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GENERALIZED MODEL OF A SKELETAL MUSCLE

S. V. Shil’ko,1* D. A. Chernous,1 and K. K. Bondarenko2

Keywords: muscle, contractile element, nonlinear viscoelasticity, phenomenological model, myometry

A new phenomenological model of a skeletal muscle consisting of a contractile and two nonlinear viscoelastic 
elements is proposed. The corresponding system of differential equations of the model is obtained, which allows 
one to derive time-dependent relations between the axial stress and the longitudinal strain in passive and 
activated states of the muscle. Methods for determining the viscoelastic and functional characteristics of the 
muscle as input parameters of the equations mentioned above are developed. These methods are based on the 
joint application of known experimental relations for a single muscle fiber and the results of muscle indentation 
in vivo on a “Miometer UT 98-01” device. 

Introduction

Skeletal muscles in many respects determine the process of vital activities of the human organism as a whole. In this 
connection, one of the primary goals of biomechanics, and especially biomechanics of sports activity, is the prediction of the 
dynamic and kinematic parameters of functioning of the muscles. This problem can be solved only if maximum complete 
information about the mechanical and actuator properties of muscular tissues is available. However, the use of data obtained 
on prepared muscles does not allow one to describe the functioning of a muscle in vivo with an acceptable accuracy. 

One of the most widespread experimental methods for studying the properties of skeletal muscles in vivo implies a 
dynamic indentation of the surface of human body in the region of the muscle to be examined. In the process of indentation, the 
penetration depth and speed of indenter, as well as the resistance force acting on it, are registered. In particular, a “Miometer 
UT 98-01” device [1], in an automatic regime, can determine the following mechanical parameters indirectly characterizing 
the viscoelastic properties of a muscle: (i) vibration frequency F (Hz) of indenter, (ii) the logarithmic damping decrement D 
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of vibration of indenter, and (iii) rigidity Q (N/m), equal to the ratio between the maximum reaction force of biotissue and the 
maximum depth of indentation. 

The above-mentioned parameters depend on the organs and biological tissues surrounding the muscle examined and 
interacting with it. Therefore, for a biomechanical analysis of skeletal muscles, with the use of the experimental data mentioned 
above, various assumptions and model representations have to be used. For example, in [2, 3], based on the conditional rigidity 
Q registered by a myometer, the Young’s modulus of a skeletal muscle is calculated. This way of determination of Young’s 
modulus implies the neglect of rigidity of the integumentary tissues surrounding the muscle. Moreover, the use of elastic modulus 
for characterizing a muscle is possible only within the framework of a simple phenomenological model. An adequate model of 
a real muscle has to be able to describe the anisotropy of its properties [4], the nonlinearity of its deformation, changes in its 
mechanical characteristics upon activation of a contractile function, and the effect of these factors on the activation process. 

In [5], an interpretation of the change in myometric data in the conditions of cyclic loading upon performing a cor-
responding physical exercise is suggested. This interpretation is based on the representation of the muscle as a composite 
with a variable componental structure, when the process of fatigue is characterized by an increased volume content of some 
conditional “rigid” phase of the muscular tissue. A method for estimating the volume fraction of this phase according to read-
ings of the “Miometer UT 98-01” device was developed. 

However, in previous studies, the possibilities of using the viscoelastic characteristics obtained by the method of 
dynamic indentation have not been analyzed within the framework of a phenomenological model of functioning of a muscle. 
There are a number of conditions complicating the direct use of these characteristics. 

1. The instantaneous Young’s modulus determined by the results of dynamic indentation is the characteristic of a lin-
early elastic material. However, experimental diagrams of elongation of a skeletal muscle in a passive state are significantly 
nonlinear [6, 7]. 

2. Indentation of a muscle is carried out in the direction transverse to the orientation of its muscular monofibers. Par-
ticular features of the internal structure of a skeletal muscle are responsible for the anisotropy of its mechanical characteristics, 
i.e., considerable distinctions between the elastic moduli in the longitudinal and transverse directions. 

3. The functional characteristics of a skeletal muscle are mainly determined from measurements of the speed of con-
traction of a muscle and the force generated [8], which affect not only the parameters of the actinomyosin interaction, but also 
the mechanical properties of the biomaterials forming the muscle. The determination and subsequent use of the viscoelastic 
characteristics are to be carried out with account of experimentally found laws of mutual influence of the deformational and 
functional properties of skeletal muscles. 

3.1. The longitudinal rigidity of a muscle upon realization of the contractile function considerably (by two and more 
orders of magnitude) exceeds its rigidity in the passive state.

3.2. The character of dependence of the stationary speed of isotonic contraction on the load is the same for the major-
ity of skeletal muscles of the human body [8], but the maximum speed of contraction and the maximum force are individual.

3.3. The viscoelastic properties of a muscle determined in its passive state do not significantly affect the process of 
force generation in isometric conditions, but determines the subsequent (after the completion of activation) relaxation of this 
force [6].

The purpose of the present investigation is perfection of the models of skeletal muscles for an adequate description of 
their mechanical properties and employment of the myometric data obtained by the method of dynamic contact indentation. 

1. Phenomenological Model of a Muscle

As the basic mechanical parameters of functioning of a muscle, we take the conditional axial stress s and the condi-
tional longitudinal strain e: 
	 σ ε= =P S L L, .∆ 0 	 (1)
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Here, P and S are the longitudinal force and the area of physiological cross section of the muscle, respectively, ΔL is 
the variation in muscle length, and L0 is the length of the muscle in a stress-free state. 

In [9], a phenomenological viscoelastic model of a skeletal muscle considered separately from the tendons connected 
to it is suggested. The model is shown in Fig. 1 and consists of two elastic (E and H), viscous (h), and contractile (a) elements. 
We have to agree that the model in view does not allow one to interpret some experimentally stated facts. For example, it is 
known that the rigidity of a “series” (relative to the contractile element) elastic element E greatly exceeds the rigidity of the 
muscle in a passive state [8]; a muscle in isometric conditions needs less time for generation of a maximum force than for the 
subsequent relaxation of this force [10]. 

In this connection, for describing the deformation of a skeletal muscle in a passive state and upon realization of its 
contractile function, it is reasonable to employ the “classical” [11] arrangement of elements in the model (Fig. 2). To widen the 
possibilities of the model, the “series” and “parallel” elastic elements are replaced by generalized nonlinearly viscoelastic ones. 

Within the framework of the present study, for  describing the functioning of the contractile element, we will use the 
“sliding-filament” hypothesis [8], according to which the axial stress σα  in a single muscular fiber is determined by the rela-
tion σα = − +f n m p Sl( )2 . Here, n, m, and p are the numbers of “pulling,” “braking,” and “superpulling” actinomyosin 
transverse bridges, respectively,  f is the force generated by one transverse bridge, and Sl is the cross-sectional area of an in-
dividual fiber. The quantities n, m, and p satisfy the following differential equations [12]: 

at ·u ≤ 0, 
	 s k s n m p k s= − − − −( ) −1 4α , 	

	   n k s n m k m n p k p= − = − + = −4 2 3
υ
δ

υ
δ

, , ; 	 (2a)

E

H

Fig. 1. Phenomenological model of muscle suggested in [9].

E

H

Fig. 2. Generalized viscoelastic model of muscle.
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at ·u > 0,
	 s k s n m p k s= − − − −( ) −1 4α , 	

	   n k s d n m k m p k p n= − = − = − +4 2 3δ
υ
δ

υ
δ

, , . 	 (2b)

Here, s is the number of bridges in a passive state; u is the speed of relative sliding of actin and myosin filaments; a 
is the general number of bridges on the half-length of sarcomere; d is the distance between the equilibrium locations of the 
pulling and braking bridges (d = 8 · 10–3  mm); k1, k2, k3, and k4 are the time constants of formation and break of the bridges. 
The quantity a depends on the current length of sarcomere [6] and, hence, on the strain e. This relation depends on the inner 
structure of sarcomere and is described by a piecewise linear function (Fig. 3). Upon transition from an individual monofiber 
to the muscle as a whole, it is convenient to normalize the number of bridges to the quantity amax. In this case, amax = a(0) is 
the maximum number of bridges corresponding to the stress-free state of the muscle. In what follows, without introduction of 
additional designations, the symbols s, n, m, and p will stand for the ratio between the number of corresponding actinomyosin 
bridges and the quantity amax. Then, the longitudinal stress in the contractile element can be calculated from the formula 

	 σ
α

σα = − + = − + = − +( )f
S

n m p
P
S
n m p n m p

l
a

max ( ) ( )2 2 20 , 	  (3)

where P0 is the force generated by the muscle in isometric conditions at a zero initial strain and sa is the axial stress corre-
sponding to this force. 

The quantity σα  is an analogue of the “absolute muscular force” [13] Fa (kgf/cm2) — σα = 9.81 · 104Fa, whose 
values for some muscles, borrowed from [14], are presented in Table 1. In addition, in the system of equations (2), the speed 
of relative sliding of filaments is replaced by the speed of longitudinal elongation of the contractile element

	   ε υ ε εα = = −
2
d E , 	 (4)

where d is the length of sarcomere (d = 2.2 mm);  e eand E  are the strain rates of the muscle and the “series” viscoelastic ele-
ment, respectively. 

For describing the deformation of the nonlinearly viscoelastic elements H and E in the generalized model of muscle 
(see Fig. 2), we use the physical equations suggested in [15, 16], based on which the relation between the axial stress and time 
in the uniaxial stress state of the element can be written as 

� �0.50 0.25 0 0.25 0.50 0.75 1.00

1.0

0.8

0.6

0.4

0.2

0

� �/ max

�0.167; 0.857

�
�0.375; 0

0; 1 0.125; 1

0.833; 0

Fig. 3. Relative number of actinomyosin bridges on the half-length of sarcomere vs the longitudinal 
strain of muscle.
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	 σ ε
γ
τ τ

( ) ( ( )) ( ) ( ) expt F
S

t T t T x t x dxy y
t

= = + − −
−




















∫1 1 1
0

.	 (5)

Here, s is the engineering axial stress (the ratio between the longitudinal force and the initial cross-sectional area); 
e is the longitudinal strain of the element; T y1  is the nonzero component of the Piola–Kirchhoff tensor in the uniaxial stress 
state, which is determined neglecting viscosity of the element; g and t are viscoelastic parameters (the parameter t corresponds 
to the relaxation time of the element). 

Let us supplement Eq. (5) with the function of longitudinal strain s T y( ) ( ) ( )ε ε ε= +1 1 . Then, 

	 σ ε
γ
τ

ε
τ

( ) ( ) ( ) expt s t s x t x dx
t

= ( ) − ( ) −
−



∫

0

. 	  (6)

For the linearly viscoelastic element, the function s(e) is determined as s E( )ε ε= , where E is Young’s modulus.
Differentiating equality (6) with respect to time, after subsequent mathematical transformations, we can write the 

equation for the viscoelastic element in the form 

	  σ
τ
σ ε ε

γ
τ

ε+ = ′ +
−1 1s s( ) ( ) , 	  (7)

where ′ =s ds
d

( )ε
ε

. 

Combining the differential equations obtained for elements of the generalized model into a system, we come to rela-
tions between the axial stress s and the longitudinal strain e of the muscle modeled: 

	 s k z s n m p k sE= −( ) − − − −( ) −1 4ε ε , 	

	       n k s d n m k m d n p k pE E= − − = − + − = −4 2 3δ δε ε ε ε, , , 	

	     σ
σ
τ

σ σ
τ

ε ε
γ

τ
ε+ − − +( ) − − +

= ′ +
−

H
a a

H
H

H

H
Hn m p n m p s s2 2 1

( ) ( ), 	

	 σ σ
τ

ε ε
γ

τ
εa a

E
E E E

E

E
E En m p n m p s s   − +( ) + − +

= ′ ( ) +
− ( )2 2 1

; 	 (8a)

at  e e£ E  and
	 s k z s n m p k sE= −( ) − − − −( ) −1 4ε ε , 	

	       n k s d n m k m p k p d nE E= − − = − = − + −4 2 3δ δε ε ε ε, , , 	

TABLE 1. Values of the Absolute Force of Skeletal Muscles [14]

Muscle Fa, kgf/cm2 sa ,  МPa

Gastrocnemius 5.9 0.58
Shoulder flexor 8.1 0.80
Neck extensor 9.0 0.88

Chewing muscle 10.0 0.98
Biceps muscle of arm 11.4 1.12

Brachial 12.1 1.19
Triceps muscle of arm 16.8 1.65
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	     σ
σ
τ

σ σ
τ

ε ε
γ

τ
ε+ − − +( ) − − +

= ′ +
−

H
a a

H
H

H

H
Hn m p n m p s s2 2 1

( ) ( ), 	

	 σ σ
τ

ε ε
γ

τ
εa a

E
E E E

E

E
E En m p n m p s s   − +( ) + − +

= ′ ( ) +
− ( )2 2 1

; 	 (8b)

at  ε ε> E . Here, z( ) ( )

max
ε

α ε
α

=  is the relative number of actinomyosin bridges on the half-length of sarcomere (see Fig. 3); 

sE E( ),e g E ,  and τ ε γ τE H H H Hs( ( ), , )  are a function of longitudinal strain, a dimensionless parameter of the relaxation 
kernel, and the relaxation time of the elements E and H, respectively. In the system of equations (8), for brevity, the con-

stant d d
δ δ
= =

2
137.5 is introduced. For a given time function e(t), this system allows one to determine six functions of 

time — s ( ),t  eE t( ),  s t( ),  n t( ),  m t( ),  and p t( ) . At a given function s ( )t , the functions e ( ),t  eE t( ),  s t( ),  n t( ),  m t( ),  
and p t( )  can be found. 

2. Determination of Viscoelastic Parameters of the Model

Element E. Experimental determination of parameters of the series (relative to the contractile one) viscoelastic element 
Е is a rather complicated task [17]. Therefore, without reducing the generality of the model developed, we can assume that 
g E = 0 and t E → ∞. Then, for characterizing the element Е in the model, it suffices to know the function sE E( )e . In [8, 17], 
the following relation between the longitudinal force P acting on the elastic “series” element and the relative elongation e of 
this element is given: 

	 P
P

fE
0

3 289 700 348 20 0 0115
63 6 0 319 0 0115

= ( ) = + +
− >

ε ε ε ε ε
ε ε
, , . ,
. . , .

£

..






	 (9)

Normalization of the longitudinal force to the value of P0 allows us to employ the function fE ( )e from (9), derived 
in [17] for the tailor’s muscle of frog, to model any skeletal muscle by using the relation 

	 s fE E a E Eε σ ε( ) = ( ) . 	  (10)

Element H. To determine the viscoelastic characteristics of the parallel element H, we use experimental data on the 
dynamic contact diagnostics of muscles, obtained on the “Miometer UT 98-01” device [1], and the identification technique 
described in [2, 5]. In [5], it is shown that the long-term elastic modulus El of a muscle in transverse loading is negligibly 
small. The long-term El and instantaneous E0 elastic moduli are connected by the relation 

	 E El = −( )0 1 γ .	 (11)

Assuming that g = 1, it is possible to obtain [2] rather simple relations connecting the relaxation time t and the instan-
taneous elastic modulus of a muscle to the myometric parameters registered by the Miometer UT 98-01:

	 τ
π

π= = +( )1
2 0 851

40

2
2 2

FD
E mF

R
D,

.
. 	 (12)

Here, R = 1.5 mm is the radius of the circular plane contact site of indenter and m = 20 g is its weight.
Relations (12) were used to analyze the results of myometric investigations performed at a scientific laboratory of physi-

cal training and sports of the Skorina Gomel State University on the above-mentioned “Miometer UT 98-01” device. Results 
of the measurements are presented in Table 2. An analysis of the data obtained makes it possible to conclude the following.
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1. The values of viscoelastic characteristics of each muscle are individual.
2. At the greatest possible activation of the contractile function of a muscle in isometric conditions (transition to an 

active state), the instantaneous elastic modulus E0 grows considerably, while the parameter t changes less noticeably. 
There are publications (see, for example, [6, 7, 15]) that contain experimental tension diagrams of isolated skeletal 

muscles and separate muscular fibers in a passive state. Figure 4 shows an experimental relation (borrowed from [6]) between 
the normalized longitudinal force P/P0 and the longitudinal strain e of an individual muscular monofiber, which can be 
approximated by the exponential function 

	 P
P

fH
0

0 05 2 4 1= = ( ) − ( ) . exp .ε ε .	 (13)

In approximation by the method of least squares, the average relative deviation of calculated values of the normalized 
longitudinal force from the corresponding experimental data in the range of deformations from 0 to 1 was 7.9%. We should 
note that, in the case of approximation of the function fH ( )e by a third-degree polynomial, the error was 10%. 

The character of nonlinear deformation of a skeletal muscle, in many respects, is determined by its plumosity [18]. 
Further, we will consider only muscles formed by rectilinear monofibers of identical length (zero angle of plumosity). To 
characterize the element Н of the generalized viscoelastic model of such muscles, function (13) can be used directly. The rela-
tion in Fig. 3 was obtained in static loading when the relative elongation under a load applied was measured after completion 
of the creep process. Therefore, the presence of the nonzero function fH (e) does not allow one to use the assumption γH =  1 
(neglect of the long-term elastic modulus) in the longitudinal direction, which was adopted in analyzing the results of transverse 
dynamic indentation [Eqs. (12)]. In addition, according to function (13), the initial (e = 0) value of the long-term elastic 
modulus of muscle is determined by the relation 

TABLE 2. Results of Myometric Investigations of Skeletal Muscles

Muscle
Passive state Stressed state

F, Hz D Q, N/m F, Hz D Q, N/m
Biceps muscle of arm 12.9 1.01 201 14.0 1.01 232

Long radial wrist extensor 14.7 0.88 200 17.4 1.25 340
Gastrocnemius 20.1 1.18 250 25.9 1.04 428

Tibial 18.3 0.82 292 22.9 0.80 449
Intermediate vastus muscle 13.2 1.05 206 16.6 1.01 344

Lateral vastus muscle 15.8 1.39 227 19.2 0.96 466

0.2 0.4 0.6 0.8 1.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

P P/ 0

0

�

Fig. 4. Normalized longitudinal force P/P0 in a muscle vs the longitudinal strain e upon static defor-
mation in a passive state. (––––) — experimental diagram [6] and (– – –) — cubic approximation.
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	 E df
dL a
H

a al = = ⋅ =
=

σ
ε

σ σ
ε 0

0 05 2 4 0 12. . . .	 (14)

Then, for the biceps muscle of arm, ElL = 134 kPa, which is twofold greater than the instantaneous elastic modulus 
E0 determined by the results of dynamic contact indentation (see Table 2). The impossibility of direct use of the quantity E0 is 
caused both by the anisotropy of structure and properties of skeletal muscles and by the influence of deformability of the bi-
otissues surrounding the muscles on the myometric parameters. To increase the informativeness of results of the calculation 
technique (12), a simplified structural model of a skeletal muscle is suggested, according to which the muscle is regarded as 
a circular cylinder weakened by continuous longitudinal holes. The material of the cylinder (further, matrix material) is 
nonlinearly viscoelastic. For the given material, we assume that the long-term elastic modulus is equal to zero (gm = 1). 
On the axis of each is hole located a continuous fiber whose diameter is smaller than that of the hole. Thus, upon transverse 
deformation, such a fiber does not contribute to the rigidity of the muscle. The material of the fiber is nonlinearly elastic 
( γ f = 0, t f → ∞).

Using the known relations of composite mechanics for the effective initial instantaneous elastic modulus E0T of the 
composite cylinder examined [19], it is possible to obtain the following equation

	 E E c
cT0 0

2 1
2 3

=
−
+m
( ) .	 (15)

Here, E0m  is the initial instantaneous elastic modulus of matrix material and c S S= 0  is the ratio of the total cross-
sectional area of holes to the total cross-sectional area of the cylinder (physiological cross section). The effective longitudinal 
instantaneous E0L and long-term ElL elastic moduli are determined by the relations 

	 E E c E E c E cL f f L f f4; = = + −, ( )0 0 1m .	 (16)

Here, Ef is the initial elastic modulus of material of the fibers and c S Sf f=  is the ratio between the total cross-
sectional area of fibers and the physiological cross section. To simplify further calculations, it is assumed that the modulus  
E0T corresponds to the modulus E0 determined by the method of dynamic contact indentation [relations (12)], E0T = E0. The 
long-term longitudinal elastic modulus is determined by Eq. (14). The instantaneous and long-term longitudinal moduli are 
connected by the relation 

	 E E
L

L

H
0 1
=

−
l

γ
. 	  (17)

It is known [8] that, when a muscle is subjected to the action of a force P = P0, activation of the contractile function 
does not lead to muscular contraction. Hence, 
	 σ εa Hs= ( )max ,	 (18)

TABLE 3. Viscoelastic Characteristics of Skeletal Muscles

Muscle
Passive state Active state

E0, kPa t, ms E0, kPa t, ms
Biceps muscle of arm 33.61 38 39.59 35

Long radial wrist extensor 43.38 39 61.97 23
Gastrocnemius 82.35 21 135.69 19

Tibial 67.06 33 104.92 27
Intermediate vastus muscle 35.26 36 55.66 30

Lateral vastus muscle 51.56 23 74.28 27

РЕПОЗИТОРИЙ ГГ
У им

ен
и Ф

. С
ко

ри
ны



797

where emax  is the maximum relative elongation of a muscle at which the contractile function is realized. According to the data 
of Fig. 3, emax = 0.833. Condition (18), with account of Eq. (17), makes it possible to find the parameter gH:

	 γ εH Hf= − ( ) =1 0 681max . .	 (19)

Using relations (14)-(16), we find that

	 c
E

a H

H
=

−
−











2
3
0 12

1
1

0

. σ γ
γ

.	 (20)

Let us pass now from relations for the initial elastic moduli to a physical equation of form (6) for the element H: 

	 σ σ ε σ σ εH f f m a Ht c c t f( ) ( ) ( ) ( ) ( )= + − = +1 ( ) ( ) ( ) exp .1 1

0

− ( ) − ( ) −
−





















∫c s t s x t x dxm
H

m
H

t

ε
τ

ε
τ

	 (21)

In this equation, it is assumed that, at static elongation, the stress in the composite cylinder depends only on fibers. 
The quantity tH in Eq. (21) coincides with the relaxation time t determined by Eqs. (12). We assume that the nonlinear func-
tion sm(e) for the matrix material in the model suggested is similar to the function fH(e) and differs from it by a coefficient k, 
namely s k fHm ( ) ( )ε σ εα= . The value of k is found from the condition 

	 ( )1
1

− =
−

c k H

H

γ
γ

.	 (22)

With account of Eq. (22), relation (21) takes the form

	 σ
σ ε

γ
γ
τ

σ ε
γ τH

a H

H

H

H

a H

H H

t

t
f t f x t x d( )

( ) ( )
exp=

( )
−

−
( )

−
−

−







∫1 10

xx .	 (23)

Here, the function fH (e) results from approximation of experimental data and, for an individual muscular fiber, is 
described by Eq. (13). The parameter gH is specified by Eq. (19). The relaxation time tH is calculated by using myometric data 
[relations (12)].

The simplified mechanical model suggested here does not pretend to description of the real structure of muscular 
tissue, but serves for substantiation of relation (23). 

3. Determination of the Functional Characteristics of a Muscle

The parameters k1, k2, k3, and k4, characterizing the rate of formation and break of actinomyosin bridges, are tradition-
ally determined by approximating the experimental relationship between the stationary speed of isotonic contraction of the 
muscle us and the load Ps [8]. Within the framework of the generalized model suggested (see Fig. 2), the stationary isotonic 
contraction of the muscle is realized at the following conditions:

	     s n m p z z s sE E E= = = = = = = = =σ ε ε0 0 1 0 0, ( ) ( ) , ( ) ( ) , 	

	 s sH H s( ) ( ) , .ε σ σ= = = =0 0 const 	 (24)

In this case, the system of equations (8a) allows us to derive an expression for the relative load on the muscle: 

	 P
P

b a
b a

s s

s0

2

11
=

−
+ +( )

υ
υ
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Here, the following designations are introduced: 

	 b k k L
d k k k

a k k k
k k k k

a k
k k k

=
+ +( )

=
−

+ +( )
=

+ +
1 2

1 2 4
1

1 2 4
2

4 1 2 4
2

1

1 2 4δ
, , .	 (26)

Representation of the function Ps (us) in form (25) makes it possible to compare it with the refined Hill equation [12]: 

	 P P P b P P
P
P

b
bs s s s

s s

s
+ +( ) = −( ) ⇒ =

−
+ +

0 16 0 18
0 16
1 0 180 0

0
. .

.
( . )

υ
υ

υ
.	  (27)

Consequently, a1 = 0.18 and a2 = 0.16. The constant b in Eqs. (27) can be expressed in terms of the maximum speed 
of isotonic contraction umax, corresponding to Ps = 0 – b = umaxa2. Solving the system of equations (26), we have for the pa-
rameters k1, k2, and k4 

	
k

a d
L a a

a
a

a
a a4

2

1 2

1

2

1

2

2

22 1
1 1 4 1 1=
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

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
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υ υ
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L

k a Lk
a d a L

k aax max. .
d
L L

δ υ
=137 5

	 (28)

As shown in [20], for an individual muscular fiber, at the maximum level of activity of the ATPase, the ratio umax/L 
is equal to 2.3 s–1. Then, k1 = 83.513 s–1, k2 = 316.25 s–1, and k4 = 122.192 s–1.

To determine the parameter k3, we have to consider the state of stationary elongation of the muscle in an active state 
under the action of a constant load exceeding P0 (eccentric contraction [12]). Taking into account conditions (24) in system 
(8b), we can write for a relative load on the muscle 

	 P
P

k k k d L

k k k d
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1 4 3

1 3 4

2
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+ 
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
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
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






′ 0  	  (29)

In [21], an experimental relationship between the relative load on the muscle and the relative stationary speed of 
elongation of an individual muscular fiber is given (Fig. 5). Let us compare this experimental relation with function (29) 
at k1  = 83.513 s–1, k4 = 122.192 s–1, and umax/L = 2.3 s–1; ′ = − =sH H( ) . ( ) .0 0 12 1 0 376σ γα  and tH = 38 ms (biceps). As a 
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Fig. 5. Load on the muscle as a function of the stationary speed of eccentric isotonic contraction. 
(––––) — experiment [21] and (– – –) — approximation (29) at k3 = 32 s–1.
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result of approximation by the method of least squares, it is found that k3 = 32 s–1, and the average relative deviation of values 
of the approximating function (29) from experimental values in the range us/umax from 0 to 0.2 is 0.4%.

Thus, in the generalized viscoelastic model of skeletal muscle suggested (see Fig. 2) and the corresponding mathemati-
cal model (8), the initial parameters are determined as follows. Deformation of the element Е is described by relations (9) and 
(10) at gE = 0 and tE → ∞. The nonlinear viscoelastic behavior of the element H is defined by physical equation (23), where 
the function fH(e) is found by approximation of the experimental diagram of static elongation of the muscle in a passive state. 
For a muscle formed by rectilinear fibers, the given function is described by expression (13). The parameter  gH  in Eq. (23) 
is found from condition (19).

The relaxation time tH can be determined using the data of dynamic contact indentation of the muscle in vivo, ob-
tained by the Miometer UT 98-01 and Eq. (12). The deformation function z(e), describing the relation between the number 
of actinomyosin bridges involved and the length of sarcomere, is given in Fig. 3. The parameters k1, k2, and k4 are related to 
the maximum speed of isotonic contraction of the muscle by formulas (28). After calculation of the values of k1, k2 , and k4  
to determine the parameter k 3, the relationship between the speed of stationary isotonic elongation and the load have to be 
approximated by function (29). The above-mentioned values of the parameters k1, k2, k3, and k4  refer to a muscle formed by 
rectilinear fibers at the maximum level of activity of the ATPase. 

Conclusions

It is shown that, within the frameworks of the generalized phenomenological and simplified structural models of 
skeletal muscles suggested, it is possible to interpret some experimentally established laws.

1. The mechanical characteristics of a muscle in passive and activated states differ considerably. 
2. The force–elongation relation in longitudinal deformation of a muscle in a passive state is nonlinear. 
3. Realization of the contractile function of a muscle under the action of a longitudinal load whose magnitude exceeds 

the force P0 generated in isometric conditions at the natural length of the muscle is impossible. 
4. The mechanical characteristics of muscles at which the longitudinal rigidity in tension significantly exceeds the 

rigidity in transverse compression are anisotropic. 
Within the framework of the investigation performed here, results of the mathematical model (8) developed were not 

compared with data on the deformation of skeletal muscles in an organism. Such a comparison is complicated by the limited 
volume of experimental data and the necessity for an additional account of deformation of tendons in deriving calculated es-
timates. The employment and experimental approbation of the models suggested will be the subject of further investigations. 
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