С.В. Васильев, А.Ю. Иванов, Е.О. Семенчук

и ур. Б УО «Гродненский государственный университет имени Янки Купалы, Гродно, Беларусь

МЕХАНИЗМЫ РАЗРУШЕНИЯ ПОЛИМЕТИЛМЕТАКРИЛАТА ПРИ ВОЗДЕЙСТВИИ НА ЕГО ПОВЕРХНОСТЬ ИЗЛУЧЕНИЯ ЛАЗЕРА

Целью работы является определение основного механизма формирования кратера при воздействии лазерного излучения на поверхность ПММА.

1. Методика исследований и экспериментальная установка

Излучение рубинового лазера ГОР-100М, работавшего в режиме свободной генерации (длительность импульса $\tau \sim 1,2$ мс, длина волны $\lambda = 0,694$ мкм), пройдя через фокусирующую систему, направлялось на образец, располагавшийся либо в вакуумной камере, либо в кювете с водой. В качестве фокусирующих применялись как однолинзовые, так и двухлинзовые системы, которые позволяли строить изображение диафрагмы на поверхности образца. Это позволяло получать на поверхности мишени однородное пятно фокусировки излучения с резкими границами. Диаметр D полученного таким образом пятна излучения с резкими краями варьировался в ходе экспериментов от 1 до 2 мм. Энергия лазерных импульсов E_0 варьировалась в пределах от 5 до 60 Дж.

Для изучения пространственной и временной эволюции зоны лазерного разрушения в ходе воздействия ЛИ на образец использовался метод скоростной голографической киносъемки [1]. Образец помещался в одно из плеч интерферометра Маха-Цендера. Интерферометр освещался излучением рубинового лазера ($\lambda = 0,694$ мкм), работавшего в режиме свободной генерации. Длительность импульса излучения зондирующего лазера составляла ~ 400 мкс. Селекция поперечных мод зондирующего лазера осуществлялась диафрагмой, помещенной внутрь резонатора, а продольных – эталоном Фабри-Перо, использовавшимся в качестве выходного зеркала. Зондирующее излучение направлялось в коллиматор, позволявший получать параллельный световой пучок диаметром до 3 см, что было вполне достаточно для наблюдения за развитием зоны лазерного разрушения в прозрачном диэлектрике, за ростом кратера, изменением плотности и температуры вещества в неупругой зоне, а также за процессами, протекающими в газе и плазменном облаке вблизи мишени. Интерферометр скоростной фоторегистрирующей камерой был состыкован со СФР-1М, плоскость фотопленки в которой была сопряжена с меридиональным сечением воздействующего на образец лазерного луча при помощи объектива. Скоростная камера работала в режиме лупы времени. Угол голографирования ограничивался конструкцией камеры и был равен ~ 10-2 рад, что соответствует фотографической разрешающей способности ~ 16 лин/мм. Полученные отдельные кадры голограмм сфокусированных изображений обеспечивали временное разрешение не хуже 0,8 мкс (время экспозиции одного кадра) и пространственное разрешение по полю объекта ≈ 50 мкм. Дифракционная эффективность голограмм позволяла в стационарных условиях восстанавливать и регистрировать интерференционные и теневые картины исследуемого процесса. Погрешность измерений показателя преломления и связанных с ним величин определялась точностью регистрации смещённых полос на восстановленных интерференционных картинах и не превышала ~ 10 % при доверительной вероятности 95 %.

2. Особенности разрушения ПММА при различных режимах лазерного воздействия

Динамика лазерного разрушения образца из ПММА, окруженного воздухом, находящимся в «нормальных» условиях (температура ~ 300 К, давление ~ 10^5 Па) достаточно подробно описана в работах [2, 3]. Временные зависимости диаметра d_1 , глубины h_1 и объёма V кратера имеют нелинейный характер. Рост размеров кратера сначала осуществлялся преимущественно за счёт увеличения его диаметра d, а затем, когда d достигает размеров ~ 1,5 D, начинается "трёхмерный" рост кратера. При этом на первой стадии объём И изменяется по зако-HY

 $V = F \exp[C(E - E_0)],$ где $E_0 \approx 7$ Дж ; $C \approx 0.2$ Дж ⁻¹ и F = 0.05 мм³ , а на второй стадии – по закону

$$V = V_b + A(E - E_0)^{\alpha}$$

(1)

(2)

где $\alpha \approx 1,5$; $A \approx 2 \text{ мм}^{3/2}$; $V_b \approx 0,5 \text{ мм}^3$ (последняя величина определяется объёмом V, при котором происходит смена режима изменения объёма).

Вышесказанному можно дать следующее объяснение. Вначале рост кратера происходит за счет однородного (и слабого) поглощения лазерного излучения в прозрачной среде. ПММА быстро размягчается, затем образуется паровой (далее пароплазменный) факел, размеры которого превышают диаметр пятна фокусировки. Происходит разогрев поверхности мишени за счет теплопередачи от пароплазменного факела, что и способствует увеличению диаметра кратера.

Также резкость границ светового пучка приводит к большому |grad T| по периметру пятна фокусировки. В то же время прозрачность среды приводит к малому |grad T| в направлении оси z. Поскольку поток тепловой энергии $g_t \sim -grad T$, то более интенсивно нагревается периферийная (по отношению к оси системы) часть поверхности образца. При этом, так как масса испарённого вещества

$$\Delta m = \rho h \Delta S = \Delta g_t / \beta \sim \Delta E S / L_b,$$

тде L_b – удельная теплота парообразования, имеем: $S \sim \exp E / (\rho h L_b)$, что при почти постоянном h_1 (так как компонента grad T, направленная вдоль оси z, мала) хорошо согласуется с уравнением (1).

На второй стадии роста кратера поглощение лазерного излучения по оси z уже сильно размягченного и менее прозрачного ПММА увеличивается. Кроме того, после выхода границ зоны испарения за пределы пятна фокусировки излучения градиент температуры по его периметру уменьшается и со временем происходит выравнивание градиента по всему профилю кратера. Поток тепла по всем направлениям также выравнивается, и испарение становится трёхмерным. Наступает вторая стадия процесса, на которой $\Delta d \sim \Delta h$. Если считать кратер сферическим сегментом (для неглубоких кратеров, образующихся в таких экспериментах $h_1 \ll d_1$), что допустимо в первом приближении, то $\Delta V = 4\pi R^2 \Delta R$, где R – радиус кривизны кратера.

Поскольку для процессов, обладающих осевой симметрией (а описанный процесс такой симметрией обладает), $R \sim E^{\frac{1}{2}}$, то имеем $V \sim E^{\frac{3}{2}}$, что хорошо согласуется с уравнением (2).

Принципиально иная картина наблюдается при воздействии импульсного лазерного излучения с аналогичными параметрами на образец из ПММА, окруженный воздухом при давлении ~ 10⁻⁵ Па (рисунок 1).

Рисунок 1 – Временные зависимости глубины и ширины образовавшегося кратера под действием лазерного излучения на образец из ПММА с заранее нанесенным на его поверхность черным пятном

Для получения кривых использованы восстановленные с голограмм прямотеневые картины необратимо измененных зон, образовавшихся при воздействии лазерного излучения на образец из ПММА при пониженном давлении окружающего мишень воздуха. Видно, что в данном случае на поверхности облучаемого образца образования макроскопической (видимой) зоны разрушения первоначально не наблюдается. Лазерное излучение беспрепятственно проходит вглубь образца и поглощается на неоднородностях (дефектах) материала, как при лазерном пробое в стекле и других прозрачных аморфных силикатах, а также кристаллах [4, 5]. В результате внутри образца возникают и увеличиваются в размерах видимые зоны разрушения (каверн). При этом первоначально развивается каверна на большем (более грубом) дефекте вдали от облучаемой поверхности. Параллельно начинает формироваться каверна и на меньшем дефекте, расположенном ближе к облучаемой поверхности. С течением времени «ближний» дефект начинает «затенять» (экранировать) дальний, и его рост замедляется. Если «ближний» дефект «выходит на поверхность», в «точке выхода» начинается развитие кратера. Если «ближняя» каверна располагается достаточно далеко от облучаемой поверхности, она на поверхность не «выходит», и кратер не образуется.

Аналогичная картина наблюдается и при воздействии лазерного излучения на образец из ПММА, расположенный в воде (рисунок 2).

Рисунок 2 – Временные зависимости размеров каверн и кратера, образовавшихся под действием лазерного излучения на нечерненый образец из ПММА, расположенный в жидкости

Выводы

При расположении облучаемого образца в камере с пониженным давлением и в воде излучение лазера свободно проникает вглубь материала, что позволяет формироваться очагам пробоя в объеме образца на дефектах и неоднородностях. При этом развитие каверн, расположенных ближе к облучаемой поверхности, препятствует развитию более удаленных каверн (экранировка).

Таким образом, в вакууме и в воде (т.е. при отсутствии доступа кислорода), кратер, не образуются. Следовательно, основным механизмом образования кратера на поверхности полиметилметакрилата является горение пластика.

Литература

1. Барихин, Б.А. Скоростная голографическая киносъемка лазерной плазмы / Б.А. Барихин, А.Ю. Иванов, В.И. Недолугов // Квантовая электроника. – 1990. – Т. 17, № 11 – С. 1477–1480.

2. Васильев, С.В. Динамика роста кратера и формирования упругих волн при действии на поверхность прозрачного диэлектрика миллисекундного лазерного импульса / С.В. Васильев, А.Ю. Иванов, В.И. Недолугов // Квантовая электроника. – 1994. – Т. 21, № 4 – С. 324–328.

3. Иванов, А.Ю. Акустическая диагностика процесса лазерной обработки материалов / А.Ю. Иванов. – Гродно: ГрГУ, 2007. – 280 с.

4. Ранние стадии развития лазерного разрушения в стекле / И.И. Ашмарин [и др.] // ФТТ. – 1974. – Т. 16, № 1. – С. 246 – 248.

5. Лазерный пробой в кристалличском аргоне как модель высокоэнергетических быстропротекающих процессов / И.И. Ашмарин [и др.] // Квантовая электроника. – 1979. – Т. 6, № 1. – С. 86–91.

55