О.С. Кабанова 1 , И.И. Рушнова 1 , Е.А. Мельникова 1 , А.Л. Толстик 1 , А.А. Муравский 2

¹Белорусский государственный университет, Минск, Беларусь ²ГНУ «Институт химии новых материалов» НАН Беларуси, Минск, Беларусь

ЭЛЕКТРИЧЕСКИ УПРАВЛЯЕМЫЕ ДИФРАКЦИОННЫЕ ЭЛЕМЕНТЫ НА ОСНОВЕ ПЕРИОДИЧЕСКИХ НЕМАТИЧЕСКИХ ЖИДКОКРИСТАЛЛИЧЕСКИХ СТРУКТУР

Введение

Оптические элементы на основе нематических жидких кристаллов (ЖК) отличаются компактностью, низким энергопотреблением, невы сокой рыночной стоимостью, а также возможностью перестройки оп тических параметров, что в совокупности обуславливает их широкое применение для решения как научно-исследовательских, так и при кладных задач современной фотоники [1]. Большой интерес, в част ности, представляют тонкопленочные нематические ЖК-структуры с периодической модуляцией ориентации директора, представляющие собой высоко эффективные дифракционные решетки с электрически управляемыми оптическими свойствами [2].

В настоящей работе представлены способы создания динамиче ских дифракционных ЖК-решеток с различными геометриями ориен тации директора реализованные на основе технологии фотоориентации нематических жидких кристаллов. Экспериментально и теорети чески исследованы поляризационные свойства дифракционных ЖКрешеток в зависимости от величины управляющего электриче- ского напряжения.

1. Методики изготовления дифракционных ЖК структур

На рисунке 1 приведены структурные схемы разработанных ди фракционных ЖК-элементов с твист-планарной ориентацией дирек тора (рисунок 1 a), а также с планарной ортогональной ориентацией директора в смежных доменах (рисунок 1 δ). Начальная ориентация молекул нематического жидкого кристалла в ячейках сэндвич-типа с периодически чередующимися микродоменами (d=40 мкм) создава лась методом фотоориентации азокрасителя AtA-2, синтезированного в Институте химии новых материалов НАН Беларуси [$\underline{3}$]. Достоин ством азокрасителя AtA-2, определившим его выбор в качестве ориентирующего материала, является возможность многократного изменения ориентации молекул посредством поворота плоскости

поляризации экспонирующего излучения, что легло в основу формирования выбранных геометрий ориентации директора ЖК в смежных доменах периодических (решетчатых) ЖК-структур.

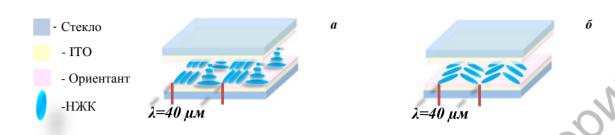


Рисунок 1 — Структурные схемы ЖК-решеток с *а)* твист-планарной геометрией ориентации директора и *б)* планарной-ортогональной ориентацией директора

На внутреннюю поверхность стеклянных пластин (рисунок 1) наносился тонкий слой (\approx 50 нм) прозрачного электропроводящего слоя из оксида индия-олова (ITO), благодаря которому под действием внешнего электрического поля длинные оси молекул ЖК переориен тируются из планарного положения в гомеотропное (т.е. перпендику лярно плоскости подложек ячейки) согласно эффекту Фредерикса.

Топология ориентации директора, соответствующая начальной твист-планарной геометрии (рисунок 1 а), была реализована в ЖКячейках методом фотоориентации тонких пленок азокрасителя AtA-2. Слой ориентанта AtA-2 наносился на стеклянные пластины с прозрачным электропроводящим слоем ITO из 2%-го раствора в N,Nдиметилформамиде методом род коутинга. Для удаления следов растворителя производился отжиг образцов при температуре t=140°C. Экспонирование верхней подложки (рисунок 2 а) излучением свето диода на длине волны λ =450 нм происходило в два этапа: вначале вы полнялась однородная засветка образца линейно поляризованным из лучением с интенсивностью светового потока $I = 20 \text{ мBt/cm}^2$ в тече ние $\tau = 20$ с, что соответствовало дозе облучения 0,4 Дж/см²; далее поляризатор поворачивался на 90° и происходило повторное экспони рование ячейки через амплитудную маску с П-образным профилем и периодом d=40 мкм, в течение $\tau=60$ с, что соответствовало дозе облучения 1,2 Дж/см². В областях ячейки, которые закрывалась маской, ориентация молекул азокрасителя не изменялась (фотоориентация 1), в отличие от смежных (немаскированных) областей, где молекулы поворачивались согласно новому направлению колебаний вектора поляризации, обеспечило что планарную ортогональную ориентацию

молекул в периодически чередующихся микродоменах. Изготовление нижней подложки включало: нанесение ориентирующего материала на стеклянную пластину с прозрачным электродом; отжиг образца и облучение линейно поляризованным излучением с интенсивностью светового потока $I = 20 \text{ мBt/cm}^2$ в течение $\tau = 20 \text{ с}$, вследствие чего на поверхности формировалась однородная планарная ориентация моле кул. Далее собиралась ячейка, где толщина ЖК слоя задавалась спей серами и составила 7 мкм. Заполнение ячейки нематическим ЖКматериалом НЖК-1289 с анизотропией показателя преломления $\Delta n = 0,156$ на длине волны $\lambda = 632,8$ нм осуществлялось в условиях изо тропной фазы.

Топология, соответствующая начальной планарной ортогональной ориентации директора в смежных доменах (рисунок $1\,\delta$), где директор ЖК составлял угол 45° с осью OY, была реализована в ЖК-ячейках при помощи технологического процесса, схема которого приведенного на рисунке 2.

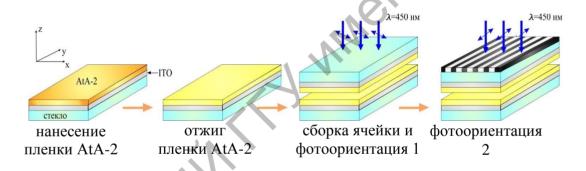
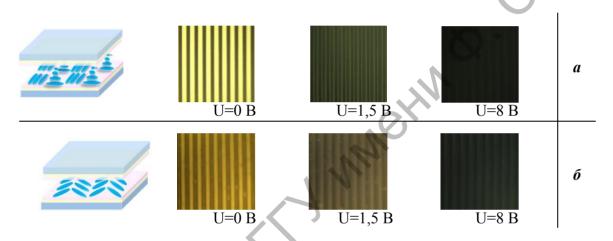


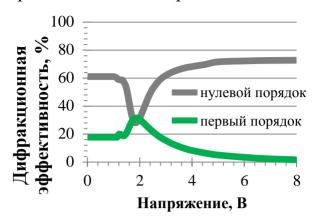
Рисунок 2 — Схема процесса изготовления дифракционных ЖК ячеек с планарной-ортогональной геометрией ориентации директора в смежных микродоменах

После сборки корпуса ячейки из подложек, покрытых фотоориентантом, производилась однородная засветка образца линей но поляризованным излучением с интенсивностью светового потока $I=20~\mathrm{mBt/cm^2}$ в течение $\tau=20~\mathrm{c}$. Далее поляризатор поворачивался на 90° и производилось повторное экспонирование ячейки через ампли тудную маску с П-образным профилем и периодом $d=40~\mathrm{mkm}$ в течение $\tau=60~\mathrm{c}$. Экспонирование уже собранных ячеек позволило реали зовать самосовмещение планарных жидкокристаллических доменов, характеризующихся одинаковым направлением ориентации директо ра в смежных доменах.

2. Экспериментальные результаты

Для экспериментального исследования дифракционных свойств разработанных ЖК-решеток вертикально поляризованное излучение Не–Ne-лазера с длиной волны 632,8 нм направлялось перпендикулярно плоскости подложек исследуемой электроуправляемой ЖК-ячейки. Интенсивность дифрагированного излучения регистрировалась при помощи высокочувствительного фотодетектора. На рисунке 3 приведены поляризационные микрофотографии ЖК-решеток с твист-планарной и планарной-ортогональной геометриями ориентации директора соответственно, зарегистрированные при разных значениях управляющего напряжения на ячейках.




Рисунок 3 — Поляризационные микрофотографии ЖК-решеток (размер области 400X400 мкм) с a) твист-планарной геометрией ориентации директора и δ) планарной-ортогональной геометрией ориентации директора при разных управляющих напряжениях U

На рисунке 4 приведена экспериментальная зависимость дифрак ционной эффективности ЖК-решетки с твист-планарной геометрией ориентации директора от величины управляющего напряжения на ячейке.

Разработанные ЖК-решетки с выбранными геометриями ориента ции директора характеризуется высокой дифракционной эффективно стью. Так в ЖК-элементе с твист-планарной геометрией ориентации директора дифракционная эффективность для первого порядка дифракции составила η_1 =33% и зарегистрирована с величиной кон трастного отношения 520:1.

Также в процессе выполнения работы для ЖК-решетки с твист планарной геометрией ориентации директора с помощью теоретических и экспериментальных методов были изучены поляризационные диа граммы для нулевого порядка дифракции на выходе ЖК-элемента при

различных управляющих напряжениях. Получено хорошее соответ ствие между экспериментальными и расчетными данными.

^KObNHIP_I Рисунок 4 - 3ависимость дифракционной эффективности 0^{ro} и 1^{ro} порядков для ЖК-решеток с твист-планарной геометрией ориентации директора

Заключение

В данной работе на основе технологии фотоориентации тонких пленок азокрасителя AtA-2 реализовано два простых и эффективных метода создания периодических (локально-неоднородных) дифракци различными геометриями ЖК-решеток ориентации онных c директора.

Разработанные ЖК-решетки с твист-планарной и планарной ортогональной ориентациями директора в смежных доменах реали зуют переключение между нулевым и ±первым дифракционными по достаточно рядками низком значении при управляющего электрического напряжения (U=8 B) и характеризуются высокими дифракционной эффективностью значениями величинами отношения. Экспериментально контрастного И теоретически исследованы поляризационные свойства ЖК-решеток в зависимости от величины внешнего электрического напряжения.

Миниатюрные дифракционные ЖК-решетки электрически управляемыми оптическими свойствами могут быть использованы для создания новейших оптических устройств пространственно поляризационного управления световыми пучками, включая пере ключаемые дифракционные компоненты.

Литература

- 1. Chigrinov, V.G. Liquid crystal applications in photonics / V.G. Chigrinov // Front. Optoelectron. China. – 2010. – Vol. 3. – № 1. – P. 103– 107.
 - 2. Simulation and optimization of liquid crystal gratings with alternate

twisted nematic and planar aligned regions / J. Li [et al.] // Appl. Opt. – 2014. – Vol. 53. Is. 22. – P. E14–E18.

3. Electrically controlled spatial-polarization switch based on

