УДК 512.572

О ПРИНАДЛЕЖНОСТИ *§***-ПРОФРАТТИНИЕВЫХ** ПОДАЛГЕБР МУЛЬТИКОЛЕЦ КЛАССУ *§*

С.П. Новиков

Белорусский государственный университет транспорта, Гомель

ABOUT BELONGING OF **3**-PREFRATTINI SUBALGEBRAS OF MULTIRINGS TO CLASS **3**

S.P. Novikov

Belarusian State University of Transport, Gomel

Рассматриваются условия, при которых любая \mathfrak{F} -профраттиниева подалгебра мультикольца A принадлежат классу \mathfrak{F} .

Ключевые слова: мультикольцо, *§-центральный фактор*, фраттиниевый главный фактор, *§-профраттиниева подалебра*, *§-нормализатор*.

Conditions at which any \mathfrak{F} -prefrattini subalgebra of multiring A belong to class \mathfrak{F} , are considered.

 $\textbf{\textit{Keywords}}: \textit{multirings}, \ \mathfrak{F}-\textit{central factor}, \textit{frattini chief factor}, \ \mathfrak{F}-\textit{prefrattini subalgebra}, \ \mathfrak{F}-\textit{normalizer}.$

Введение

Используются обозначения и определения из [1]. Все рассматриваемые мультикольца полагаются принадлежащими некоторой формации φ -разрешимых мультиколец с главными рядами.

В отличие от \mathfrak{F} -проекторов, \mathfrak{F} -полупроекторов, \mathfrak{F} -нормализаторов \mathfrak{F} -профраттиниевы подалгебры не всегда принадлежат классу \mathfrak{F} . Это приводит к задаче, поставленной Л.А. Шеметковым и А.Н. Скибой в [1], – описать условия, при которых \mathfrak{F} -профраттиниевы подалгебры мультикольца A принадлежат классу \mathfrak{F} . Настоящая работа посвящена рассмотрению условий, при которых все \mathfrak{F} -профраттиниевы подалгебры мультикольца принадлежат классу \mathfrak{F} .

1 Критерий принадлежности *F-профрат*тиниевых подалгебр мультикольца классу *F*

Для произвольного класса мультиколец \mathfrak{F} обозначим через $\Psi(\mathfrak{F})$ класс мультиколец, у которых все \mathfrak{F} -профраттиниевы подалгебры принадлежат \mathfrak{F} ; через $\Upsilon(\mathfrak{F})$ – класс мультиколец, у которых любой фраттиниевый главный фактор \mathfrak{F} -централен.

Лемма 1.1. Для любой непустой формации мультиколец \mathfrak{F} класс $\Psi(\mathfrak{F})$ – непустая формация.

Доказательство. Пусть $A \in \Psi(\mathfrak{F})$, N-идеал в A, $M/N-\mathfrak{F}$ -профраттиниева подалгебра в A/N. Тогда по теореме 1 из [2] M=N+B,

где B — некоторая \mathfrak{F} -профраттиниева подалгебра в A. Поэтому M / N = B + N / $N \simeq B$ / $B \cap N \in \mathfrak{F}$.

Предположим, что N_1 и N_2 — идеалы мультикольца A, $A/N_1 \in \Psi(\mathfrak{F})$, $A/N_2 \in \Psi(\mathfrak{F})$, $N_1 \cap N_2 = \{0\}$, $T - \mathfrak{F}$ -профраттиниева подалгебра в A, не принадлежащая \mathfrak{F} . По теореме 1 из [2] $T + N_1/N_1$ и $T + N_2/N_2$ — \mathfrak{F} -профраттиниевы подалгебры в A/N_1 и A/N_2 соответственно. Следовательно, $T + N_1/N_1 \in \mathfrak{F}$ и $T + N_2/N_2 \in \mathfrak{F}$. Поэтому $T/T \cap N_1 \in \mathfrak{F}$ и $T/T \cap N_2 \in \mathfrak{F}$. Так как $(T \cap N_1) \cap (T \cap N_2) = \{0\}$, а \mathfrak{F} — формация, то $T \in \mathfrak{F}$. Получаем противоречие. Лемма доказана.

Теорема 1.1. Пусть \mathfrak{F} — непустая формация мультиколец. Тогда любая \mathfrak{F} -профраттиниева подалгебра T произвольного мультикольца A принадлежит \mathfrak{F} тогда и только тогда, когда $T \cap A^{\Psi(\mathfrak{F})} = \{0\}$.

Доказательство. Необходимость. Пусть $A \in \Psi(\mathfrak{F})$. Тогда $A^{\Psi(\mathfrak{F})} = \{0\}$ и $T \cap A^{\Psi(\mathfrak{F})} = \{0\}$.

 \mathcal{A} остаточность. Пусть для любой \mathfrak{F} -профраттиниевой подалгебры T мультикольца A выполняется условие $T \cap A^{\Psi(\mathfrak{F})} = \{0\}$. Так как $A \, / \, A^{\Psi(\mathfrak{F})} \in \mathfrak{F}$, а по теореме 1 из [2] $T + A^{\Psi(\mathfrak{F})} \, / \, A^{\Psi(\mathfrak{F})} - \mathfrak{F}$ -профраттиниева подалгебра в $A \, / \, A^{\Psi(\mathfrak{F})}$, то $T + A^{\Psi(\mathfrak{F})} \, / \, A^{\Psi(\mathfrak{F})} \in \mathfrak{F}$. Следовательно, $T \simeq T \, / \, \{0\} = T \, / \, T \cap A^{\Psi(\mathfrak{F})} \simeq T + A^{\Psi(\mathfrak{F})} \, / \, A^{\Psi(\mathfrak{F})} \in \mathfrak{F}$.

Значит, $A \in \Psi(\mathfrak{F})$. Теорема доказана.

© Новиков С.П., 2013

2 Пример класса мультиколец, у которых все *§-профраттиниевы подалгебры принадлежат §*

Пемма 2.1. Если \mathfrak{F} — непустая формация мультиколец, то $\Upsilon(\mathfrak{F})$ — непустая формация.

Доказательство. Пусть $A \in \Upsilon(\mathfrak{F}), \ N-$ идеал в $A, \ H/N/K/N-$ фраттиниевый главный фактор в A/N. Тогда фактор H/K фраттиниев в A и так как $A \in \Upsilon(\mathfrak{F}),$ то $H/K \leftthreetimes A/C_A(H/K) \in \mathfrak{F}.$ Поэтому

 $(H/N/K/N) > A/N/C_{A/N}(H/N/K/N) \in \mathfrak{F}.$ Таким образом, $A/N \in \Upsilon(\mathfrak{F})$ и, следовательно, $\Upsilon(\mathfrak{F})$ – гомоморф.

Пусть теперь A — мультикольцо с наименьшей длиной главного ряда, для которого найдутся такие идеалы N_1 и N_2 , что $A/N_1 \in \Upsilon(\mathfrak{F})$, $A/N_2 \in \Upsilon(\mathfrak{F})$, но $A \not\in \Upsilon(\mathfrak{F})$. В силу соображений индукции можно полагать, что $N_1 \cap N_2 = \{0\}$. Пусть L_1 и L_2 — минимальные идеалы в A, содержащиеся в N_1 и N_2 соответственно. Тогда $A/L_1/N_1/L_1 \in \Upsilon(\mathfrak{F})$ и $A/L_1/L_1+N_2/L_1 \in \Upsilon(\mathfrak{F})$. По индукции

$$A/L_{1}/(N_{1}/L_{1} \cap (L_{1}+N_{2})/L_{1}) = A/L_{1}/N_{1} \cap (L_{1}+N_{2})/L_{1} =$$

 $A/L_1/(L_1+(N_1\cap N_2))/L_1=A/L_1/L_1/L_1\in \Upsilon(\mathfrak{F}).$ Следовательно, $A/L_1\in \Upsilon(\mathfrak{F}).$ Аналогично показывается, что $A/L_2\in \Upsilon(\mathfrak{F}).$

Если хотя бы один из факторов $L_1/\{0\}$ или $L_2/\{0\}$, например $L_1/\{0\}$, нефраттиниев, то так как $A/L_1\in\Upsilon(\mathfrak{F})$, любой фактор A-главного ряда, проходящего через L_1 , \mathfrak{F} -централен. Значит, ввиду леммы 3.34 из [1] $A\in\Upsilon(\mathfrak{F})$. Полученное противоречие означает, что факторы $L_1/\{0\}$ и $L_2/\{0\}$ фраттиниевы в A. Тогда фактор $L_1+L_2/L_1/L_1/L_1$ фраттиниев в A/L_1 . Так как $A/L_1\in\Upsilon(\mathfrak{F})$, то фактор $L_1+L_2/L_1/L_1/L_1$ \mathfrak{F} -централен. А поскольку фактор $L_1+L_2/L_1/L_1/L_1$ проективен фактору $L_2/\{0\}$, то последний фактор \mathfrak{F} -централен. Таким образом, любой фактор A-главного ряда, проходящего через L_2 , \mathfrak{F} -централен. Значит, ввиду леммы 3.34 из [1] $A\in\Upsilon(\mathfrak{F})$. Снова получили противоречие. Лемма доказана.

Теорема 2.1. Пусть \mathfrak{X} — наследственная формация конечных мультиколец, \mathfrak{F} — непустая насыщенная в \mathfrak{X} формация и $A \in \mathfrak{X} \cap \Upsilon(\mathfrak{F})$. Если класс \mathfrak{X} регулярен в классе \mathfrak{F} , то любая \mathfrak{F} -профраттиниева подалгебра в A является \mathfrak{F} -нормализатором.

Доказательство. Пусть $T - \mathfrak{F}$ -профраттиниева подалгебра в A. По теореме 13.8 из [1] в A

найдется \mathfrak{F} -нормализатор H, содержащийся в T. Ввиду теорем 12.12 и 13.4 из [1], если A-главный фактор \mathfrak{F} -централен, то T и H его покрывают. Если A-главный фактор H/K \mathfrak{F} -эксцентрален, то так как $A \in \Upsilon(\mathfrak{F})$, фактор H/K нефраттиниев. По лемме 1 из [3] фактор H/K A-абелев. Значит, ввиду теорем 12.12 и 13.4 из [1] T и H его покрывают. По лемме 2 из [3] порядки T и H равны произведению порядков \mathfrak{F} -центральных факторов A-главного ряда. Следовательно, T = H. Теорема доказана.

Замечание 2.1. Так как \mathfrak{F} -нормализаторы мультиколец принадлежат классу \mathfrak{F} , из теоремы 2 автоматически вытекает следующий результат:

Спедствие 2.1. Пусть $\mathfrak X$ — наследственная формация конечных мультиколец, $\mathfrak F$ — непустая насыщенная в $\mathfrak X$ формация, класс $\mathfrak X$ регулярен в классе $\mathfrak F$. Тогда $\mathfrak X \cap \Upsilon(\mathfrak F) \subseteq \Psi(\mathfrak F)$.

Замечание 2.2. В классе конечных групп с $\pi(\mathfrak{F})$ -разрешимым корадикалом условие регулярности класса \mathfrak{X} в классе \mathfrak{F} выполняется автоматически. Кроме того, каждая конечная группа φ -разрешима. Поэтому в этом случае из утверждений работы получаются новые результаты для конечных групп, имеющие более простой вид. Например, из теоремы 2.1 вытекает как частный случай следующее утверждение:

Следствие 2.2. Пусть $\mathfrak F$ — непустая насыщенная формация конечных групп. Тогда $\Upsilon(\mathfrak F) \cap \mathfrak S_{\pi(\mathfrak F)} \subseteq \Psi(\mathfrak F)$ и любая $\mathfrak F$ -профраттиниева подалгебра группы $A \in \Upsilon(\mathfrak F) \cap \mathfrak S_{\pi(\mathfrak F)}$ является $\mathfrak F$ -нормализатором в A.

Заключение

Таким образом, в работе получен критерий принадлежности \mathfrak{F} -профраттиниевых подалгебр мультикольца классу \mathfrak{F} и приведен конструктивный пример класса мультиколец, у которых все \mathfrak{F} -профраттиниевы подалгебры принадлежат \mathfrak{F} . Для конечных групп из утверждений статьи автоматически вытекают новые результаты, имеющие в этом случае более простой вид.

ЛИТЕРАТУРА

- 1. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. М. : Наука, 1989. 253 с.
- 2. Новиков, С.П. О Ω -профраттиниевых подалгебрах мультиколец / С.П. Новиков // Вопросы алгебры. Минск : Изд-во «Университетское», $1992. \mathbb{N} \ 6. \mathbb{C}. 7-12.$
- 3. Новиков, С.П. Связь \mathfrak{F} -профраттиниевых подалгебр и \mathfrak{F} -нормализаторов мультиколец / С.П. Новиков // Вестник БГУ. Серия 1. 1996. N 1. С. 46—48.

Поступила в редакцию 10.07.12.