Нарскин Г. И., д. п. н., профессор, Нарскин А. Г., к. п. н., доцент, Мельников С. В., преподаватель УО «ГГУ им. Ф. Скорины»

ДИНАМИКА ФУНКЦИОНАЛЬНОЙ ПОДГОТОВЛЕННОСТИ КВАЛИФИЦИРОВАННЫХ ФУТБОЛИСТОВ

Ключевые слова:

функциональная подготовленность, эргоспирометрические исследования, квалифицированные футболисты, нагрузочное тестирование.

Аннотация. В статье рассматриваются вопросы тестирования функциональной подготовленности молодых футболистов и

особенности ее динамики в годичном цикле подготовки. Полученные результаты свидетельствуют о сниже нии показателей аэробного обеспечения к середине соревновательного периода, в то время как показатели а наэробного обеспечения у квалифицированных футболистов имеют тенденцию к повышению на протяжени и всего годичного цикла.

Адаптация является одним из важнейших свойств живого организма, обеспечивающих его существование как в различных условиях среды, так и при физических нагрузках. Так как ведущими физиологическими системами при адаптации к мышечной деятельности являются кислородтранспортные (т. е. сердечнососудистая и дыхательная системы), исследование особенностей развития и функционирования данных систем у спортсменов составляет одну их важных проблем спортивной медицины.

Физиологическую основу общей выносливости в большинстве не только циклических, но и игровых видов спорта составляют аэробные способности, так как они относительно малоспецифичны и в незначительной степени зависят от вида выполняемых упражнений. Поэтому, чем ниже мощность физической работы и больше количество мышц в ней участвующих, тем в меньшей степени результативность ее будет определяться совершенством двигательного навыка и в большей степени — аэробными возможностями.

В связи с тем, что спортсмен мирового уровня — это зачастую уникальная индивидуальность — только индивидуальные проявления адаптационных реакций, определяющих адаптацию организма к физической нагрузке, позволяют устанавливать способности организма к достижению рекордных результатов и определяют его реакцию на воздействие тренировочных нагрузок [1].

Так как воздействие одной и той же тренировочной нагрузки на разных (однако примерно одинаково тренированных) спортсменов сопровождается различным уровнем сдвига функций, это объясняет необходимость индивидуализации процесса тренировки, как ведущего фактора ее эффективности и интенсификации. В то же время, несмотря на то, что это положение не ново, оно недостаточно изучено с позиции специфических проявлений приспособительных реакций, определяющих для конкретного вида спорта функциональных систем.

Выявленные по данному направлению результаты определяют в основном лишь диапазон индивидуальных различий максимальных проявлений адаптационных реакций и энергетических процессов. Следует добавить, что функциональные резервы кардиореспираторной системы зачастую являются ведущим лимитирующим фактором при выполнении высокоинтенсивных циклических нагрузок, а расширение и углубление понимания основных механизмов адаптации кардиореспираторной системы к физическим нагрузкам определяет основу для индивидуализации критериев оценки эффективности спортивной тренировки и адаптации к ней спортсменов.

Проблемам адаптации организма спортсменов к физическим нагрузкам посвящены многочисленные исследования, на основании которых установлено, что под влиянием спортивной тренировки увеличиваются его функциональные возможности, растут показатели рабочей производительности, повышается эффективность функционирования сердечно-сосудистой системы и системы дыхания. Как известно, состояние здоровья определяется количеством и мощностью адаптационных резервов организма, поэтому, чем выше функциональный резерв, тем ниже «цена адаптации», а напряженные физические и социальные нагрузки в современном спорте, особенно при

условии нерационального их планирования без учета возрастных особенностей физиологических механизмов адаптации, ведут к непрерывной мобилизации резервов организма, которые не беспредельны.

Литературные данные свидетельствуют о значительных морфофункциональных изменениях организма спортсменов, представляющих разные виды спорта [2, 3]. Вместе с тем, недостаточно изученными остаются вопросы влияния на функциональные системы организма специфических условий игровых видов спорта. Кроме того, в исследованиях функционального состояния кардиореспираторной системы в процессе адаптации к физическим нагрузкам в футболе не всегда учитывается возрастной аспект.

Самым универсальным методом оценки деятельности кардиореспираторной системы является эргоспирометрическое тестирование, которое заключается в исследовании параметров газообмена, внешнего дыхания и сердечно-сосудистой системы, что позволяет определить особенности взаимодействия систем дыхания, кровообращения и обмена веществ.

В практике спортивных исследований эргоспирометрию чаще всего проводят с целью определения максимального потребления кислорода (VO₂ max), порога анаэробного обмена (AT) и других показателей газообмена при выполнении максимальных нагрузочных проб. Для этой цели наиболее часто используют стандартную велоэргометрическую нагрузку со ступенчато повышающейся мощностью «до отказа» и длительностью каждой ступени 3 мин для достижения стабилизации регистрируемых показателей. Мощность нагрузки рассчитывается с учетом массы тела спортсмена — из расчета 1 Вт на кг массы тела.

Следует отметить, что специальная выносливость спортсменов в игровых видах спорта определяется комплексом функциональных реакций как аэробного, так и анаэробного энергообеспечения. Для определения динамики показателей газообмена и внешнего футболистов нами был проанализирован широкий спектр функциональных параметров.

В исследовании приняли участие квалифицированные футболисты в возрасте до 21 года. Для более детального рассмотрения показателей внешнего дыхания и газообмена нами анализировались не только максимальные параметры, но и результаты, полученные на уровне ПАНО.

Результаты исследования динамики показателей газообмена и внешнего футболистов представлены в таблицах 1 и 2.

Таблица 1 Динамика максимальных показателей газообмена и внешнего дыхания квалифицированных футболистов, М±т

,	Этапы подготовки				
Показатели	Начало подготовительного периода	Начало соревновательного периода	Середина соревновательного периода	Конец соревновательного периода	
VO ₂ max _{отн} , мл/мин/кг	52.57 ± 2.53	63.28 ± 2.63	64.36 ± 2.66	61.73 ± 2.59	
VO ₂ max aбс, л/мин	4.62 ± 0.25	5.11 ± 0.31	5.21 ± 0.35	4.94 ± 0.29	
VCO ₂ max отн, vл/мин/кг	65.28 ± 2.78	70.34 ± 2.85	72.16 ± 2.89	73.26 ± 2.91	
VCO ₂ max aбс, л/мин	5.19 ± 0.31	5.64 ± 0.35	5.92 ± 0.37	6.03 ± 0.39	
VO ₂ / HR, мл/уд	23.26 ± 1.42	25.04 ± 1.53	25.14 ± 1.55	24.66 ± 1.48	
VE, л/мин	158.26 ± 6.92	166.29 ± 7.32	178.64 ± 7.68	175.23 ± 7.52	
ЧД, раз/мин	62.59 ± 3.41	68.07 ± 3.52	71.24 ± 3.89	72.92 ± 3.95	
ЖЕЛ, л	5.14 ± 0.27	5.67 ± 0.33	5.53 ± 0.31	5.41 ± 0.29	
VE / VO ₂ , ед	32.84 ± 2.77	32.38 ± 2.75	34.26 ± 2.88	35.43 ± 2.89	
VE / VCO ₂ , ед	31.82 ± 2.55	30.27 ± 2.51	29.92 ± 2.45	29.51 ± 2.42	
RER _{max} , ед	1.18 ± 0.07	1.28 ± 0.08	1.34 ± 0.09	1.23 ± 0.08	

Как показали проведенные нами исследования, динамика максимальных показателей газообмена и внешнего дыхания у юношей в течение годичного цикла подготовки имеет тенденцию к неравномерному изменению.

Анализируя полученные данные, нами было выявлено, что показатели VO_2 max (как относительные, так и абсолютные) повышаются с начала подготовительного периода до середины соревновательного (с $52,57\pm2,53$ мл/мин/кг (или $4,62\pm0,25$ л/мин) до $64,36\pm2,66$ мл/мин/кг

(или 5.21 ± 0.35 л/мин)), затем снижаясь к концу переходного периода до 61.73 ± 2.59 мл/мин/кг (или 4.94 ± 0.29 л/мин), в то время как значения максимального выделения углекислого газа (VCO $_2$ max) растут в течение всего годичного макроцикла (с 65.28 ± 2.78 мл/мин/кг (или 5.19 ± 0.31 л/мин) до 73.26 ± 2.91 мл/мин/кг (или 6.03 ± 0.39 л/мин)).

Тенденция снижения максимального значения к концу соревновательного периода отмечена и в показателе кислородного пульса (VO $_2$ / HR). Так, если в начале подготовительного периода его среднее значение составляло $23,26\pm1,42$ мл/уд, увеличившись к середине соревновательного периода до $25,14\pm1,55$ мл/уд, то по окончании сезона он снижается до $24,66\pm1,48$ мл/уд. Этот факт может косвенно указывать на некоторое ослабление свойств сердечной мышцы.

Таблица 2 Динамика показателей газообмена и внешнего дыхания на уровне ПАНО квалифицированных футболистов, М±т

	этапы подготовки				
Показатели	Начало подготовительного периода	Начало соревновательного периода	Середина соревновательного периода	Конец соревновательного периода	
НК на ПАНО, уд/мин	154.28 ± 2.31	163.31 ± 2.11	160.58 ± 2.19	159.29 ± 2.23	
VO _{2 отн} на ПАНО, мл/мин/кг	34.63 ± 0.99	45.56 ± 1.22	47.64 ± 1.31	42.28 ± 1.12	
VO _{2 абс} на ПАНО, л/мин	3.12 ± 0.15	3.72 ± 0.17	3.86 ± 0.18	3.51 ± 0.17	
VO ₂ / HR на ПАНО, мл/уд	18.43 ± 1.01	20.95 ± 1.09	21.08 ± 1.11	20.34 ± 1,08	
VE на ПАНО, л	72.15 ± 3.97	79.24 ± 4.25	78.62 ± 4.15	76.51 ± 4.11	
ЧД на ПАНО, раз/мин	34.54 ± 2.89	30.43 ± 2.79	31.91 ± 2.82	32.13 ± 2.91	
VE / VO ₂ на ПАНО, ед	22.59 ± 1.25	20.91 ± 1.19	20.84 ± 1.18	21.26 ± 1.21	
VE / VCO ₂ на ПАНО, ед	21.64 ± 1.26	20.63 ± 1.24	20.58 ± 1.22	21.11 ± 1.24	

Длительный соревновательный период (длящийся в футболе около 8 месяцев) также обуславливает и динамику показателей внешнего дыхания. Как показатель жизненной емкости легких (ЖЕЛ), так и показатель максимальной вентиляции легких (VE) повышаются с начала подготовительного периода до середины соревновательного, а затем снижаются к концу сезона $(5.14\pm0.27~\pi-5.67\pm0.33~\pi-5.53\pm0.31~\pi-5.41\pm0.29~\pi$ и $158.26\pm6.92~\pi-166.29\pm7.32~\pi-178.64\pm7.68~\pi-175.23\pm7.52~\pi$ соответственно).

В то же время максимальная частота дыхания (4 Д) в течение годичного периода подготовки имеет тенденцию к постоянному приросту (от $62,59\pm3,41$ раз/мин до $72,92\pm3,95$ раз/мин), демонстрируя способность несколько компенсировать снижение показателей внешнего дыхания за счет частоты дыхательных движений.

Снижение функциональных возможностей кислородтранспортной системы к концу игрового сезона подтверждает также и динамика вентиляционного коэффициента по кислороду (VE / VO₂). С начала годичного цикла подготовки он повышается до $32,38 \pm 2,75$ ед., а затем постепенно снижается к концу соревновательного периода до $34,26 \pm 2,88$ ед. и $35,43 \pm 2,89$ ед. Вместе с тем вентиляционный коэффициент по углекислому газу (VE / VCO₂) в течение игрового сезона, наоборот, имеет тенденцию к постоянному улучшению, снижаясь с $31,82 \pm 2,55$ ед. в начале подготовительного периода до $29,51 \pm 2,42$ ед. к концу соревновательного периода. Это может быть обусловлено спецификой игровой деятельности футболистов, включающей большой объем активных перемещений по полю.

Вместе с тем динамика значений дыхательного коэффициента (RER max) имеет свои отличия. Данный параметр у молодых футболистов повышается с $1,18\pm0,07$ ед. в начале подготовительного периода до 1,34

 \pm 0,09 ед. в середине соревновательного периода, а затем снижается до 1,23 \pm 0,08 ед. к концу игрового сезона.

Несколько иной является динамика показателей внешнего дыхания и газообмена на уровне ПАНО у футболистов, принимавших участие в исследовании.

Сам показатель ПАНО (HR на ПАНО), повышаясь после подготовительного периода со $154,28 \pm 2,31$ уд/мин до $163,31 \pm 2,11$ уд/мин, в дальнейшем снижается по ходу соревновательного периода до $160,58 \pm 2,19$ уд/мин в середине и $159,29 \pm 2,23$ уд/мин в конце соревновательного периода.

Следует подчеркнуть, что показатели потребления кислорода на уровне ПАНО имели тенденцию к повышению лишь до середины соревновательного периода (относительные показатели: с $34,63\pm0,99$ мл/мин/кг до $47,64\pm1,31$ мл/мин/кг; абсолютные: с $3,12\pm0,15$ л/мин до $3,86\pm0,18$ л/мин вначале подготовительного и середине соревновательного периода соответственно), в то время как к концу соревновательного сезона показатели снижались ($42,28\pm1,12$ мл/мин/кг и $3,51\pm0,17$ л/мин.

При этом, значения кислородного пульса на ПАНО повышаются до середины соревновательного периода (с $18,43 \pm 1,01$ мл/уд до $21,08 \pm 1,11$ мл/уд), снижаясь к окончанию сезона до $20,34 \pm 1,08$ мл/уд.

Значения минутной вентиляции легких на уровне ПАНО, повышаясь после подготовительного периода с $72,15\pm3,97$ л до $79,24\pm4,25$ л, в дальнейшем снижаются до $78,62\pm4,15$ л в середине и до $76,51\pm4,11$ л к концу соревновательного периода.

Показатели частоты дыхания на ПАНО экономизируются после подготовительного периода (с $34,54\pm2,89$ раз/мин до $30,43\pm2,79$ раз/мин), повышаясь затем до $31,91\pm2,82$ раз/мин в середине и $31,13\pm2,91$ раз/мин в конце соревновательного периода.

Вентиляционный коэффициент по кислороду также улучшается с начала подготовительного периода до середины соревновательного (с $22,59 \pm 1,25$ ед. до $20,84 \pm 1,18$ ед.), несколько повышаясь затем до 21,26 ед к концу соревновательного периода. Аналогичная тенденция прослеживается и в динамике вентиляционного коэффициента по углекислому газу: данный показатель улучшается до середины соревновательного периода с $21,64 \pm 1,26$ ед. до $20,58 \pm 1,22$ ед., составляя при этом к концу игрового сезона (несмотря на специфику соревновательной деятельности футболистов) лишь $21,11 \pm 1,24$ ед.

Таким образом, полученные в ходе исследования результаты позволили установить особенности внешнего дыхания и газообмена квалифицированных молодых футболистов. Выявлена тенденция снижения показателей аэробного обеспечения к середине игрового сезона. В то же время показатели анаэробного обеспечения у исследуемых футболистов имели тенденцию к повышению на протяжении всего годичного цикла. Данные исследования позволяют утверждать о необходимости дифференцирования тренировочных нагрузок футболистов с учетом их возраста и текущего уровня функциональной подготовленности, а также календаря соревнований и этапа годичного цикла подготовки.

ЛИТЕРАТУРА

- 1. *Мищенко В. С.* Ведущие факторы функциональной подготовленности спортсменов, специализирующихся в циклических видах спорта / В. С. Мищенко // Медико-биологические основы оптимизации тренировочного процесса в циклических видах спорта. Киев, 1980. С. 29—53.
- 2. Физиология человека / под ред. Н. А. Агаджаняна. М. : Медицинская книга; Н. Новгород: НГМА, 2001. 379 с.
- 3. *Шапкайц Ю. М.* Влияние специфики физической деятельности на функцию систем внешнего дыхания и кровообращения: автореф. дис. . д-ра мед. наук: 14.00.17 / Ю. М. Шапкайц; Военно-мед. академия им. С. М. Кирова. Л., 1980. 23 с.