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On some non-periodic groups whose cyclic subgroups are monopronormal
A.A. PYPKA

The description of non-periodic locally generalized radical groups whose cyclic subgroups are mono-
pronormal is given.

Keywords: normal subgroup, abnormal subgroup, pronormal subgroup, contranormal subgroup, mono-
pronormal subgroup, locally nilpotent radical, locally finite radical, (generalized) radical group.

ITomydeHo onmcanue HEMEPUOANIECKUX JOKAIBHO 000OIIEHHO paJAnKAIBHBIX TPYIII, IUKIMIECKHAE MOI-
IPYyNIbl KOTOPBIX MOHONIPOHOPMAJIBHBIL.

KnaioueBble cioBa: HOpMallbHasi MOArpyMIa, abHOpMalibHas MOATPYIIA, TPOHOPMalbHas MOATPYIIa,
KOHTpaHOpMasbHas MOATrPYINa, MOHOIPOHOPMabHas MOArPYMIA, JOKAJIbHO HUJIBIOTEHTHBIM pajuKal,
JIOKaJIbHO KOHEYHBIH paauka, (00001eHHO) paguKalbHas IpyIa.

Introduction. Let G be a group. Recall that a subgroup H of G is called abnormal in G if
g e<H, H 9> for every element g € G. Recall also that a subgroup H of G is contranormal in G if

H® =G, where H® is a normal closure of H in G. Note that every abnormal subgroup is con-
tranormal (see, for example, [1]). Clearly abnormal and contranormal subgroups are antipodes (in
some sense) of normal subgroups. On the one hand, a subgroup H of G is both normal and abnor-
mal in G if and only if H =G. On the other hand, if H is a normal subgroup of G, then H® =H .
These remarks show that the properties of normal subgroups and abnormal (respectively, con-
tranormal) subgroups are diametrically opposite.

At the same time, there are subgroups that combine the concepts of normality and abnormali-
ty. One of the typical examples of such subgroups are pronormal subgroups. Recall that a subgroup

H of a group G is called pronormal in G if for every element g e G the subgroups H and H?® are
conjugate in <H,H9>. Thus, every normal and abnormal subgroup of G is pronormal in G. Note

that the normalizer N, (H) of pronormal subgroup H is abnormal in G (see, for example, [2]), and

hence contranormal in G.
In the paper [3] the authors introduced the following generalization of normal and abnormal subgroups.
Definition. A subgroup H of a group G is called monopronormal in G if for every element

g G either HY =H or N, (H)" =K, where K=(H,g).

Clearly every pronormal subgroup is monopronormal. Note that the converse statement in
general does not hold.

In the paper [3], the authors obtained the description of locally finite groups whose all sub-
groups are monopronormal. Later, in the paper [4], the description of locally finite groups whose
cyclic subgroups are monopronormal has been obtained.

In this article, we continue studying the influence of monopronormal subgroups on the group
structure. More precisely, we investigate the structure of some non-periodic groups whose cyclic
subgroups are monopronormal.

We recall some definitions. A locally nilpotent radical of a group G is a subgroup Lnr(G)

generated by all normal locally nilpotent subgroups of G. We recall also that a locally finite radical
of a group G is a subgroup Lfr(G) generated by all normal locally finite subgroups of G.

A group G is called radical if G has an ascending series whose factors are locally nilpotent. A
group G is called generalized radical if G has an ascending series whose factors are locally nilpo-
tent or locally finite.

It was also observed that a periodic generalized radical group is locally finite, and hence peri-
odic locally generalized radical group is also locally finite.

The main result of this paper is the following
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Theorem A. Let G be a non-periodic locally generalized radical group. Suppose that R is a
locally nilpotent radical of G. If every cyclic subgroup of G is monopronormal, then either G is

abelian or G = R(b) , Where R is abelian, b*> R and a” =a™ for each element a<R. Moreover,
in the second case, the following conditions hold:

(i) if b> =1, then the Sylow 2-subgroup D of R is elementary abelian;

(ii) if b? =1, then either D is elementary abelian or D = Ex(v), where E is elementary abeli-

anand (b,v) is a quaternion group.

Conversely, if a group G satisfies the above conditions, then every cyclic subgroup of G is
monopronormal.

Preliminary results.

Lemma 0. Let G be a group whose cyclic subgroups are monopronormal.

(i) If H is a subgroup of G, then every cyclic subgroup of H is monopronormal.

(ii) If H is a normal subgroup of G, then every cyclic subgroup of G/H is monopronormal.

Proof. It follows from the definition of monopronormal subgroups.

Let G be a group and RN be a family of all normal subgroups H of G such that G/H is lo-
cally nilpotent. Then the intersection ~R"N =R"N is called the locally nilpotent residual of G. It is

not difficult to prove that if G is locally finite, then G / RN is locally nilpotent.

Lemma 1. Let G be a locally finite group. If every cyclic subgroup of G is monopronormal,
then the derived subgroup of G is abelian.

Proof. Let L be the locally nilpotent residual of G. Since L <[G,G],

G/[G,G]=(G/L)/([G,G]/L).
Since G/ L is locally nilpotent,
G/L=Dr c1,S,/L
where S_ /L is a Sylow p-subgroup of G/L. Then
[G.G]/L=[G/L,G/L]=Dr ¢S, /L,S,/L].

Put D,/L=[S,/L,S,/L]. By Theorem 1 from [4], G/L is a Dedekind group. It follows
that D, /L is abelian for each p eI1(G/L). By [4, Corollary 12], [G,G]<C(L), in particular,
[G,G] is nilpotent. Let peII([G,G])\TI(L). Choose in [G,G] a Sylow p-subgroup P. By [4,

Lemma 8], PN L=(1), thus

P=P/(PnL)=PL/L=D,/L.
Therefore, P is abelian. Since by Corollary 11 from [4], L is abelian, [G,G] is abelian too.

In the paper [5], B.H. Neumann proved the following classical result: if the factor-group
G/<£(G) is finite, then the derived subgroup [G,G] is also finite. As a corollary, we can come to

the following generalization: if the factor-group G/¢(G) is locally finite, then the derived sub-
group [G,G] is also locally finite.

Lemma 2. Let G be a generalized radical group. If every cyclic subgroup of G is mono-
pronormal, then G is soluble of class at most 3.
Proof. Suppose that the locally finite radical Lfr(G)=F of G is non-identity. Then by Lem-

ma 1 [F,F] is abelian. It follows that in any case the locally nilpotent radical Lnr(G)=R of G is

non-identity. We will prove that G is a radical group. Suppose the contrary. Then G includes the
normal subgroups T and S such that R<T<S, T is radical, S/T is locally finite and

Lnr(S/T) =(1>. By [4, Corollary 4], R is a Dedekind group. Corollary 1 from [4] shows that every

subgroup of R is G-invariant. Then S/C(R) is abelian (see, for example [6, Theorem 1.5.1]). We

observe that C;(R) T <R (see [7, Lemma 4]). Suppose first that R is periodic. Then
C,(R)/(C,(R)NR)=C;,(R)/(Cs(R)NT)=C,(RT /T <S/T .
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In particular, C,(R)/(Cs(R)NR) is locally finite. Since R is periodic and locally nilpotent,
C, (R) is locally finite. Being locally finite, C,(R) is metabelian by Lemma 1. Since S/T does not
include non-identity normal abelian subgroups, C,(R) <T . We have now
SIT=(S/IC,(R)/(T/Cs(R)).
We have remarked above that the factor-group S/C,(R) is abelian, and therefore S/T is

abelian. Contradiction.
Suppose now that R is not periodic. Corollary 4 from [4] implies that R is abelian. Let V be

the periodic part of R and put C=C(R). By proved above, C/R=C/(CR) is locally finite.
Also, the inclusion R<¢(C) implies that [C,C] is a locally finite subgroup. Using Lemma 1, we
obtain that C is soluble. It follows that C,(R) <T , and using the arguments from above, we again

obtain a contradiction. This contradiction shows that G is a radical group.
Then C;(R) <R [7, Lemma 4]. By [4, Corollary 4], R is a Dedekind group, in particular, R is

metabelian. Corollary 1 from [4] shows that every subgroup of R is G-invariant. Then G/C(R) is
abelian (see, e. g., Theorem 1.5.1 in [6]). The inclusion C;(R) <R implies that G/R is abelian, so

that G is soluble and scl(G) <3.

Corollary 1. Let G be a locally generalized radical group. If every cyclic subgroup of G is
monopronormal, then G is soluble of class at most 3.

Lemma 3. Let G be a group and A be a normal abelian subgroup of G. Suppose that G = A<b>
where b’ e A and a” =a™ for each element a e A. If the subgroup (b) is monopronormal, then

(i) if b> =1, then the Sylow 2-subgroup D of A is elementary abelian;
(ii) if b*> =1, then either D is elementary abelian or D = E><<v> , Where E is elementary abeli-

anand (b,v) is a quaternion group.

Proof. Suppose that aeC,(b), then a” =a. On the other hand, by our conditions, a”=a™,
that is a*=a and a®=1. Thus C,(b) is an elementary abelian 2-subgroup. If c=Db* =1, then
ceC,(b), and by proved above, 1=c¢” =b*. Conversely, if |al=2, then aeC,(b).

Note that if ae(b), then (b)"=(b). Let a be an arbitrary element of A. Then
b'a'ba=aa=a’, and b> =a'ba=ba’. Furthermore, b*ab=a" and ab=ba*. Then we have

(ba)(ba) =b(ab)a =b(ba™)a =b>.
Since this is valid for arbitrary element a, we obtain (ba®*)* =b’.
Since (b) is a monopronormal subgroup, we have two possibilities: either (b)* =(b) or

N, ((b))K =K, where K =((b),a)=(b,a), ac A. Inthe first case, we obtain that a subgroup

(b) =(b)" = (ba") = (b.a*)

is a 2-subgroup, in particular, a® (and hence a) is a 2-element. In the second case, we have
(b,a®) =N, ((b))" =K =(b,a),
which is impossible.

Suppose first |b=2. Then (b)"A=(1). Assume that A has an element u of order 4. By
proved above u~bu =bu?. Since |u’|=2, u® €C,(b). It follows that <b,u2> is abelian. On the one
hand, (b) = (b)". On the other hand

N ((0))* ={b,u?) = (b,u)=K,

and we obtain a contradiction. This contradiction shows that a Sylow 2-subgroup of A is elementary
abelian.
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Suppose now that c=b* =#1. Let D be a Sylow 2-subgroup of A. Since the subgroup (c) IS
normal in G, its image in the factor-group G/<c> is @ monopronormal subgroup. As proved above,

D/<c> is an elementary abelian 2-subgroup. Then either D is elementary abelian or D has an ele-
ment v of order 4 such that v*> =c =b?. Consider the last situation. Since v has a maximal order

among all the elements of D, D = E x(v). Since (v) is (b)-invariant, we have

Furthermore, as proved above, v™bv=bv® =bb? =b°. Hence (b,v) is a product of two nor-

mal cyclic subgroups of order 4. It follows that <b,v> is a quaternion group.

Corollary 2. Let G be a group and A be a normal abelian non-periodic subgroup of G. Sup-
pose that G = A(b) where b> < A and a” =a™ for each element ae A. Then G has a subgroup,
which is not monopronormal.

Proof. Indeed, let h be an element of A of infinite order. Put H =<h4>. Then H is normal in

G, the element hH has order 4, and (hH)~(bH)=H . Lemma 3 shows that the subgroup (b,h*)

can not be monopronormal.
Lemma 4. Let G be a non-periodic finitely generated soluble group. Suppose that R is a lo-
cally nilpotent radical of G. If every cyclic subgroup of G is monopronormal, then either G is abeli-

anor G= R(b) ,where R is abelian, b? e R, and a° =a™* for each element acR.

Proof. By [4, Corollary 4], R is a Dedekind group. Corollary 1 from [4] shows that every subgroup of
R is G-invariant. Then G/C,(R) is abelian (see, for example [6, Theorem 1.5.1]). The inclusion

C;(R) <R [7, Lemma 4] implies that G/ R is abelian. Being abelian and finitely generated G/ R is finite-
ly presented. It follows that R has the elements X,,..., X, such that R :<x1>G ...<xk>G (see, for example, [8,

p. 421]). Since every subgroup of R is G-invariant, <x i >G = <x i > , 1< j <k. It follows that R is finitely gen-

erated. If we suppose that R is periodic, then R is finite. The inclusion C;(R) <R [7, Lemma 4] implies that

G /R isalso finite, and hence G is finite. This contradiction proves that R is non-periodic.

Then Corollaries 2 and 3 from [4] shows that R is abelian. Suppose that the center £(G) con-
tains every element of R of infinite order. Clearly, R is generated by elements of infinite order, so
that R <¢(G). Then the fact that G/R is abelian implies that G is nilpotent. Using again Corollar-

ies 2 and 3 from [4] we obtain that G is abelian. Therefore, we consider the case when a subgroup R
contains an element of infinite order, which is not central. Since R is abelian and finitely generated,

R=<u1>><...x(un>><<vl>><...><<vt>,
where the elements u;,...,u, have infinite orders and the elements v,,...,v, have finite orders. Sup-
pose that u; € £(G) forall j, 1< j<n. Since ¢(G) does not include R, there exists an index m such
that v, ¢ £(G). Then there exists an element g such that v =v. =v_ where r is a certain positive
integer. Consider the element u,v_ . We have
(Wv,)? =ulvy =uyv, =uyv, .

We remark that u,v, has infinite order. By [4, Corollary 1], a subgroup <u1vm> is G-invariant.
Then the fact that g e Cy(uy,,) implies (uyv,)® =(uv, )" =u/’v,". On the other hand, we have
(uv,)? =uV', which implies that u, =u;*. Contradiction. So, there exists an index j such that
u; £ £(G) . Without loss of generality we can suppose that j=1. Let b be an element of G such that
G=(b)Cs((u,)). Then uy =u;*, and b*>eC;((u,)). Suppose now that there exists an index s,
1<s<n,suchthat [b,u]=1. Then

(uu,)® =uu® =uu, = uu, .
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On the other hand, an infinite cyclic subgroup <u1u5> is G-invariant by [4, Corollary 1]. Then
it follows that
(wu,)” = (uu) ™ =u'ug
Hence u, =u_*, and we obtain a contradiction. This contradiction shows that u‘j’ = uj‘1 forall j,

1< j<n. Using the same arguments we can prove that v? :vJT1 for all j, 1< j<t. It follows that

a® =a* forall elements acR.

With the help of similar arguments, we can prove that
Co ((u))=Cs (R)=R.
Hence G =R(b) and b* eR.

Corollary 3. Let G be a non-periodic locally generalized radical group. Suppose that R is a
locally nilpotent radical of G. If every cyclic subgroup of G is monopronormal, then either G is

abelian or G =R(b), where R is abelian, b> € R, and a* =a* for each element a&R.
Proof. By Corollary 1, G is soluble. Suppose that G is not abelian. Then G includes a non-
periodic finitely generated non-abelian subgroup K. By Lemma 4, K = Lnr(K)(b) , where Lnr(K)

is abelian, b*> e Lnr(K), b* =1, and a” =a™ for each element a € Lnr(K).
Choose in G a local family L of finitely generated subgroups containing K, and let LeL .
Using again Lemma4 we obtain that L=Lnr(L)(b), where Lnr(L) is abelian, b’ € Lnr(L),

b'!=1, and a®>=a" for each element aelLnr(L). Since K is not locally nilpotent,
Lnr(L) nK = K. On the other hand,
|K:Lnr(L)nK|<|L:Lnr(L)|=2,

so that Lnr(K)=Lnr(L)~K. In particular, b¢ Lnr(L). It follows that b=bu for some element
uelLnr(L). As in the proof of Lemma 3, we can show that b* = (bu)® =b>. So, instead of b, we
can put b. In other words, if L is an arbitrary subgroup of the family L , then L= Lnr(L)<b>, where
Lnr(L) is abelian, b* e Lnr(L), b* =1, and a® =a* for each element a<Lnr(L). Since L is a
local family, G =Lnr(G)(b), where Lnr(G) is abelian, b’ eLnr(G), b*=1, and a°=a™ for

each element ae Lnr(G).

Proof of the main result.
Proof of Theorem A. The necessity of the theorem conditions follows from Lemma 3 and Corollary 3.
Conversely, let a group G satisfies the theorem conditions and let x be an arbitrary element of

G. If xeR, then (x) is normal in G, in particular, (X) is monopronormal. Suppose that x & R.
Then x=Dbu for some element ueR. In this case, G = R<x>. As in the proof of Lemma 3, we can
show that x* = (bu)® =b?. Since R is abelian, a* =a” =a™ for each element xeR.

Let g be an arbitrary element of G, then g=x“a for some element acR. It follows that
g'xg=a'xa. We have x'a'xa=aa=a?, and a‘'xa=xa’. Furthermore, x'ax=a™, and
ax=xa . Then we have (xa)(xa) = x(ax)a = x(xa ")a = x>.

Consider (x)*. We have (x)* =(xa’) =(x,a”). In particular, it shows that ()" is a 2-subgroup.
In turn, it follows that a® is a 2-element, so that a is also a 2-element. Then a=vc where ¢* =1. A
subgroup (b,v) is a quaternion group, so that (b} is (v) -invariant. It follows that (x) is (v) -invariant.
Since ¢* =1, [c, x] =1. It follows that (x)" =(x), which shows that (X) is a monopronormal subgroup.

The following result follows directly from Theorem A and Corollary 2.
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Corollary 4. Let G be a non-periodic locally generalized radical group. Then every subgroup
of G is monopronormal if and only if G is abelian.
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