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On some non-periodic groups whose cyclic subgroups are monopronormal 
 

A.A. PYPKA 
 

The description of non-periodic locally generalized radical groups whose cyclic subgroups are mono-
pronormal is given. 
Keywords: normal subgroup, abnormal subgroup, pronormal subgroup, contranormal subgroup, mono-
pronormal subgroup, locally nilpotent radical, locally finite radical, (generalized) radical group. 
 

Получено описание непериодических локально обобщенно радикальных групп, циклические под-

группы которых монопронормальны. 
Ключевые слова: нормальная подгруппа, абнормальная подгруппа, пронормальная подгруппа, 
контранормальная подгруппа, монопронормальная подгруппа, локально нильпотентный радикал, 
локально конечный радикал, (обобщенно) радикальная группа. 
 

Introduction. Let G be a group. Recall that a subgroup H of G is called abnormal in G if 

, gg H H  for every element g G . Recall also that a subgroup H of G is contranormal in G if 

GH G , where GH  is a normal closure of H in G. Note that every abnormal subgroup is con-

tranormal (see, for example, [1]). Clearly abnormal and contranormal subgroups are antipodes (in 
some sense) of normal subgroups. On the one hand, a subgroup H of G is both normal and abnor-

mal in G if and only if H G . On the other hand, if H is a normal subgroup of G, then GH H . 

These remarks show that the properties of normal subgroups and abnormal (respectively, con-
tranormal) subgroups are diametrically opposite. 

At the same time, there are subgroups that combine the concepts of normality and abnormali-
ty. One of the typical examples of such subgroups are pronormal subgroups. Recall that a subgroup 

H of a group G is called pronormal in G if for every element g G  the subgroups H and gH  are 

conjugate in , gH H . Thus, every normal and abnormal subgroup of G is pronormal in G. Note 

that the normalizer ( )GN H  of pronormal subgroup H is abnormal in G (see, for example, [2]), and 

hence contranormal in G. 
In the paper [3] the authors introduced the following generalization of normal and abnormal subgroups. 
Definition. A subgroup H of a group G is called monopronormal in G if for every element 

g G  either gH H  or ( )K

KN H K , where ,K H g . 

Clearly every pronormal subgroup is monopronormal. Note that the converse statement in 
general does not hold. 

In the paper [3], the authors obtained the description of locally finite groups whose all sub-
groups are monopronormal. Later, in the paper [4], the description of locally finite groups whose 
cyclic subgroups are monopronormal has been obtained. 

In this article, we continue studying the influence of monopronormal subgroups on the group 
structure. More precisely, we investigate the structure of some non-periodic groups whose cyclic 
subgroups are monopronormal. 

We recall some definitions. A locally nilpotent radical of a group G is a subgroup ( )GLnr  

generated by all normal locally nilpotent subgroups of G. We recall also that a locally finite radical 

of a group G is a subgroup ( )GLfr  generated by all normal locally finite subgroups of G. 

A group G is called radical if G has an ascending series whose factors are locally nilpotent. A 

group G is called generalized radical if G has an ascending series whose factors are locally nilpo-
tent or locally finite. 

It was also observed that a periodic generalized radical group is locally finite, and hence peri-
odic locally generalized radical group is also locally finite. 

The main result of this paper is the following 
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Theorem A. Let G be a non-periodic locally generalized radical group. Suppose that R is a 

locally nilpotent radical of G. If every cyclic subgroup of G is monopronormal, then either G is 

abelian or G R b , where R is abelian, 2b R  and 1ba a  for each element a R . Moreover, 

in the second case, the following conditions hold: 

(i) if 2 1b  , then the Sylow 2-subgroup D of R is elementary abelian; 

(ii) if 2 1b  , then either D is elementary abelian or D E v  , where E is elementary abeli-

an and ,b v  is a quaternion group. 

Conversely, if a group G satisfies the above conditions, then every cyclic subgroup of G is 
monopronormal. 

Preliminary results. 
Lemma 0. Let G be a group whose cyclic subgroups are monopronormal. 

(i) If H is a subgroup of G, then every cyclic subgroup of H is monopronormal. 

(ii) If H is a normal subgroup of G, then every cyclic subgroup of /G H  is monopronormal. 

Proof. It follows from the definition of monopronormal subgroups. 

Let G be a group and LNR  be a family of all normal subgroups H of G such that /G H  is lo-

cally nilpotent. Then the intersection R LN LNR  is called the locally nilpotent residual of G. It is 

not difficult to prove that if G is locally finite, then G / RLN  is locally nilpotent. 

Lemma 1. Let G be a locally finite group. If every cyclic subgroup of G is monopronormal, 
then the derived subgroup of G is abelian. 

Proof. Let L be the locally nilpotent residual of G. Since [ , ]L G G , 

/ [ , ] ( / ) / ([ , ] / )G G G G L G G L . 

Since /G L  is locally nilpotent, 

( / )/ /p G L pG L S LDr
,
 

where /pS L  is a Sylow p-subgroup of /G L . Then 

( / )[ , ] / [ / , / ] [ / , / ]p G L p pG G L G L G L S L S L Dr . 

Put / [ / , / ]p p pD L S L S L . By Theorem 1 from [4], /G L  is a Dedekind group. It follows 

that /pD L  is abelian for each ( / )p G L . By [4, Corollary 12], [ , ] ( )GG G C L , in particular, 

[ , ]G G  is nilpotent. Let ([ , ]) \ ( )p G G L  . Choose in [ , ]G G  a Sylow p-subgroup P. By [4, 

Lemma 8], 1P L  , thus 

/ ( ) / /pP P P L PL L D L    . 

Therefore, P is abelian. Since by Corollary 11 from [4], L is abelian, [ , ]G G  is abelian too. 

In the paper [5], B.H. Neumann proved the following classical result: if the factor-group 

/ ( )G G  is finite, then the derived subgroup [ , ]G G  is also finite. As a corollary, we can come to 

the following generalization: if the factor-group / ( )G G  is locally finite, then the derived sub-

group [ , ]G G  is also locally finite. 

Lemma 2. Let G be a generalized radical group. If every cyclic subgroup of G is mono-
pronormal, then G is soluble of class at most 3. 

Proof. Suppose that the locally finite radical ( )G FLfr  of G is non-identity. Then by Lem-

ma 1 [ , ]F F  is abelian. It follows that in any case the locally nilpotent radical ( )G RLnr  of G is 

non-identity. We will prove that G is a radical group. Suppose the contrary. Then G includes the 

normal subgroups T and S such that R T S  , T is radical, /S T  is locally finite and 

( / ) 1S T Lnr . By [4, Corollary 4], R is a Dedekind group. Corollary 1 from [4] shows that every 

subgroup of R is G-invariant. Then / ( )SS C R  is abelian (see, for example [6, Theorem 1.5.1]). We 

observe that ( )SC R T R   (see [7, Lemma 4]). Suppose first that R is periodic. Then 

( ) / ( ( ) ) ( ) / ( ( ) ) ( ) / /S S S S SC R C R R C R C R T C R T T S T     . 
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In particular, ( ) / ( ( ) )S SC R C R R  is locally finite. Since R is periodic and locally nilpotent, 

( )SC R  is locally finite. Being locally finite, ( )SC R  is metabelian by Lemma 1. Since /S T  does not 

include non-identity normal abelian subgroups, ( )SC R T . We have now 

/ ( / ( )) / ( / ( ))S SS T S C R T C R . 

We have remarked above that the factor-group / ( )SS C R  is abelian, and therefore /S T  is 

abelian. Contradiction. 
Suppose now that R is not periodic. Corollary 4 from [4] implies that R is abelian. Let V be 

the periodic part of R and put ( )SC C R . By proved above, / / ( )C R C C R   is locally finite. 

Also, the inclusion ( )R C  implies that [ , ]C C  is a locally finite subgroup. Using Lemma 1, we 

obtain that C is soluble. It follows that ( )SC R T , and using the arguments from above, we again 

obtain a contradiction. This contradiction shows that G is a radical group. 

Then ( )GC R R  [7, Lemma 4]. By [4, Corollary 4], R is a Dedekind group, in particular, R is 

metabelian. Corollary 1 from [4] shows that every subgroup of R is G-invariant. Then / ( )GG C R  is 

abelian (see, e. g., Theorem 1.5.1 in [6]). The inclusion ( )GC R R  implies that /G R  is abelian, so 

that G is soluble and ( ) 3G scl . 

Corollary 1. Let G be a locally generalized radical group. If every cyclic subgroup of G is 
monopronormal, then G is soluble of class at most 3. 

Lemma 3. Let G be a group and A be a normal abelian subgroup of G. Suppose that G A b  

where 2b A  and 1ba a  for each element a A . If the subgroup b  is monopronormal, then 

(i) if 2 1b  , then the Sylow 2-subgroup D of A is elementary abelian; 

(ii) if 2 1b  , then either D is elementary abelian or D E v  , where E is elementary abeli-

an and ,b v  is a quaternion group. 

Proof. Suppose that ( )Aa C b , then ba a . On the other hand, by our conditions, 1ba a , 

that is 1a a   and 2 1a  . Thus ( )AC b  is an elementary abelian 2-subgroup. If 2 1c b  , then 

( )Ac C b , and by proved above, 2 41 c b  . Conversely, if | | 2a  , then ( )Aa C b . 

Note that if a b , then 
a

b b . Let a be an arbitrary element of A. Then 
1 1 2b a ba aa a    , and 1 2ab a ba ba  . Furthermore, 1 1b ab a   and 1ab ba . Then we have 

1 2( )( ) ( ) ( )ba ba b ab a b ba a b   . 

Since this is valid for arbitrary element a, we obtain 
2 2 2( )ba b . 

Since b  is a monopronormal subgroup, we have two possibilities: either 
a

b b  or 

 
K

KN b K , where , ,K b a b a  , a A . In the first case, we obtain that a subgroup 

2 2,
a

b b ba b a  
,
 

is a 2-subgroup, in particular, 2a  (and hence a) is a 2-element. In the second case, we have 

 2, ,
K

Kb a N b K b a   , 

which is impossible. 

Suppose first | | 2b  . Then 1b A  . Assume that A has an element u of order 4. By 

proved above 1 2u bu bu  . Since 
2| | 2u  , 2 ( )Au C b . It follows that 2,b u  is abelian. On the one 

hand, 
u

b b . On the other hand 

  2, ,
K

KN b b u b u K   , 

and we obtain a contradiction. This contradiction shows that a Sylow 2-subgroup of A is elementary 
abelian. 
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Suppose now that 2 1c b  . Let D be a Sylow 2-subgroup of A. Since the subgroup c  is 

normal in G, its image in the factor-group /G c  is a monopronormal subgroup. As proved above, 

/D c  is an elementary abelian 2-subgroup. Then either D is elementary abelian or D has an ele-

ment v of order 4 such that 2 2v c b  . Consider the last situation. Since v has a maximal order 

among all the elements of D, D E v  . Since v  is b -invariant, we have 

8
b v

b v
b v

 


. 

Furthermore, as proved above, 1 2 2 3v bv bv bb b    . Hence ,b v  is a product of two nor-

mal cyclic subgroups of order 4. It follows that ,b v  is a quaternion group. 

Corollary 2. Let G be a group and A be a normal abelian non-periodic subgroup of G. Sup-

pose that G A b  where 2b A  and 1ba a  for each element a A . Then G has a subgroup, 

which is not monopronormal. 

Proof. Indeed, let h be an element of A of infinite order. Put 4H h . Then H is normal in 

G, the element hH has order 4, and hH bH H  . Lemma 3 shows that the subgroup 4,b h  

can not be monopronormal. 
Lemma 4. Let G be a non-periodic finitely generated soluble group. Suppose that R is a lo-

cally nilpotent radical of G. If every cyclic subgroup of G is monopronormal, then either G is abeli-

an or G R b , where R is abelian, 2b R , and 1ba a  for each element a R . 

Proof. By [4, Corollary 4], R is a Dedekind group. Corollary 1 from [4] shows that every subgroup of 

R is G-invariant. Then / ( )GG C R  is abelian (see, for example [6, Theorem 1.5.1]). The inclusion 

( )GC R R  [7, Lemma 4] implies that /G R  is abelian. Being abelian and finitely generated /G R  is finite-

ly presented. It follows that R has the elements 1,..., kx x  such that 
1 ...

G G

kR x x  (see, for example, [8, 

p. 421]). Since every subgroup of R is G-invariant, 
G

j jx x , 1 j k  . It follows that R is finitely gen-

erated. If we suppose that R is periodic, then R is finite. The inclusion ( )GC R R  [7, Lemma 4] implies that 

/G R  is also finite, and hence G is finite. This contradiction proves that R is non-periodic. 
Then Corollaries 2 and 3 from [4] shows that R is abelian. Suppose that the center ( )G  con-

tains every element of R of infinite order. Clearly, R is generated by elements of infinite order, so 
that ( )R G . Then the fact that /G R  is abelian implies that G is nilpotent. Using again Corollar-

ies 2 and 3 from [4] we obtain that G is abelian. Therefore, we consider the case when a subgroup R 
contains an element of infinite order, which is not central. Since R is abelian and finitely generated, 

1 1... ...n tR u u v v      , 

where the elements 1,..., nu u  have infinite orders and the elements 1,..., tv v  have finite orders. Sup-

pose that ( )ju G  for all j, 1 j n  . Since ( )G  does not include R, there exists an index m such 

that ( )mv G . Then there exists an element g such that g r

m m mv v v   where r is a certain positive 

integer. Consider the element 1 mu v . We have 

1 1 1 1( )g g g r

m m m mu v u v u v u v   . 

We remark that 1 mu v  has infinite order. By [4, Corollary 1], a subgroup 1 mu v  is G-invariant. 

Then the fact that 1( )G mg C u v  implies 
1 1 1

1 1 1

g

m m mu v u v u v
    . On the other hand, we have 

1 1( )g r

m mu v u v , which implies that 1

1 1u u . Contradiction. So, there exists an index j such that 

( )ju G . Without loss of generality we can suppose that 1j  . Let b be an element of G such that 

 1GG b C u . Then 1

1 1

bu u , and  2

1Gb C u . Suppose now that there exists an index s, 

1 s n  , such that [ , ] 1sb u  . Then 
1

1 1 1 1( )b b b

s s s su u u u u u u u   . 
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On the other hand, an infinite cyclic subgroup 1 su u  is G-invariant by [4, Corollary 1]. Then 

it follows that 
1 1 1

1 1 1( ) ( )b

s s su u u u u u    . 

Hence 1

s su u , and we obtain a contradiction. This contradiction shows that 
1b

j ju u  for all j, 

1 j n  . Using the same arguments we can prove that 
1b

j jv v  for all j, 1 j t  . It follows that 

1ba a  for all elements a R . 

With the help of similar arguments, we can prove that 

   1G GC u C R R  . 

Hence G R b  and 2b R . 

Corollary 3. Let G be a non-periodic locally generalized radical group. Suppose that R is a 

locally nilpotent radical of G. If every cyclic subgroup of G is monopronormal, then either G is 

abelian or G R b , where R is abelian, 2b R , and 1ba a  for each element a R . 

Proof. By Corollary 1, G is soluble. Suppose that G is not abelian. Then G includes a non-

periodic finitely generated non-abelian subgroup K. By Lemma 4, ( )K K bLnr , where ( )KLnr  

is abelian, 
2 ( )b KLnr , 4 1b  , and 1ba a  for each element ( )a KLnr . 

Choose in G a local family L  of finitely generated subgroups containing K, and let LL . 

Using again Lemma 4 we obtain that 1( )L L bLnr , where ( )LLnr  is abelian, 2

1 ( )b LLnr , 

4

1 1b  , and 1 1b
a a  for each element ( )a LLnr . Since K is not locally nilpotent, 

( )L K K Lnr . On the other hand, 

: ( ) : ( ) 2K L K L L  Lnr Lnr , 

so that ( ) ( )K L K Lnr Lnr . In particular, ( )b LLnr . It follows that 1b bu  for some element 

( )u LLnr . As in the proof of Lemma 3, we can show that 2 2 2

1 1( )b bu b  . So, instead of 1b  we 

can put b. In other words, if L is an arbitrary subgroup of the family L , then ( )L L bLnr , where 

( )LLnr  is abelian, 
2 ( )b LLnr , 4 1b  , and 1ba a  for each element ( )a LLnr . Since L  is a 

local family, ( )G G bLnr , where ( )GLnr  is abelian, 
2 ( )b GLnr , 4 1b  , and 1ba a  for 

each element ( )a GLnr . 

Proof of the main result. 

Proof of Theorem A. The necessity of the theorem conditions follows from Lemma 3 and Corollary 3. 

Conversely, let a group G satisfies the theorem conditions and let x be an arbitrary element of 

G. If x R , then x  is normal in G, in particular, x  is monopronormal. Suppose that x R . 

Then x bu  for some element u R . In this case, G R x . As in the proof of Lemma 3, we can 

show that 
2 2 2( )x bu b  . Since R is abelian, 1x ba a a   for each element x R . 

Let g be an arbitrary element of G, then 
kg x a  for some element a R . It follows that 

1 1g xg a xa  . We have 1 1 2x a xa aa a    , and 1 2a xa xa  . Furthermore, 1 1x ax a  , and 
1ax xa . Then we have 

1 2( )( ) ( ) ( )xa xa x ax a x xa a x   . 

Consider 
a

x . We have 2 2,
a

x xa x a  . In particular, it shows that 
a

x  is a 2-subgroup. 

In turn, it follows that 2a  is a 2-element, so that a is also a 2-element. Then a vc  where 2 1c  . A 

subgroup ,b v  is a quaternion group, so that b  is v -invariant. It follows that x  is v -invariant. 

Since 2 1c  , [ , ] 1c x  . It follows that 
a

x x , which shows that x  is a monopronormal subgroup. 

The following result follows directly from Theorem A and Corollary 2. 
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Corollary 4. Let G be a non-periodic locally generalized radical group. Then every subgroup 

of G is monopronormal if and only if G is abelian. 
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