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Abstract

This paper shows that the Schrödinger equation in the momentum representation for
a linear confining potential for states with zero orbital angular momentum can be solved
with high accuracy (far superior to other methods) using the special quadrature formulas for
hypersingular integral.

1 Methods of solution of integral equations

After partial decomposition Schrödinger equation in the momentum space for centrally symmet-
ric potentials, takes the form:

k2

2µ
ϕℓ(k) +

∞∫
0

Vℓ(k, k
′)ϕℓ(k

′)k′2dk′ = Eϕℓ(k) , (1)

where µ = m1m2/(m1 + m2) is the reduced mass; m1,m2 are mass of the constituents of a
bound system; k is the momentum of the relative motion (|k| = k); ϕℓ(k) is the radial part
of the Fourier transform of the wave function in the coordinate representation; Vℓ(k, k

′) is the
operator ℓ -th component of the partial decomposition of the interaction potential; E is binding
energy.

However, the description of bound states in the momentum representation is complicated by
necessity of solving the integral equation (1), containing singular terms. So for a linear confining
potential V (r) = σr we have that

Vℓ(k, k
′) =

σ

π(kk′)2
Q′

ℓ(
k2 + k′

2

2kk′
) . (2)

where function Qℓ(y) is Legendre polynomial of 2nd kind. Since the function Q′
ℓ hypersingular

if k = k′, then the potential Vℓ(k, k
′) is also hypersingular. Standard methods of numerical

solution of the equation (1) with the potential (2) gives relatively low accuracy of [1, 2]. The
numerical solution of the integral equation (1) can be reduced to a problem on the eigenvalues,
which arises when using quadrature formulas for the integrals in the equation.

As a result, the integral equation of the form (1) can be reduced to the problem

N∑
j=1

H (ki, kj)ϕ(kj) =
N∑
j=1

Hijϕ(kj) = Eϕ(ki) , (3)

where to obtain the eigenvalues and vectors need to know the elements of Hij . And if i ̸= j, the
problem of calculating the elements Hij for a linear confining potential is not complex, then the
i = j (k = k′) directly to do this is not possible, due to the presence of singularities.
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2 Quadrature formulas for singular integrals

Receive quadrature formula for the integral

I (z) =

1∫
−1

F (t)w(t)g (t, z) dt (4)

where g (t, z) is function is singular at t = z. The functions F (t) and w(t) is part of the kernel
that does not contain the singularities for all −1 < t, z < 1.

For this the function F (t) in (4) with the help of interpolation polynomial

Gi (t) =
P

(α,β)
N (t)

(t− ξi,N )P
′(α,β)
N (ξi,N )

(5)

replaced the expansion

F (t) ≈
N∑

i,=1

Gi (t) F (ξi,N ) , (6)

where ξi,N are the roots of the Jacobi polynomial

P
(α,β)
N (ξi,N ) = 0 (i = 1, 2, . . . , N) . (7)

Substituting the expansion (6) in a ratio of I (z) we find that the quadrature formula for the
integral takes the form

I (z) ≈
N∑
i=1

ωi (z)F (ξi,N ) , (8)

where

ωi (z) =
1

P
′(α,β)
N (ξi,N )

1∫
−1

g (t, z) w (t)
P

(α,β)
N (t)

t− ξi,N
dt . (9)

Thus the calculation of (9) will help you find the weight coefficients for the quadrature
formula (4), the singular values.

3 The analytical form of weighting factors

Consider the possibility of analytical calculation of the weighting factors for different types of
singularities that is, depending on the function g (t, z).

3.1 The singular Cauchy integral

The most famous option (4) in the literature is the Cauchy integral

g (t, z) =
1

t− z
, −1 < z < 1 .

For this case, there are a large number of works (see for examples [3, 4, 5]), which offered
various options for quadrature formulas. In this case, you can get a formula for the weighting
factors (9) direct calculation of the integral

ωC
i (z) =

1∫
−1

w (t)

P
′(α,β)
N (ξi,N )

P
(α,β)
N (t)

(t− ξi,N ) (t− z)
dt . (10)
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With the help of identity

1

(t− ξi,N ) (t− z)
=

1

z − ξi,N

[
1

t− z
− 1

t− ξi,N

]
(11)

coefficients (10)reducible to the form

ωC
i (z) =


1

P
′(α,β)
N (ξi,N )

Π
(α,β)
N (z)−Π

(α,β)
N (ξi,N )

(z − ξi,N )
, if z ̸= ξi,N ,

Π
′(α,β)
N (ξi,N )

P
′(α,β)
N (ξi,N )

, if z = ξi,N

, (12)

where

Π(α,β)
n (z) =

1∫
−1

w(t)
P

(α,β)
n (t)

(t− z)
dt . (13)

To calculate the coefficients of ωC
i (z) with a high degree of accuracy to be calculated ana-

lytically integral (13) for a variety of functions w(t).
The most famous variant is the version of the function w(t) is weight function of the Jacobi

polynomial P
(α,β)
n (t) that is

w(t) = w(α,β) (t) ≡ (1− t)α (1 + t)β .

Then the integral (13) have the form

Π(α,β)
n (z) = Q(α,β)

n (z) ,

where

Q(α,β)
n (z) =

1∫
−1

(1− t)α (1 + t)β
P

(α,β)
n (t)

(t− z)
dt . (14)

In the most general case for arbitrary α and β, the function Q(α,β)
n (z) connected with the

Jacobi polynomials of the second kind Q
(α,β)
n (z) ratio

Q(α,β)
n (z) = (−2) (z − 1)α (z + 1)β Q(α,β)

n (z) , (15)

where

Q(α,β)
n (z) = 2α+β+n Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(2n+ α+ β + 2)
×

×(z + 1)−β(z − 1)−α−n−1
2F1

(
n+ 1, n+ α+ 1; 2n+ α+ β + 2;

2

1− z

)
.

3.2 Hypersingular variant

Consider hypersingular variant the integral (9), when the function is g(t, z) = 1/(t − z)2. The
concept of the final calculation of the integrals of this type was first introduced by Hadamard
(J. Hadamard, Lectures he Cauchy’s Problem in Linear Partial Differential Equations, Yale
University Press (1923).) and developed in the papers [6, 7, 8].
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The final part hypersingular integral can be written as

1∫
−1

=
f(t)

(t− z)2
dt =

d

dz

 1∫
−1

− f(t)

t− z
dt

 , −1 < z < 1 . (16)

Therefore, the weighting coefficients of the quadrature formula

1∫
−1

f(t)

(t− z)2
dt =

N∑
i=1

ωH
i (z) f(ξi,N ) (17)

are related with coefficients ( ref fz3) ratio

ωH
i (z) =

d

dz

[
ωC
i (z)

]
. (18)

Then the weights for the integral (4) function g(t, z) = 1/(t − z)2 can be calculated by
formulas

ωH
i (z) =


1

P
′(α,β)
N (ξi,N )

{
Π

′(α,β)
N (z)

(z − ξi,N )
−

Π
(α,β)
N (z)−Π

(α,β)
N (ξi,N )

(z − ξi,N )2

}
, if z ̸= ξi,N ,

Π
′′(α,β)
N (ξi,N )

2P
′(α,β)
N (ξi,N )

, if z = ξi,N .

(19)

For the Cauchy integral (g(t, z) = 1/(t− z)) with α = −β = −1/2, we have

Π(−1/2,1/2)
n (z) =

1∫
−1

√
1 + t

1− t

Vn(t)

(t− z)
dt = πWn(z) , (20)

where Vn(z) and Wn(z) are Chebyshev polynomials 3 and 4 of kind, respectively (see [9]).
Then the quadrature formula for the Cauchy integral is of the form:

1∫
−1

√
1 + t

1− t

f(t)

(t− z)
dt ≈

N∑
i=1

ωC
i (z) f (ξi,N ) , (21)

where

ωC
i (z) =


π

V ′
N (ξi,N )

WN (z)−WN (ξi,N )

(z − ξi,N )
, if z ̸= ξi,N ,

π
W ′

N (ξi,N )

V ′
N (ξi,N )

, if z = ξi,N

. (22)

Quadrature formula for hypersingular integral has the form:

1∫
−1

√
1 + t

1− t

f(t)

(t− z)2
dt ≈

N∑
i=1

ωH
i (z) f (ξi,N ) , (23)

where

ωH
i (z) =


π

V ′
N (ξi,N )

{
W ′

N (z)

(z − ξi,N )
−

WN (z)−WN (ξi,N )

(z − ξi,N )2

}
, if z ̸= ξi,N ,

π

2

W ′′
N (ξi,N )

V ′
N (ξi,N )

, if z = ξi,N .

(24)

Formula (24) to calculate weight coefficients allows to them with high accuracy and hence can
be used to solve the Schrödinger equation with a linear confining potential in momentum space.
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4 The calculation of the energy spectrum for a linear confining
potential with ℓ = 0

The Schrödinger equation with a linear confining potential

k2

2µ
ϕℓ(k) +

σ

πk2

∞∫
0

Q′
ℓ(y)ϕℓ(k

′)dk′ = Eϕℓ(k) , y =
k2 + k′

2

2kk′
, (25)

reducible to the form

k̃2ϕℓ(k̃) +
1

π k̃2

∞∫
0

Q′
ℓ(y) k̃

′ϕℓ(k̃
′)dk̃′ = εϕℓ(k̃) (26)

with the help of replacements

k = βk̃ , E =
β2

2µ
ε , β = (2µσ)1/3 . (27)

Using the mapping

k̃ = β0

√
1 + z

1− z
, k̃′ = β0

√
1 + t

1− t
, (28)

we find that the equation (26) is transformed into

1

πβ0

(
1− z

1 + z

) 1∫
−1

Q′
ℓ(y(t, z))

ϕℓ(t)dt

(1− t)
√
1− t2

=

(
ε− β2

0

1 + z

1− z

)
ϕℓ(z) . (29)

For the case of ℓ = 0 the equation (29) after simplifications can be written as follows:

− 1

πβ0
(1− z)2

1∫
−1

ϕℓ=0(t)

√
1 + t

1− t

dt

(t− z)2
=

(
ε− β2

0

1 + z

1− z

)
ϕℓ=0(z) . (30)

Thus, for a linear confining potential we have hypersingular kernel ∼ 1/(t−z)2 and therefore
for the numerical solution is necessary to use weighting factors(24).

Function w(t) naturally chosen in the form

w(t) =

√
1 + t

1− t
.

As a result, the matrix for eigenvalue problems It takes the form:

Hij =

[
β2
0 δij

(
1 + ξj,N
1− ξj,N

)
−

ωH
j (ξi,N )

πβ0
(1− ξi,N )2

]
, (31)

where z → ξi,N and t → ξj,N , ξi,N are zeros of the polynomial VN (t) and matrix ωH
j (ξi,N ) is

calculated using the (24).
For a linear confining potential in the ℓ = 0 is known that

ε = −zn , n = 1, 2, 3 . . . (32)

where zn are the zeros of the Airy function Ai(z). Therefore, it is possible to compare the results
of numerical calculations of the matrix (31) and accurate values (see, table 1)

Thus, the choice of weighting coefficients in which the singularity treated analytically and

functions w(t) associated with interpolating polynomials P
(α,β)
N (t) allows us to solve the equation

(25) for ℓ = 0 in momentum space with high accuracy.
The accuracy of calculations many orders of magnitude higher than similar calculations in

momentum space [10, 11, 12, 13, 1]
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Table 1: Relative error of δ of the solution of equation (31) (β0 = 0,9999)

N n = 1 = 2 n = 3 n = 4 n = 5

50 3× 10−22 4× 10−20 3× 10−17 3× 10−15 8× 10−14

80 5× 10−33 2× 10−29 1× 10−26 3× 10−24 4× 10−22

100 2× 10−39 1× 10−35 1× 10−32 4× 10−31 5× 10−28

150 4× 10−54 8× 10−50 5× 10−47 1× 10−43 6× 10−42

5 Conclusion

I am grateful to the organizers for warm and kind hospitality throughout the Conference. The
work was supported by the Belarusian Republican Foundation for Basic Research.
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