sections sum [15, c. 89]:
T T
2
s=e¢ s =4pe (2 +[fi(p)". (19)
1=0 =0
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Using this approach, we consider the method of approximate solution of relativistic problems with
smooth potentials, similar to how it was done in the non-relativistic theory [7, c. 534]. This method is
based on using superpositions of N d- shell potentials instead of the analytical (smooth) potential:

N
VID® e Vd(r- r); vkzv(L;k-l)tM. (20)
k=1

2
Substituting (20) into (10) and integrating with respect to ry¥, one obtains
N
yi(cqgr=x(qnN+e G((,')(cq;r, Vi1 (Cq ) (21)
k=1

Taking equality (20) at points r, one can obtain the following linear algebraic equations sys-
tem (LAES):

X- Gé')(cq;rl, nv, - Gé')(cq;rl, vV, L -G (c i OV (Cqh) 5 (Cq,1)
- Gé')(cq;rz, v, 1- Gé')(cq;rz, )V, L Gé')(cq,rz, )V (Cqi12)

M M 0 M (22)

Gé')(cq;rN, RV, - Gé')(cq;rN, LV, L 1-GY (c s TV ,(cq,rN I(Cq’rN

The asymptotic behavior of the wave function (21) at r® T  will be as follows:

KN % (Cq:h) |(mrc p/2|)
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According to formula (18) one can obtain from (23) the relativistic scattering amplitude:

fi(cq)= mﬁ? lXI L (Cqr T Vi Y1 (Cquk) s (24)

where y | (Cq, 1) are solutions of LAES (22) and &)= (Cq: Cq.0,0) in the four cases under consid-

eration. The total scattering cross section in accordance with (19), can be then written as

s = e S —4pe (2|+1)\f,(cq)\ (25)
1=0
Thus, substituting the parameters of potential (20) and the explicit form of the partial waves (12),
(13) and the Green’s functions (16) and (17) into (22), one can easily calculate the scattering ampli-
tude (24) and scattering cross section (25).
5. Numerical analysis example of the scattering problem with a model potential. Consid-
er the numerical analysis algorithm on the model potential example [7, c. 538], allowing the exist-
ence of resonance states:

V(r)= Ar?e . (26)

First, we approximate this smooth potential by a superposition of N d- shell potentials. The

choice of the approximation method determines how quickly the numerical solution approaches the ex-

act solution. We used several methods and identified how features of the potential define the best. Then

we construct the mesh of the potential and the resulting coordinate array and the potential value array
and use them for the scattering amplitude (24) calculating and the partial cross section (25) finding.

Figure 1 shows the dependence of the partial cross sections s | on the two-particle energy Eq

for all Green’s functions (j=1-4). The left picture shows the results in the | = 0 case (s— states),
the right one —in the | = 1 case ( p —states). For these calculations we used the superposition of fif-

ty d-shell potentials (N=50). Analysis of the partial cross sections shows that their dependence on
the angular momentum | has many similarities with according results in the relativistic one-
particle scattering problem case [16, c. 187]. Partial cross sections have the following feature: in the
| = O case the cross section has its maximum value at E,=m, on the other hand for all other values
of | the partial cross sections tend to zero at Eq=m. Partial cross sections are significantly different
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from zero only in a certain energy range, with the | - increasing this range moves to the larger en-
ergy area. It gives excellent opportunity to exactly construct the total cross section for some energy
interval using formula (25).

0, MeV? £=0

......

m 5 20 25 3.0 E,, MeV m 1.5 20 25 30 E;, MeV
Figure 1 — The dependence of the partial cross sections s and s, on energy £, (m =1 MeV)

The obtained dependence of partial cross sections on energy E, has resonant character [15, p. 238].

At the resonance energy one can see a sharp increase of the scattering cross section. The number of
resonant states increases with the parameter A increasing. The partial cross section energy depend-
ence tends to a certain limit (exact solution) with the parameter N increasing. The positions of the
resonance peaks (especially narrow ones) on the energy scale is determined quite accurately already
with a small number of potentials. The maximum errors of solutions are observed near the reso-
nance energies. The relative error in the | = 0 case does not exceed 1,5 % (in the | = 1 case —
10 %), for the numerical calculation parameters taken. It is important to note that even with a small
amount of d- potentials it is possible to obtain qualitatively correct description of the physical pro-
cess of particle interaction.

6. Conclusions. In this paper it is shown that the method, based on the analytical potential re-
placing by superpositions of delta-potentials is effective in solving the two-particle equations of
quantum field theory for the scattering states. Even for small number of delta-functions (N =50)
the method allows us to obtain sufficiently accurate results for the partial and total cross sections
and predict with good accuracy the positions and nature of the resonances. The study of the provi-
sions of the resonances in the complex energy plane at non-zero | - values, which will be discussed
in a separate paper, is of great interest.
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