=МАТЕМАТИКА=

УДК 539.3

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ КРУГОВЫХ ТРЕХСЛОЙНЫХ ПЛАСТИН ПРИ ЛОКАЛЬНЫХ ВНЕЗАПНО ПРИЛОЖЕННЫХ НАГРУЗКАХ

А.В. Яровая

Белорусский государственный университет транспорта, Гомель

FORCED VIBRATIONS OF CIRCULAR SANDWICH PLATES UNDER LOCAL SUDDENLY APPLIED LOADS

A.V. Yarovaya

Belarusian State University of Transport, Gomel

Рассмотрены осесимметричные поперечные колебания круглой упругой трехслойной пластины под действием локальных поверхностных, а также погонных силовых и моментных нагрузок. Для описания кинематики несимметричного по толщине пакета приняты гипотезы ломаной линии. В несущих слоях справедливы гипотезы Кирхгофа. В сравнительно толстом легком заполнителе нормаль остается прямолинейной, но поворачивается на некоторый дополнительный угол. Аналитические решения получены с помощью разложения в ряды по системе собственных ортонормированных функций. Проведен их численный анализ.

Ключевые слова: трехслойная круговая пластина, осесимметричные колебания, локальные внезапно приложенные нагрузки.

Axisymmetric transverse vibrations of a circular elastic three-layer plate under the influence of local surface, force and torque loads are considered. The hypothesis of a broken normal is accepted for the kinematics description of asymmetrical on the thickness of package. Kirchhoff's hypotheses are valid in the carrier layers. In a comparatively thick lightweight aggregate, the normal remains straight, but rotates by some additional angle. Analytical solutions are obtained by expanding the series in terms of a system of proper orthonormal functions. Their numerical analysis is made.

Keywords: three-layer circular plate, axisymmetric vibrations, local suddenly applied loads.

Введение

Широкое применение в современных отраслях промышленности трехслойных элементов конструкций обуславливает необходимость разработки методов их расчета. В монографиях [1]-[4] приведены математические модели слоистых элементов конструкций, включающие постановки краевых задач и методы их расчета. Результаты, связанные с колебаниями стержней прямоугольного сечения и круговых трехслойных пластин, включая вязкоупругие, содержатся в работах [5]–[11]. Свободные колебания трехслойных пластин, вызванные терморадиационным ударом, рассмотрены в статьях [12], [13]. Динамическое и квазистатическое термосиловое нагружения круговой трехслойной оболочки исследованы в статьях [13], [14]. Квазистатическое изотермическое и термопластическое деформирование трехслойных стержней, пластин и цилиндрических оболочек рассмотрено в статьях [14]-[19]. Резонансные колебания круговых трехслойных пластин при равномерно распределенной нагрузке изучены в [20]. Здесь рассматриваются малые осесимметричные поперечные колебания несимметричной по толщине упругой трехслойной круговой пластины, возбужденные локальными поверхностными нагрузками, погонными и моментными силовыми нагрузками.

1 Постановка начально-краевой задачи

Постановка задачи и ее решение приводятся в цилиндрической системе координат r, φ , z (рисунок 1.1). Предполагается, что в тонких несущих слоях выполняются гипотезы Кирхгофа. Сравнительно толстый заполнитель считается легким, т. е. в нем пренебрегается работой касательных напряжений в тангенциальном направлении. Внешняя вертикальная нагрузка осесимметричная, т. е. не зависит от координаты φ : q = q(r, t). На контуре пластины предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев.

В силу симметрии задачи тангенциальные перемещения в слоях отсутствуют, а прогиб пластинки *w*, относительный сдвиг в заполнителе ψ и радиальное перемещение координатной поверхности *u* не зависят от координаты ϕ , т. е. *u* (*r*, *t*), ψ (*r*, *t*), *u* (*r*, *t*). В дальнейшем эти функции считаем искомыми. Все перемещения и линейные размеры пластинки отнесены к ее радиусу *r*₀; силовые характеристики – к 1 Па; через *h*_k (*h*₃ = 2*c*) и ρ_k – обозначены толщина и плотность материала *k*-го слоя.

Система дифференциальных уравнений в частных производных, описывающая вынужденные поперечные колебания круглой трехслойной пластины без учета обжатия и инерции вращения нормали в слоях, выводится из вариационного принципа Гамильтона [4]:

$$L_{2}(a_{1}u + a_{2}\psi - a_{3}w,_{r}) = 0;$$

$$L_{2}(a_{2}u + a_{4}\psi - a_{5}w,_{r}) = 0;$$

$$L_{3}(a_{3}u + a_{5}\psi - a_{6}w,_{r}) - M_{0}\ddot{w} = -q, \quad (1.1)$$

где $M_0 = (\rho_1 h_1 + \rho_2 h_2 + \rho_3 h_3) r_0^2$; коэффициенты a_i и дифференциальные операторы L_2 , L_3 определяются соотношениями

$$a_{1} = \sum_{k=1}^{3} h_{k} K_{k}^{+};$$

$$a_{2} = c(h_{1}K_{1}^{+} - h_{2}K_{2}^{+}); \quad K_{k}^{+} \equiv K_{k} + \frac{4}{3}G_{k};$$

$$a_{3} = h_{1} \left(c + \frac{1}{2}h_{1}\right)K_{1}^{+} - h_{2} \left(c + \frac{1}{2}h_{2}\right)K_{2}^{+};$$

$$a_{4} = c^{2} \left(h_{1}K_{1}^{+} + h_{2}K_{2}^{+} + \frac{2}{3}cK_{3}^{+}\right);$$

$$a_{5} = c \left[h_{1} \left(c + \frac{1}{2}h_{1}\right)K_{1}^{+} + h_{2} \left(c + \frac{1}{2}h_{2}\right)K_{2}^{+} + \frac{2}{3}c^{2}K_{3}^{+}\right];$$

$$a_{6} = h_{1} \left(c^{2} + ch_{1} + \frac{1}{3}h_{1}^{2}\right)K_{1}^{+} + h_{2} \left(c^{2} + ch_{2} + \frac{1}{3}h_{2}^{2}\right)K_{2}^{+} + \frac{2}{3}c^{3}K_{3}^{+};$$

$$L_{2}(g) \equiv \left(\frac{1}{r}(rg),_{r}\right),_{r} \equiv g,_{rr} + \frac{g_{r}}{r} - \frac{g_{r}}{r^{2}};$$

$$L_{3}(g) \equiv \frac{1}{r} \left(rL_{2}(g)\right),_{r} \equiv g,_{rrr} + \frac{2g_{r}}{r} - \frac{g_{r}}{r^{2}} + \frac{g}{r^{3}}.$$

Задача определения функций u(r, t), $\psi(r, t)$, u(r, t) замыкается присоединением к (1.1) граничных и начальных условий

$$w(r, 0) \equiv f(r), \quad \dot{w}(r, 0) \equiv g(r).$$
 (1.2)

Система дифференциальных уравнений, описывающая свободные колебания пластинки следует из (1.1) при q = 0. Ее решение рассмотрено в [4]. В результате построена система собственных ортонормированных функций $v_n(, r)$, которая для сплошных пластин имеет вид

$$v_{n}(\beta_{n},r) \equiv \frac{1}{d_{n}} \left[J_{0}(\beta_{n}r) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} I_{0}(\beta_{n}r) \right], (1.3)$$

где β_n – собственные числа; J_0 , I_0 – функция Бесселя и модифицированная функция Бесселя нулевого порядка; d_n – нормировочные коэффициенты

$$d_n^2 = \int_0^1 \left[J_0(\beta_n r) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n r) \right]^2 r dr =$$

Problems of Physics, Mathematics and Technics, № 2 (31), 2017

$$= \frac{1}{2} \Big[J_0^2(\beta_n) + J_1^2(\beta_n) + I_0^2(\beta_n) - I_1^2(\beta_n) \Big] - \frac{J_0(\beta_n)}{\beta_n} \Big[J_1(\beta_n) + \frac{I_1(\beta_n)J_0(\beta_n)}{I_0(\beta_n)} \Big].$$

где *J*₁, *I*₁ – указанные ранее функции Бесселя первого порядка.

В результате для описания вынужденных колебаний рассматриваемой пластинки внешняя нагрузка q(r, t) и искомое решение u(r, t), $\psi(r, t)$, w(r, t) представляются в виде разложений в следующие ряды:

$$q(r, t) = M_0 \sum_{n=0}^{\infty} v_n q_n(t);$$

$$w(r, t) = \sum_{n=0}^{\infty} v_n T_n(t);$$

$$\psi(r, t) = b_2 \sum_{n=0}^{\infty} \phi_n T_n(t);$$

$$u(r, t) = b_1 \sum_{n=0}^{\infty} \phi_n T_n(t),$$
 (1.4)

где

$$\phi_n = \frac{\beta_n}{d_n} \bigg[J_1(\beta_n) r - J_1(\beta_n r) + \\ + \frac{J_0(\beta_n)}{I_0(\beta_n)} (I_1(\beta_n) r - I_1(\beta_n r)) \bigg],$$

$$b_1 = \frac{a_3 a_4 - a_2 a_5}{a_1 a_4 - a_2^2}, \quad b_2 = \frac{a_1 a_5 - a_2 a_3}{a_1 a_4 - a_2^2}.$$

Алгебраические уравнения для определения собственных чисел β_n следуют из граничных условий. При заделке или шарнирном опирании контура пластины (r = 1) должны выполняться требования

$$u = \psi = w = w, r = 0;$$

или $u = \psi = w = M_r = 0.$

Удовлетворяя по два последних из них с помощью разложений (1.4), получим следующие трансцендентные уравнения для нахождения собственных чисел

$$\frac{I_{1}(\beta)}{I_{0}(\beta)} = -\frac{J_{1}(\beta)}{J_{0}(\beta)};$$

$$\frac{J_{0}(\beta)}{a_{7}(\beta J_{0}(\beta) - J_{1}(\beta)) + a_{8}J_{1}(\beta)} =$$

$$= -\frac{I_{0}(\beta)}{a_{7}(\beta I_{0}(\beta) - I_{1}(\beta)) + a_{8}I_{1}(\beta)}.$$
(1.5)

После вычисления β_n собственные частоты колебаний ω_n будут

$$\omega_n^2 = \frac{\beta_n^4}{M^4},\tag{1.6}$$

где

$$\begin{aligned} a_{60} &= h_1 \left(c^2 + c h_1 + \frac{1}{3} h_1^2 \right) K_1^- + \\ &+ h_2 \left(c^2 + c h_2 + \frac{1}{3} h_2^2 \right) K_2^- + \frac{2}{3} c^3 K_3^-; \end{aligned}$$

$$K_{k}^{-} \equiv K_{k} - \frac{2}{3}G_{k};$$

$$a_{7} = a_{6} - a_{2}b_{1} - a_{5}b_{2},$$

$$a_{8} = a_{60} + a_{2}b_{1} + a_{5}b_{2},$$

$$M^{4} = \frac{M_{0}a_{1}(a_{1}a_{4} - a_{2}^{2})}{(a_{1}a_{6} - a_{3}^{2})(a_{1}a_{4} - a_{2}^{2}) - (a_{1}a_{5} - a_{2}a_{3})^{2}}$$

В качестве примера численно исследовано первое из уравнений (1.5), которое соответствует заделке контура пластины. Полученные первые 15 корней вычислены с точностью до 0,001 и сведены в таблицу 1.1.

Таблица 1.1 – Собственные числа при заделке контура пластины

Номер п	Собственное число β_n
0	3,196
1	6,306
2	9,439
3	12,577
4	15,716
5	18,856
6	21,997
7	25,138
8	28,279
9	31,420
10	34,561
11	37,702
12	40,844
13	43,985
14	47,126

Коэффициенты разложения нагрузки в ряд $q_n(t)$ получим, умножив первое из соотношений в (1.4) на v_n и проинтегрировав по площади пластины. В силу ортонормированности системы собственных функций (1.3) имеем

$$q_n(t) = \frac{1}{M_0} \int_0^1 q(r, t) v_n r dr.$$
(1.7)

Уравнение для определения неизвестной функции времени $T_n(t)$ следует из третьего уравнения системы (1.1) после подстановки в него выражений (1.4) и использования линейной связи функций v_n , φ_n :

$$\ddot{T}_n + \omega^2 T_n = q_n. \tag{1.8}$$

Общее решение уравнения (1.8) можно принять в виде

$$I_n^{t}(t) = A_n \cos \omega_n t + B_n \sin \omega_n t + + \frac{1}{\omega_n} \int_0^t \sin \omega_n (t - \tau) q_n(\tau) d\tau.$$
(1.9)

Коэффициенты A_n , B_n определяются из начальных условий движения (1.2)

$$A_{n} = \int_{0}^{1} f(r) v_{n} r dr, B_{n} = \frac{1}{\omega_{n}} \int_{0}^{1} g(r) v_{n} r dr, (1.10)$$

так как интеграл в (1.9) при t = 0 обращается в нуль.

2 Частные решения при вынужденных колебаниях

Рассмотрим несколько примеров локального внешнего осесимметричного силового воздействия на пластину. Задача, как правило, сводится к отысканию параметров $q_n(t)$ разложения в ряд заданной нагрузки и определению функции времени $T_n(t)$.

Численные исследования проводились для защемленной по контуру пластины, слои которой набраны из материалов Д16Т-фторопласт – Д16Т. Соответствующие механические характеристики материалов приведены в [4]. Собственные частоты колебаний ω_n вычислялись по формуле (1.6) с использованием собственных чисел из приведенной таблицы и геометрических параметров слоев $h_1 = h_2 = 0,01$, c = 0,05. Начальные условия (1.2) предполагались однородными $w(r,0) \equiv \dot{w}(r,0) \equiv 0$, что, в соответствии с (1.10), позволяет получить нулевые константы интегрирования $A_n = 0, B_n = 0$.

2.1. Предположим, что на рассматриваемую пластину действует внезапно приложенная динамическая поверхностная нагрузка, равномерно распределенная по кругу относительного радиуса $b \le 1$. Тогда ее аналитический вид можно представить с помощью функции Хевисайда нулевого порядка $H_0(b-r)$:

$$q(r,t) = q_0(t)H_0(b-r).$$
 (2.1)

Подставив нагрузку (2.1) в формулу (1.7) получим интегральное выражение для вычисления параметров разложения нагрузки в ряд $q_n(t)$:

$$q_n(t) = \frac{q_0(t)}{M_0 d_n} \int_0^1 r H_0(b-r) \times \left(J_0(\beta_n r) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n r) \right) dr.$$

После взятия интегралов от произведения функций Хевисайда и Бесселя, имеем

$$q_{n}(t) = \frac{q_{0}(t)b}{M_{0}d_{n}\beta_{n}} \left(J_{1}(\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} I_{1}(\beta_{n}b) \right).$$
(2.2)

После чего решение рассматриваемой задачи определяется соотношениями (1.4), а функция $T_n(t)$ вычисляется по формуле (1.9) с учетом коэффициентов (2). Для внезапной нагрузки с постоянной интенсивностью $q_0 =$ const имеем

$$T_n(t) = \frac{q_0 b}{M_0 d_n \beta_n \omega_n^2} \times \left(J_1(\beta_n b) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_1(\beta_n b) \right) (1 - \cos(\omega_n t)).$$
(2.3)

При *b* = 1 нагрузка распределена по всей поверхности пластинки.

×

Изменение прогиба (*a*) и сдвига в заполнителе (δ) по радиусу пластины показаны на рисунке 2.2. Они вычислены с использованием формулы (2.3) в момент времени $t = \pi / \omega_0 = 0,0333$,

Проблемы физики, математики и техники, № 2 (31), 2017

который соответствует максимальному значению функции (2.3) при основной собственной частоте колебаний ω_0 . Кривые 1 получены при b = 0.5; 2 - b = 1, т. е. когда равномерно нагружена вся поверхность внешнего несущего слоя пластины.

При подсчете прогиба и сдвига по формулам (1.4) суммировались первые 8 членов ряда. Следует отметить хорошую сходимость этих рядов в данном случае. В их максимальные величины 92 последующих слагаемых суммарно вносят поправку менее 0,1 %. Однако в дальнейших числовых расчетах ограничение длины суммируемого ряда исследовано в каждом случае отдельно и приводится лишь конечный числовой результат.

2.2. Пусть на рассматриваемую круглую трехслойную пластину действует внезапно приложенная нагрузка, равномерно распределенная по кольцу, относительный радиус которого изменяется в пределах $a \le r \le b$. Тогда ее аналитический вид можно представить как разность двух нагрузок (2.1):

$$q(r,t) = q_0(t)(H_0(b-r) - H_0(r-a)). \quad (2.4)$$

Решение задачи представим в виде разности двух решений (2.2), (2.3). Тогда коэффициенты разложения нагрузки (2.4) в ряд по системе собственных функций будут

$$q_n(t) = \frac{q_0(t)}{M_0 d_n \beta_n} \left(bJ_1(\beta_n b) - aJ_1(\beta_n a) - \frac{J_0(\beta_n)}{I_0(\beta_n)} (bI_1(\beta_n b) - aI_1(\beta_n a)) \right).$$

После чего для стационарной динамической нагрузки $q_0 = \text{const}$ получим

$$T_{n}(t) = \frac{q_{0}(1 - \cos(\omega_{n}t))}{M_{0}d_{n}\beta_{n}\omega_{n}^{2}} \left(bJ_{1}(\beta_{n}b) - aJ_{1}(\beta_{n}a) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} (bI_{1}(\beta_{n}b) - aI_{1}(\beta_{n}a)) \right).$$
(2.5)

При a = 0 из (2.5) следует решение (2.3).

На рисунке 2.2 показано изменение формы и величины прогиба по мере продвижения кольцевого пятна нагрузки к контуру пластины. Толщина

Problems of Physics, Mathematics and Technics, № 2 (31), 2017

кольца принята r = b - a = 0,25; интенсивность нагрузки $q_0 = 7000$; момент времени $t = \pi / \omega_0$ соответствует максимальному значению функции (2.5) при основной собственной частоте ω_0 . Кривая 1 – прогиб при воздействии нагрузки по кольцу a = 0, b = 0,25; 2 - a = 0,25, b = 0,5; 3 - a = 0,5, b = 0,75; 4 - a = 0,75, b = 1. Наименьший прогиб возникает при нагрузке с минимальной равнодействующей, т. е. когда пятно нагрузки расположено около центра пластины (1). Если нагрузка примыкает к контуру, то прогиб в центре пластины немногим больше, но существенно отличается по форме. Максимальный прогиб наблюдается при нагрузке, распределенной вдоль второй четверти радиуса (2).

2.3. Рассмотрим круговую трехслойную пластину, на которую воздействует мгновенно приложенная вдоль окружности r = a погонная сила постоянной интенсивности Q_0 . Воспользуемся решением, полученным для распределенной по кольцу $a - d \le r \le a + d$ поверхностной нагрузки q_0 . Введем в (2.5) замену $q_0 = Q_0/2d$ и устремим параметр d к нулю. После вычисления предела получим следующую функцию времени:

$$T_{n}(t) = \frac{Q_{0}a(1 - \cos(\omega_{n}t))}{M_{0}d_{n}\omega_{n}^{2}} \times \left(J_{0}(\beta_{n}a) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})}I_{0}(\beta_{n}a)\right).$$
(2.6)

А.В. Яровая

Функция (2.6) не описывает поведение пластины при приложении сосредоточенной силы в ее центре. В этом случае a = 0 и решение вырождается. Чтобы этого избежать, предположим, что равнодействующая погонной силы $Q = 2\pi a Q_0$ остается постоянной при изменении радиуса aокружности, вдоль которой она приложена. Это возможно, если интенсивность Q_0 будет переменной, компенсируя изменения a. Тогда

$$T_n(t) = \frac{Q(1 - \cos(\omega_n t))}{2\pi M_0 d_n \omega_n^2} \left(J_0(\beta_n a) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n a) \right).$$

Отсюда, при a = 0, получаем функцию времени, соответствующую приложению силы в центре пластины

$$T_{n}(t) = \frac{Q(1 - \cos(\omega_{n}t))}{2\pi M_{0}d_{n}\omega_{n}^{2}} \left(1 - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})}\right).$$
(2.7)

Кривые на рисунке 2.3 отражают изменение максимального прогиба пластины (r = 0) во времени *t* при различных радиусах окружности приложения нагрузки с равнодействующей Q = 7 кН: 1 - a = 0; 2 - a = 0,2; 3 - a = 0,4; 4 - a = 0,6; 5 - a = 0,8. Колебательный процесс здесь носит отнулевой характер.

2.4. Пусть на исследуемую пластину воздействуют внезапно приложенные погонные моменты, распределенные по окружности r = a. Для решения задачи воспользуемся суммой решений (2.6) для двух погонных сил, направленных в противоположные стороны и действующих по окружностям радиусов r = a - d и r = a + d. В этой сумме произведем замену $Q_0 = m_0/2d$ и устремим d к нулю. После вычисления предела получим

$$T_{n}(t) = \frac{m_{0} \left(1 - \cos(\omega_{n} t)\right)}{M_{0} d_{n} \omega_{n}^{2}} \times \left(J_{0}(\beta_{n} a) - a\beta_{n} J_{1}(\beta_{n} a) - -\frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} \left(I_{0}(\beta_{n} a) + a\beta_{n} I_{1}(\beta_{n} a)\right)\right).$$
(2.8)

Функция (2.8) формально описывает случай воздействия сосредоточенного момента, приложенного и в центре пластины. При a = 0 решение будет следующим

$$T_{n}(t) = \frac{m_{0}(1 - \cos(\omega_{n}t))}{M_{0}d_{n}\omega_{n}^{2}} \left(1 - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})}\right).$$
 (2.9)

Теперь примем постоянство равнодействующей внезапно приложенных погонных моментов $m = 2\pi a m_0$ при изменении радиуса окружности, вдоль которой они действуют. Интенсивность m_0 будет при этом переменной, компенсируя изменения *a*. Тогда из (2.9), с помощью замены $m_0 = m / (2\pi a)$, получим

$$T_n(t) = \frac{m(1 - \cos(\omega_n t))}{2\pi M_0 d_n \omega_n^2} \left(\frac{J_0(\beta_n a)}{a} - \beta_n J_1(\beta_n a) - \frac{J_0(\beta_n)}{I_0(\beta_n)} \left(\frac{I_0(\beta_n a)}{a} + \beta_n I_1(\beta_n a) \right) \right).$$
(2.10)

Решение (2.10) справедливо всюду, кроме центра пластины, где a = 0.

На рисунке 2.4 показано изменение прогиба вдоль радиуса рассматриваемой пластины при различных радиусах окружности приложения погонных моментов с постоянной равнодействующей ($m_0 = 7 \text{ kH m}$): 1 - a = 0,25, 2 - a = 0,5, 3 - a = 0,75. Максимальные по модулю прогибы (1) наблюдаются при расположении моментной окружности ближе к центру пластины. По мере ее продвижения к контуру значения этих параметров убывают, и происходит смена фазы колебаний. При совпадении моментной окружности с контуром пластины прогиб обращается в ноль, так как динамическое воздействие рассматриваемой нагрузки компенсируется реакцией в заделке.

Заключение

Полученные аналитические решения начально-краевых задач и их численное исследование могут быть использованы в расчетной практике проектных организаций при исследовании вынужденных поперечных колебаний трехслойных круговых пластин с легким заполнителем, вызванных мгновенно приложенными локальными осесимметричными нагрузками.

ЛИТЕРАТУРА

1. Болотин, В.В. Механика многослойных конструкций / В.В. Болотин, Ю.Н. Новичков. – М.: Машиностроение, 1980. – 375 с.

2. Головко, К.Г. Динамика неоднородных оболочек при нестационарных нагрузках / К.Г. Головко, П.З. Луговой, В.Ф. Мейш. – Киев: Киевский ун-т, 2012. – 541 с.

3. Старовойтов, Э.И. Деформирование трехслойных элементов конструкций на упругом основании / Э.И. Старовойтов, А.В. Яровая, Д.В. Леоненко. – М.: ФИЗМАТЛИТ, 2006. – 380 с.

4. Горшков, А.Г. Теория упругости и пластичности / А.Г. Горшков, Э.И. Старовойтов, Д.В. Тарлаковский. – М.: ФИЗМАТЛИТ, 2011. – 416 с.

5. The oblique impact response of composite sandwich plates / I. Ivañez, M.M. Moure, S.K. Garcia-Castillo, S. Sanchez-Saez // Composite Structures. – 2015. – № 133. – P. 1127–1136.

6. Горшков, А.Г. Гармоническое нагружение слоистых вязкоупругопластических систем / А.Г. Горшков, Э.И. Старовойтов, А.В. Яровая // Изв РАН. МТТ. – 2000, № 6. – С. 91–98.

7. *Starovoitov*, *E.I.* Circular sandwich plates under local impulsive loads / E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya // International Applied Mechanics. – 2003. – T. 39, № 8. – P. 945–952.

8. Горшков, А.Г. Колебания трехслойных стержней под действием локальных нагрузок различных форм / А.Г. Горшков, Э.И. Старовойтов, Д.В. Леоненко // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2004. – № 1. – С. 45–52.

9. *Starovoitov*, *E.I.* Vibration of sandwich rod under local and impulsive forces / E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya // International Applied Mechanics. – 2005. – T. 41, № 7. – C. 809–816.

10. Старовойтов, Э.И. Колебания круглых трехслойных пластин, связанных с упругим основанием / Э.И. Старовойтов, В.Д. Кубенко, Д.В. Тарлаковский // Изв. ВУЗов. Авиационная техника. – 2009. – № 2. – С. 16–19.

11. Горшков, А.Г. Колебания круглой линейно-вязкоупругой трехслойной пластинки / А.Г. Горшков, Э.И. Старовойтов, А.В. Яровая // Проблемы прочности. – 2001. – № 3. – С. 100–107.

12. *Starovoitov*, *E.I.* Impact of thermal and ionizing radiation on a circular sandwich plate on an elastic foundation / E.I. Starovoitov, D.V. Leonenko // International Applied Mechanics. – 2011. – Vol. 47, $N_{\text{O}} 5. - P. 580-589$.

13. Leonenko, D.V. Thermal impact on a circular sandwich plate on an elastic foundation / D.V. Leonenko, E.I. Starovoitov // Mechanics of Solids. -2012. -Vol. 47, No 1. -P. 111-118.

14. *Kuznetsova*, *E.L.* Natural vibrations of three-layer circular cylindrical shells in an elastic medium / E.L. Kuznetsova, D.V. Leonenko, E.I. Starovoitov // Mechanics of Solids. -2015. - Vol. 50, $N_{\rm D}$ 3. - P. 359–366.

15. Старовойтов, Э.И. Деформирование трехслойной круговой цилиндрической оболочки в температурном поле / Э.И. Старовойтов, Д.В. Леоненко, Д.В. Тарлаковский // Проблемы машиностроения и автоматизации. – 2016. – № 1. – С. 91–97.

16. Leonenko, D.V. Thermoplastic strain of circular sandwich plates on an elastic base / D.V. Leonenko, E.I. Starovoitov // Mechanics of Solids. – 2009. – Vol. 44, N_{0} 5. – P. 744–755.

17. Старовойтов, Э.И. Изгиб прямоугольной трехслойной пластины на упругом основании / Э.И. Старовойтов, Е.П. Доровская // Проблемы машиностроения и автоматизации. – 2006. – № 3. – С. 45–50.

18. Старовойтов, Э.И. Термоупругий изгиб кольцевой трехслойной пластины на упругом основании / Э.И. Старовойтов, Д.В. Леоненко, М. Сулейман // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2006. – № 4. – С. 55–62.

19. Старовойтов, Э.И. Деформирование упругого трехслойного стержня локальными нагрузками / Э.И. Старовойтов, А.В. Яровая, Д.В. Леоненко // Проблемы машиностроения и автоматизации. – 2001. – № 4. – С. 37–40.

20. *Яровая*, *А.В.* Резонансные воздействия на круговые трехслойные пластины / А.В. Яровая // Проблемы машиностроения и автоматизации. – 2003. – № 4. – С. 62–66.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект T16P-010).

Поступила в редакцию 18.05.17.