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We derive an equation for perturbations of differential systems preserving the shift operator along
solutions of these systems on a symmetric time interval [−ω, ω]. In particular, such perturbations
preserve mappings for the period [−ω, ω] of a periodic differential system. This simplifies the
qualitative analysis of solution sets of differential systems.

Along with the original differential system

dx

dt
= X(t, x), t ∈ R, x ∈ D ⊂ Rn, (1)

we consider the set of perturbed systems

dx

dt
= X(t, x) + α(t)∆(t, x), t ∈ R, x ∈ D ⊂ Rn, (2)

where α(t) is a continuous scalar odd function and ∆(t, x) is an arbitrary continuously differentiable
vector function. Let us study the equivalence of the differential systems (1) and (2) in the sense
of the coincidence of reflection functions [1, p. 11]. If the reflection functions of two systems
coincide, then their shift operators [2, pp. 11–12] also coincide on a symmetric interval of the form
[−τ, τ ] [1, p. 12]; and, therefore, the mappings for the period [−ω, ω] coincide for periodic systems.

By [1, p. 11], a reflection function of system (1) satisfies the relation

∂F

∂t
+
∂F

∂x
X(t, x) +X(−t, F ) ≡ 0. (3)

If
V (x) = (V1(x), V2(x), . . . , Vm(x))T

is a vector function and x = (x1, x2, . . . , xn)T is a column vector, then, as usual, we set

∂V

∂x
=
(
∂Vi
∂xj

)
, i = 1, . . . ,m, j = 1, . . . , n.

Lemma 1. The identity

∂

∂x

(
∂S

∂x
X

)
Y − ∂

∂x

(
∂S

∂x
Y

)
X ≡ ∂S

∂x

(
∂X

∂x
Y − ∂Y

∂x
X

)
(4)

is valid for three arbitrary functions

S(t, x) = (S1(t, x), S2(t, x), . . . , Sn(t, x))T
, X(t, x) = (X1(t, x),X2(t, x), . . . ,Xn(t, x))T

,

Y (t, x) = (Y1(t, x), Y2(t, x), . . . , Yn(t, x))T
,

where S is twice continuously differentiable and X and Y are differentiable.
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Proof. We transform the left-hand side of (4):

∂

∂x

(
∂S

∂x
X

)
Y − ∂

∂x

(
∂S

∂x
Y

)
X ≡ ∂

∂x

(
n∑
i=1

∂S

∂xi
Xi

)
Y − ∂

∂x

(
n∑
i=1

∂S

∂xi
Yi

)
X

≡
n∑
j=1

∂

∂xj

(
n∑
i=1

∂S

∂xi
Xi

)
Yj −

n∑
j=1

∂

∂xj

(
n∑
i=1

∂S

∂xi
Yi

)
Xj

≡
n∑
j=1

n∑
i=1

∂2S

∂xi∂xj
(XiYj − YiXj) +

n∑
j=1

n∑
i=1

∂S

∂xi

∂Xi

∂xj
Yj(t, x)−

n∑
j=1

n∑
i=1

∂S

∂xi

∂Yi
∂xj

Xj(t, x)

≡ ∂S

∂x

∂X

∂x
Y − ∂S

∂x

∂Y

∂x
X ≡ ∂S

∂x

(
∂X

∂x
Y − ∂Y

∂x
X

)
.

The proof of the lemma is complete.

Lemma 2. Let F (t, x) be a reflection function of system (1) with a continuously differentiable
right-hand side. Then, for each continuously differentiable vector function ∆(t, x), the function

U(t, x) :=
∂F

∂x
(t, x)∆(t, x)−∆(−t, F (t, x)) (5)

satisfies the identity

∂U

∂t
+
∂U

∂x
X +

∂X

∂x
(−t, F )U

≡ ∂F

∂t

(
∂∆
∂t

+
∂∆
∂x

X − ∂X

∂x
∆
)

+
∂∆
∂t

(−t, F )

+
∂∆
∂x

(−t, F )X(−t, F ) − ∂X

∂x
(−t, F )∆(−t, F ).

(6)

Proof. By taking account of relation (3) and by performing simple computations, we obtain
the identities

∂U

∂t
+
∂U

∂x
X(t, x) ≡ ∂2F

∂t ∂x
∆ +

∂F

∂x

∂∆
∂t

+
∂∆
∂t

(−t, F )− ∂∆
∂x

(−t, F )
∂F

∂t

+
∂

∂x

(
∂F

∂x
∆(t, x)

)
X − ∂∆

∂x
(−t, F (t, x))

∂F

∂x
(t, x)X(t, x)

≡ ∂

∂x

(
∂F

∂x
∆
)
X − ∂

∂x

(
∂F

∂x
X

)
∆− ∂X

∂x
(−t, F )

∂F

∂x
∆ +

∂F

∂x

∂∆
∂t

+
∂∆
∂t

(−t, F )− ∂∆
∂x

(−t, F )
∂F

∂t
− ∂

∂x
(∆(−t, F ))X.

We apply identity (4) to the first term in the last part of this identity. Then, after simple formal
transformations, we obtain

∂U

∂t
+
∂U

∂x
X ≡ ∂F

∂x

(
∂∆
∂t

+
∂∆
∂x

X − ∂X

∂x
∆
)

+
∂∆
∂t

(−t, F ) +
∂∆
∂x

(−t, F )X(−t, F )

− ∂X

∂x
(−t, F )∆(−t, F )− ∂X

∂x
(−t, F )U.

By adding the expression
∂X

∂x
(−t, F )U to the left- and right-hand sides of this relation, we obtain

identity (6) and complete the proof of the lemma.
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Theorem 1. Let a vector function ∆(t, x) be a solution of the partial differential equation

∂∆
∂t

(t, x) +
∂∆
∂x

(t, x)X(t, x) − ∂X

∂x
(t, x)∆(t, x) = 0. (7)

Then the perturbed differential system (2), where α(t) is an arbitrary continuous scalar odd function,
is equivalent to the differential system (1).

Proof. Let F (t, x) be a reflection function of system (1). Consequently, this function satisfies
the differential equation (3). We claim that it satisfies the identity

∂F

∂x
(t, x)∆(t, x) ≡ ∆(−t, F (t, x)) (8)

as well. To prove this, we introduce the function U(t, x) by formula (5). By Lemma 2, this function
satisfies identity (6). By virtue of (7), under the assumptions of the theorem, this identity can be
represented in the form

∂U

∂t
(t, x) +

∂U

∂t
(t, x)X +

∂X

∂x
(−t, F )U ≡ 0.

Moreover, since the identity F (0, x) = x [1, p. 11] is valid for any reflection function F , we have

U(0, x) ≡ ∂F

∂x
(0, x)∆(0, x) −∆(0, F (0, x)) ≡ 0.

Therefore, U is a solution of the Cauchy problem

∂U

∂t
(t, x) +

∂U

∂t
(t, x)X(t, x) +

∂X

∂x
(−t, F )U = 0, U(0, x) = 0.

There exists a unique solution of this problem [3, p. 66]. Consequently, we have the identity

U(t, x)
t,x≡ 0, which implies identity (8).

Now we show that a reflection function F (t, x) of system (1) is also a reflection function of
system (2). To this end, we should verify the basic relation (3), which, in our case, should be
rewritten in the form

∂F

∂t
+
∂F

∂x
(X + α(t)∆) +X(−t, F ) + α(−t)∆(−t, F ) ≡ 0. (9)

Indeed, by successively transforming the left-hand side of the last relation and by taking account
of the fact that α(t) is odd, we obtain the chain of identities

∂F

∂t
+
∂F

∂x
(X + α(t)∆) +X(−t, F ) + α(−t)∆(−t, F )

≡ ∂F

∂t
+
∂F

∂x
X +X(−t, F ) + α(t)

∂F

∂x
∆− α(t)∆(−t, F )

≡
[
∂F

∂t
+
∂F

∂x
X +X(−t, F )

]
+ α(t)

[
∂F

∂x
∆−∆(−t, F )

]
.

Both the terms in brackets identically vanish: the first is zero since identity (3) is valid for
a reflection function of system (1), and the other vanishes since identity (8) is valid under the
assumptions of the theorem. Consequently, identity (9) holds, and F (t, x) is a reflection function
of system (2). The proof of the theorem is complete.

Corollary. Let functions ∆k(t, x) be solutions of the partial differential equation (6). Then all
differential systems of the form

dx

dt
= X(t, x) +

∞∑
k=1

αk(t)∆k(t, x), (10)
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where the αk(t) are odd scalar continuous functions and the series occurring on the right-hand side
converges to a continuously differentiable function, are equivalent to each other in the sense of
coincidence of reflection functions, and all of them are equivalent to system (1).

Proof. The assertion is obvious.
Remark. It was shown in [1, p. 24] that if there exists a stationary system equivalent to

system (1), then the right-hand side of the former can be found by the formula Y (x) = X(0, x).
This, together with the corollary, implies the importance of conditions under which the vector
function ∆(t, x) := X(t, x)−X(0, x) can be represented in the form

∆(t, x) := ∆(0)(t, x) =
n∑
k=1

αk(t)∆k(t, x), (11)

where the ∆k are solutions of Eq. (7). Forthcoming considerations are aimed at solving this problem.
By solving it, one can reduce the analysis of properties of solutions of nonautonomous systems to
the investigation of properties of solutions of autonomous systems of the form dx/dt = X(0, x).

Lemma 3. Let ∆(t, x) be the function given by (11), where the αk(t) are s times differentiable
functions and the ∆k are differentiable functions satisfying Eq. (7). Let ∆(i)(t, x) be the functions
given by the formulas

∆(i+1)(t, x) :=
∂∆(i)(t, x)

∂t
+
∂∆(i)(t, x)

∂x
X(t, x) − ∂X(t, x)

∂x
∆(i)(t, x) (12)

for each i = 1, . . . , s− 1. Then

∆(i)(t, x) =
m∑
k=1

diαk(t)
dti

∆k(t, x), i = 0, . . . , s. (13)

Proof. We successively find the values of the expressions (12) for each i = 1, . . . , s :

∆(0) =
m∑
k=1

αk∆k,

∆(1) =
m∑
k=1

(
αk

[
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

]
+
dαk
dt

∆k

)
=

m∑
k=1

dαk
dt

∆k,

∆(2) =
m∑
k=1

(
dαk
dt

[
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

]
+
d2αk
dt2

∆k

)
=

m∑
k=1

d2αk
dt2

∆k,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆(s) =
m∑
k=1

(
ds−1αk
dts−1

[
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

]
+
dsαk
dts

∆k

)
=

m∑
k=1

dsαk
dts

∆k,

which implies relation (13) and completes the proof of the lemma.

Theorem 2. Let the following conditions be satisfied :
(1) the functions αk(t) are odd, scalar, linearly independent on R, and m times differentiable ;
(2) each of the m times differentiable vector functions ∆k(t, x) is a solution of Eq. (7).
Then there exist scalar continuous functions as(t), s = 0, . . . ,m, such that

a0(t)∆ + a1(t)∆(1) + · · · + am(t)∆(m) t,x≡ 0, (14)
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where the ∆(k)(t, x) are the functions given by (12). Moreover, the functions ak(t) can be found by
the formulas

a0 = (−1)(m)

∣∣∣∣∣∣∣∣∣∣
dα1/dt d2α1/dt

2 . . . dmα1/dt
m

dα2/dt d2α2/dt
2 . . . dmα2/dt

m

· · · · · · · · · · · ·
dαm/dt d2αm/dt

2 . . . dmαm/dt
m

∣∣∣∣∣∣∣∣∣∣
,

a1 = (−1)(m−1)

∣∣∣∣∣∣∣∣∣∣
α1 d2α1/dt

2 . . . dmα1/dt
m

α2 d2α2/dt
2 . . . dmα2/dt

m

· · · · · · · · · · · ·
αm

2αm/dt
2 . . . dmαm/dt

m

∣∣∣∣∣∣∣∣∣∣
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am =

∣∣∣∣∣∣∣∣∣∣
α1 dα1/dt . . . dm−1α1/dt

m−1

α2 dα2/dt . . . dm−1α2/dt
m−1

· · · · · · · · · · · ·
αm dαm/dt . . . dm−1αm/dt

m−1

∣∣∣∣∣∣∣∣∣∣
.

(15)

Proof. Formulas (15) define solutions of the system of algebraic equations

m∑
s=0

as
dsαk
dts

= 0, k = 1, . . . ,m, (16)

for the variables a1, a2, . . . , am with given (t, x).
We successively transform the left-hand side of (14). By Lemma 3, we have

m∑
s=0

as∆(s) ≡
m∑
s=0

as

m∑
k=1

dsαk
dts

∆k ≡
m∑
k=1

m∑
s=0

(
as
dsαk
dts

)
∆k.

By using (16), we find that the resulting expression identically vanishes; therefore, identity (14)
is valid. The proof of the theorem is complete.

Theorem 3. Suppose that for some m times differentiable vector function ∆(t, x), there exist
scalar functions as(t), s = 0, . . . ,m, for which identity (14) is valid, where the ∆k are given by (12).
If the linear differential equation

a0(t)α(t) + a1(t)
dα(t)
dt

+ · · · + am(t)
dmα(t)
dtm

= 0 (17)

has m odd solutions α1(t), α2(t), . . . , αm(t) for which the Wronskian vanishes only at isolated points,
then the system

dx

dt
= X(t, x) + ∆(t, x), t ∈ R, x ∈ D ⊂ Rn,

is equivalent to system (1) [in which, unlike (2), the function ∆ is not multiplied by α(t)].

Proof. We write out a system of linear algebraic equations for the unknowns ∆1,∆2, . . . ,∆m

with given (t, x) :

diα1

dti
∆1 +

diα2

dti
∆2 + · · · + diαm

dti
∆m = ∆(i), i = 0, . . . ,m− 1. (18)
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From this system, we find ∆1,∆2, . . . ,∆m, which, by the assumptions of the theorem, can
always be performed everywhere possibly except for isolated points t = tk. Therefore, from the
first equation in system (18), one can express the function ∆(0) in the form

∆(0) = α1∆1 + α2∆2 + · · ·+ αm∆m.

Let us show that
dmα1

dtm
∆1 +

dmα2

dtm
∆2 + · · ·+ dmαm

dtm
∆m = ∆(m).

To this end, from identity (14), we express the function

∆(m) ≡ − 1
am

(
a0∆(0) + a1∆(1) + · · · + am−1∆(m−1)

)
.

We find the functions ∆(i), i = 0, . . . ,m− 1, from Eqs. (18) and substitute them into the left-hand
side of the resulting identity:

∆(m) = − 1
am

[
a1 (α1∆1 + α2∆2 + · · ·+ αm∆m)

+ a0

(
dα1

dt
∆1 +

dα2

dt
∆2 + · · · + dαm

dt
∆m

)
+ · · ·

+ am

(
dm−1α1

dtm−1
∆1 +

dm−1α2

dtm−1
∆2 + · · ·+ dm−1αm

dtm−1
∆m

)]
,

∆(m) = − 1
am

(
a0α1 + a1

dα1

dt
+ · · · + am−1

dm−1α1

dtm−1

)
∆1

− 1
am

(
a0α2 + a1

dα2

dt
+ · · · + am−1

dm−1α2

dtm−1

)
∆2 − · · ·

− 1
am

(
a0αm + a1

dαm
dt

+ · · ·+ am−1

dm−1αm
dtm−1

)
∆m.

(19)

The functions α1, α2, . . . , αm are solutions of Eq. (17). Consequently,

a0αj + a1

dαj
dt

+ · · ·+ am−1

dm−1αj
dtm−1

= −am
dmαj
dtm

, j = 1, . . . ,m.

Therefore, relation (19) can be rewritten as follows:

∆(m) = − 1
am

(
−am

dmα1

dtm

)
∆1 −

1
am

(
−am

dmα2

dtm

)
∆2 − · · · −

1
am

(
−am

dmαm
dtm

)
∆m

=
dmα1

dtm
∆1 +

dmα2

dtm
∆2 + · · · + dmαm

dtm
∆m.

We have thereby obtained the relations

dsα1

dts
∆1 +

dsα2

dts
∆2 + · · · + dsαm

dts
∆m = ∆(m), s = 0, . . . ,m.

Let us now express ∆(1) via αk with regard to these relations:

∆(1) =
∂∆(0)

∂t
+
∂∆(0)

∂x
X − ∂X

∂x
∆(0) = ∆(1) +

m∑
k=1

αk

(
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

)
.
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Hence we obtain
m∑
k=1

αk

(
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

)
= 0.

In a similar way, by computing ∆(2), we obtain the relation

m∑
k=1

dαk
dt

(
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

)
= 0.

By continuing this procedure, we obtain the equations

m∑
k=1

dpαk
dtp

(
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k

)
= 0, p = 0, . . . ,m− 1,

which can be rewritten in the form

dpα1

dtp
L∆1 +

dpα2

dtp
L∆2 + · · · + dpαm

dtp
L∆m = 0, p = 0, . . . ,m− 1,

where L∆k = ∂∆k/∂t + (∂∆k/∂x)X − (∂X/∂x)∆k.
These relations imply that the functions L∆1, L∆2, . . . , L∆m with given (t, x) are solutions of

the system of linear algebraic equations

dpα1

dtp
y1 +

dpα2

dtp
y2 + · · ·+ dpαm

dtp
ym = 0, p = 0, . . . ,m− 1.

The zero solution is the unique solution of this system for t 6= tk. Therefore, if t 6= tk, then we have

L∆k =
∂∆k

∂t
+
∂∆k

∂x
X − ∂X

∂x
∆k = 0 ∀k = 1, . . . ,m.

We have represented the perturbation ∆(t, x) in the form ∆ =
∑
αk∆k(t, x), where the ∆k are

solutions of Eq. (7), i.e., we have reduced the perturbed system to the form (10). An application
of Theorem 1 (more precisely, of its corollary) completes the proof of the theorem.

Lemma 4. Let a 2ω-periodic differential system (1) with a solution x(t) and a reflection func-
tion F (t, x) be equivalent (in the sense of the coincidence of reflection functions) to some differential
system with a solution y(t) and a reflection function Φ(t, x); moreover, suppose that

x(−ω) = y(−ω) (20)

and x(t) and y(t) can be continued to [−ω,∞). Then

x(2kω − ω) = y(2kω − ω) (21)

for each positive integer k.

Proof. We prove the desired assertion by induction. First, we show that the assertion of the
lemma is valid for k = 1. Indeed, by the basic property of a reflection function, we have

x(ω) = F (−ω, x(−ω)), y(ω) = Φ(−ω, y(−ω)). (22)

Since the differential systems mentioned in the statement of the lemma are equivalent, we also
have F (−ω, x(−ω)) = Φ(−ω, x(−ω)). It follows from (20) that the right-hand side of this relation
can be represented in the form Φ(−ω, x(−ω)) = Φ(−ω, y(−ω)); therefore, the right-hand side of
equations (22) coincide. Therefore, the assertion of the lemma is valid for k = 1.
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Now we suppose that the assertion of the lemma holds for some k. This implies that relation (21)
is valid for that k. Let us show that the assertion of the lemma is valid for k + 1 as well, i.e.,

x(2kω + ω) = y(2kω + ω). (23)

We introduce the function z(t) = x(2kω + t), which is a solution of the differential system (1),
since this system is 2ω-periodic. Likewise, the function u(t) = y(2kω+ t) is a solution of the system
with the solution y(t). Both functions can be continued to [−ω, ω], which follows from the fact that
the solutions x(t) and y(t) can be continued to [−ω,∞). By our assumption, we have the chain of
relations z(−ω) = x(2kω − ω) = y(2kω − ω) = u(−ω).

Consequently, z(ω) = u(ω), which, together with the definition of the functions z and u, im-
plies (23) and completes the proof of the lemma.

Theorem 4. Let a 2ω-periodic differential system (1) with a solution x(t) be equivalent (in the
sense of the coincidence of reflection functions) to the stationary system

dy/dt = X(0, y) (24)

with a solution y(t), and let the following conditions be satisfied :
(A) relation (20) is valid;
(B) the solution y(t) is bounded on [−ω,∞);
(C) there exists a number a such that ‖y(2kω − 3ω)‖ ≤ a for each positive integer k;
(D) all solutions z(t) of system (1) satisfying the inequality ‖z(−ω)‖ ≤ a can be continued

to [−ω, ω].
Then the solution x(t) can be continued to [−ω,∞) and is bounded there.

Proof. First, let us show that the solution x(t) can be continued to [−ω,∞). This solution
can be continued to [−ω, ω], which follows from condition (D), relation (20), and condition (C)
(for k = 1) : ‖x(−ω)‖ = ‖y(−ω)‖ ≤ a. Let us show that the solution x(t) can be continued
to [ω, 3ω] as well. Note that the function z(t) = x(t + 2ω) is a solution of system (1) and satisfies
the relations ‖z(−ω)‖ = ‖x(ω)‖ = ‖y(ω)‖ ≤ a, whose validity follows from the basic property of
a reflection function. Then, by the assumption of the theorem, z(t) can be continued to [−ω, ω],
i.e., x(t) can actually be continued to [ω, 3ω]. By induction over k, one can show that x(t) can be
continued to [−ω, 2kω + ω]. Since k is arbitrary, it follows that x(t) can be continued to [−ω,∞).

Now we show that x(t) is bounded on [−ω,∞). Since all solutions z(t) of system (1) such
that ‖z(−ω)‖ ≤ a can be continued to [−ω, ω], it follows that there exists a number M such that
‖z(t)‖ ≤ M for each t ∈ [−ω, ω]. Lemma 4 implies that x(2kω − 3ω) = y(2kω − 3ω) for each
positive integer k. Therefore, ‖z(−ω)‖ = ‖x(2kω− ω)‖ = ‖y(2kω −ω)‖ ≤ a for z(t) := x(t+ 2ωk);
consequently, ‖x(t + 2ωk)‖ = z(t) ≤ M for t ∈ [−ω, ω]. Therefore, for each positive integer k,
we have an inequality that implies that the solution x(t) is bounded on [−ω,∞). The proof of the
theorem is complete.

Theorem 5. Let conditions (A), (C), and (D) in Theorem 4 be satisfied, and let a solution
y(t) of system (24) be 2ω-periodic and asymptotically stable (respectively, asymptotically unstable).
Then the solution x(t) of system (1) is also 2ω-periodic and asymptotically stable (respectively,
asymptotically unstable).

Proof. Let the solution y(t) be 2ω-periodic. Then

x(ω) = F (−ω, x(−ω)) = Φ(−ω, x(−ω)) = Φ(−ω, y(−ω))
= y(ω) = y(−ω) = x(−ω),

i.e., x(ω) = x(−ω). This implies that x(−ω) is a fixed point of the mapping for the period [−ω, ω],
whence we obtain the 2ω-periodicity of the solution x(t).
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The subsequent proof follows from the coincidence of the mappings F (−ω, x) and Φ(−ω, x) for
the period [−ω, ω] for the two systems. The proof of the theorem is complete.

Example. Consider the system

dx/dt = a(t)x+ b(t)y − a(t)x
(
x2 + y2

)
,

dy/dt = −b(t)x+ a(t)y − a(t)y
(
x2 + y2

)
,

where a(t) and b(t) are continuous 2π-periodic functions such that α1(t) := a(t) − 1 and α2(t) :=
b(t)− 1 are odd functions.

This system is equivalent to the stationary system

dx/dt = x+ y − x
(
x2 + y2

)
, dy/dt = −x+ y − y

(
x2 + y2

)
.

Here
∆ = α1∆1 + α2∆2, ∆1 = (x− x(x2 + y2), y − y(x2 + y2))T

,

∆2 = (y,−x)T, X = (x+ y − x(x2 + y2),−x+ y − y(x2 + y2))T
.

Since the stationary system has an asymptotically stable limit cycle x2 + y2 = 1 corresponding
to 2π-periodic solutions, it follows that both solutions x(t) and y(t) of the system issuing from the
circle x2(−π) + y2(−π) = 1 for t = −π are 2π-periodic and each of the remaining solutions except
for the zero solution tends to one of the above-mentioned periodic solutions as t→∞.
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